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Structure at infinity and defect of transfer

matrices with time-varying coefficients, with

application to exact model-matching

Henri Bourlès∗

June 12, 2024

Abstract

We study the structure at infinity of transfer matrices with time-
varying coefficients. Such transfer matrices have their entries in a skew
field F of rational fractions, i.e. of quotients of skew polynomials. Any
skew rational fraction is the quotient of two proper ones, the latter forming
a ring Fpr (a subring of F) on which a “valuation at infinity” is defined.
A transfer matrix G has both a “generalized degree” and a valuation at
infinity, the sum of which is the opposite of the “defect” of G. The latter
was first defined by Forney in the time-invariant case to be the difference
between the total number of poles and the total number of zeros of G
(poles and zeros at infinity included and multiplicities accounted for). In
our framework, which covers both continuous- and discrete-time systems,
the classic relation between the defect and Forney’s left- and right-minimal
indices is extended to the time-varying case. The exact model-matching
problem is also completely solved. These results are illustrated through
an example belonging to the area of power systems.
Keywords: defect, model matching, time-varying, transfer matrix
AMS subject classification 93B25, 93N10, 93C05

1 Introduction

Linear time-varying (LTV) systems, i.e. systems with time-varying coefficients,
are encountered in many application fields ([8], Chapter 9). The transfer matrix
of an LTV continuous-time system was defined by Fliess [16]. The coefficients of
such a transfer matrix belong to a skew field F of skew rational fractions since
the system coefficients do not commute with the derivation. This formalism
was extended in [4] to LTV continuous- and discrete-time systems in a unified
approach that will be followed in the sequel. This extension brings into play
a “generalized derivation” which reduces to the usual derivation operator a �→
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da/dt in the continuous-time case and to the “finite difference operator” a (t) �→
a (t+ 1)−a (t) in the discrete-time case (where a is any system coefficient). The
non-commutativity between the system coefficients and the above generalized
derivation involves a “commutation rule” (see (2) below) which was introduced
by Ore [34]. There result computations on skew polynomials which, although
they are generally more complicated than in the linear time-invariant (LTI) case
(where only usual polynomials are involved), can be implemented using existing
softwares, e.g. M����’s O���		�
 or O��_������ packages [29].

In the LTI case, it is well-known that, taking into account the poles and zeros
at infinity, the total number of poles of a rational transfer function is equal to
the total number of its zeros. This is no longer true for a rational transfer
matrix G (with several rows and/or columns): the difference between the total
number of poles and the total number of zeros of G is a non-negative integer,
called the defect of G and denoted by def (G) . This notion was introduced by
Forney [17] and sightly generalized by Kung and Kailath [28] (see also ([23],
Section 6.5.4)). As was shown in [28], by Verghese [44], and by Verghese, van
Dooren and Kailath [45] (see also ([23], Theorem 6.5-11)), def (G) is the sum of
the left- and right-minimal indices of G (those indices were introduced in [17],
generalizing the classic Kronecker indices of matrix pencils).

In control theory, proper transfer functions play a prominent role since a
controller is practically realizable only if its transfer function is proper. Proper
transfer functions g = n/d, i.e. those such that deg (g) := deg (n)−deg (d) ≤ 0,
where n, d are polynomials and d �= 0, form a subring Fpr of the field F of all
transfer functions. A transfer matrix is called proper if its entries are all proper.
The “exact model-matching problem” consists, given two transfer matrices A,B,
to determine whether there exists a proper transfer matrixH such thatHA = B
or AH = B (H is the transfer matrix of the post-compensator in the first case,
and of the pre-compensator in the second case) [47] (see also [17], [28] and
[23]) and, when the answer is positive, to parametrize explicitly all these proper
transfer matrices H.

For the reader’s convenience, notations, conventions and background are re-
called in Section 2. The notion of proper transfer matrix is extended to the
LTV case in an obvious way (an LTV system with a proper transfer matrix is
called a proper system, and an intrinsic characterization of such systems was
given in [14]; see also [35]). The structure of the ring Fpr and the properties
of proper transfer matrices are studied in Section 4. Using the notions of “gen-
eralized degree” and of “valuation at infinity” of a matrix with entries in F,
introduced in Sections 3 and 4 respectively, the defect of a transfer matrix and
its relation to Forney’s left- and right-minimal indices are extended to the LTV
case in Section 5. The exact model-matching problem is completely solved in
Section 6. The solution H and its parametrization are similar to those given by
Marinescu [30] but with the important difference that in [30], H and the para-
meter on which it depends are assumed to be matrices with entries in a ring of
formal skew power series whereas our solution H has its entries in Fpr, which
is much more natural. In addition, we do not assume that A and B are full
column- or row-rank as in [30], thus our solution H depends on two parameters
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(instead of one in [30]) which are matrices with entries in Fpr. All results are
constructive. The calculation of the defect def (G) and that of the solution H
to the model matching problem in the LTV case are illustrated in Section 7
through an example belonging to the area of electric power systems.

2 Notation, conventions and background

2.1 Notation and conventions

The list of notations below is followed by some explanations when necessary.
:= Equal by definition
։ Surjection
Z Set of all integers,
N, N× Set of all non-negative integers, of all natural integers
R× Set of nonzero elements in a ring R
(a) Two-sided ideal generated by an element a in a ring R

U(R) Group of units in a ring R
Mn (R) Ring of n× n matrices with entries in a ring R
GLn (R) Group of unimodular n× n matrices with entries in R
M ∼=R N Isomorphic R-modules M,N
tor (M) Torsion submodule of an R-module M
Q(R) Quotient skew field of an Ore domain R
col {Ai}i≤1≤n Matrix composed of the submatrices Ai (i = 1, ..., n)

arranged in column (the submatrices A1, ..., An all
having the same number of rows)

K, 1K Commutative field, identity map of K
α, δ Automorphism, α-derivation of K ((1))
A =K [s;α, δ] Ring of skew polynomials with coefficients in K and

indeterminate s equipped with the commutation rule (2)
F =K (s;α, δ) Quotient skew field of A =K [s;α, δ]
diag {ni}1≤i≤k Matrix (not necessarily square) with n1, ..., nk

on its main diagonal and zeros elsewhere
dimK {M} Dimension over K of an A-module M
deg (g) Degree of a skew rational fraction g ∈ F ((6))
Fpr Subring of F consisting of proper skew rational fractions

(Definition 2)
degF (G) F -degree of a matrix G ∈ Fp×m (Definition 3)
∼R Equivalence of matrices (Subsection 2.2)
a � b, a|b Total divisor, divisor (Subsections 2.2, 4.1)
≈R Similarity (Subsection 2.2)
deg det Determinantal degree (Subsection 2.3)
cokerR (•A) Cokernel of the right multiplication by a matrix A

with entries in R
degM (G) Generalized degree of a matrix G ∈ Fp×m (Definition 9)
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degzM (G) Generalized degree of G relative to zeros
degpM (G) Generalized degree of G relative to poles
ν∞ Valuation at infinity ((28), (35))
σ Normed uniformizer of ν∞ (i.e. σ = s−1)
⊳ Normal subgroup (Subsection 4.3)
dz∞ (G) Degree of the zero at infinity of G (Definition 21)
dp∞ (G) Degree of the pole at infinity of G
def Defect (Definition 26)

Recall that a matrix V ∈Mn (R) is said to be unimodular if it has an inverse
V −1 ∈Mn (R). In the sequel, all R-modules (where R is a ring) are left mod-
ules. “Principal ideal domain” means “left and right principal ideal domain”,
“Ore domain” means “left and right Ore domain”, “Euclidean domain” means
“left and right Euclidean domain”, etc., and all these rings are noncommutative
except when explicitly stated.

In what follows, K is the field of system coefficients. An α-derivation δ of
K is an additive map δ :K→K such that for any a, b ∈ K,

(ab)δ = aαbδ + aδb (1)

where α is an endomorphism of K, aα := α (a) and aδ := δ (a) is the “gen-
eralized derivative” of a with respect to time (see (3), (5)). In the two cases
considered in the sequel (i.e. the continuous-time case and the discrete-time
case), α is an automorphism commuting with δ. Besides, A =K [s;α, δ] is the
ring of skew polynomials with coefficients in K and indeterminate s, such that
the following commutation rule holds ([12], Section 8.3):

sa = aαs+ aδ, (2)

as explained below. The ring A is then an Euclidean domain, thus a principal
ideal domain, and so an Ore domain ([12], Sections 0.8, 0.10). Therefore, it
admits a left quotient skew field F := Q (A) = K (s;α, δ) (of left fractions
d−1n) which coincides with its right quotient skew field (of right fractions n′d′−1)
where n, n′, d, d′ ∈ A, d, d′ �= 0. This formalism is classic in mathematics since
Ore’s seminal paper [34] and was used in [4], [5] (see also [50]) to unify the
continuous- and discrete-time cases as we will now briefly explain.

1. Continuous-time systems: For such a system, the time t belongs the real
line and (K, δ) is a differential field ([26], Section 1.1). The field C (t) of ra-
tional fractions with complex coefficients and the fieldM of meromorphic
functions, both equipped with the usual derivation d/dt, are typical differ-
ential fields [49], [20], [21]. So are also the field Ploc,m (m ∈ N×) of locally
convergent Laurent series in the variable z1/m, z := t−1 and the field of
locally convergent Puiseux series Ploc =

�
m≥1Ploc,m, equipped with the

derivation d/dt = −z2d/dz. For any m ∈ N×, C (t) � Ploc,m � Ploc �M.
Each element of C (t) (resp. M) is a smooth function in the complement
of a finite (resp. discrete) subset of R, and each element of Ploc is a smooth
function in an interval of the form (τ ,+∞) for τ ≥ 0 large enough. The
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field Ploc was introduced in [9] for stability study of LTV continuous-time
systems. The Leibniz rule d

dt (ab) = aḃ+ ȧb is a particular case of (1) with

ȧ = aδ, ḃ = bδ and
α := 1K, aδ := da/dt (3)

Since δ is not induced by α, it is called an “outer derivation”. Further,
the indeterminate s acts on a signal w according to

sw = dw/dt (4)

If K = C (t) (resp. K =M), a signal is a smooth function in the comple-
ment of a finite (resp. discrete) subset of R [49], [20], [21]. If K = Ploc, a
signal is a smooth function in an interval (τ ,+∞) of the real line for τ large
enough [9]. The Leibniz rule d/dt (aw) = adw/dt+ ȧw can also be written
s (aw) = a (sw) + aδw which yields the commutation rule sa = as + aδ,
identical to (2) with α satisfying the first equality of (3) .

2. Discrete-time systems: For such a system, the time t belongs to Z and
(K,α) is a difference field ([43], Definition 1.1). The case whereK = C (t)
(resp. K =Ploc) was considered in [10] (resp. [33]) for stability study of
LTV discrete-time systems. The automorphism α and the α-derivation δ
are defined according to

aα (t) := a (t+ 1) , aδ (t) := a (t+ 1)− a (t) (5)

hence δ is the “inner derivation” α−1K and (1) holds true, as easily seen.
Further, s acts on a signal w according to sw (t) = w (t+ 1)−w (t). Such
a signal is a sequence defined in an interval (τ ,+∞) ∩ Z of Z for τ large
enough [10], [33]. We have s (aw) (t) = a (t+ 1)w (t+ 1) − a (t)w (t) =
a (t+ 1) (w (t+ 1)−w (t))+ (a (t+ 1)− a (t))w (t) which yields the com-
mutation rule (2).

The transfer matrix of an LTV system (either in the continuous- or discrete-
time case) has its entries in F. In the LTI case, α = 1K, δ = 0 and A =K [s] ,
F = K (s) , respectively the ring of usual polynomials and the field of usual
rational fractions with coefficients in K and indeterminate s.

A nonzero skew polynomial f ∈ A := K [s;α, δ] is of the form f =�
0≤i≤n fis

i =
�
0≤i≤n s

if ′i where the coefficients fi, f
′
i are uniquely deter-

mined and fn, f ′n �= 0. This skew polynomial has degree deg (f) = n, and
deg (0) := −∞. If g ∈ F :=K (s;α, δ) , there exist skew polynomials n, n′, d, d′

(d, d′ �= 0) such that g = d−1n = n′d′−1 and the degree of g is

deg (g) = deg (n)− deg (d) = deg (n′)− deg (d′) . (6)

Lemma 1 The map deg : F → Z ∪ {−∞} has the following properties (where
g, h ∈ F):
(i) It is surjective and deg (g) > −∞ if and only if g �= 0.
(ii) deg (gh) = deg (g) + deg (h) .
(iii) deg (g − h) ≤ max {deg (g) ,deg (h)} .
(iv) Equality holds in (iii) if deg (g) �= deg (h) .
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Proof. Properties (i), (ii) are clear and (iii), (iv) can be proved as in ([2], p.
IV.20, Proposition 1).

Definition 2 The subring of F consisting of all proper skew rational fractions,
i.e. of those fractions g such that deg (g) ≤ 0, is denoted as Fpr.

Let G ∈ Fp×m. Extending a notion introduced by Forney [17] for p × 1
or 1 ×m matrices with entries in K [s], we define below the Forney degree, or
F-degree, of G :

Definition 3 The F-degree of G ∈ Fp×m is

degF (G) := max {deg (gij) : 1 ≤ i ≤ p, 1 ≤ j ≤m}

where gij is the entry with indices (i, j) of G.

Lemma 4 (i) degF : Fp×m → Z ∪ {−∞} is surjective and degF (G) > −∞ if
and only if G �= 0.
(ii) If G,H ∈ Fp×m, then degF (G−H) ≤ max {degF (G) ,degF (H)} .
(iii) Equality holds in (ii) if degF (G) �= degF (H) .
(iv) If G ∈ Fp×m, H ∈ Fm×q, then degF (GH) ≤ degF (G) + degF (H) .
(v) If g ∈ F, H ∈ Fp×m, then degF (gH) = deg (g) + degF (H) .

Proof. (i) is a consequence of Lemma 1(i), considering a matrix whose entries
are all zero except perhaps that with indices (1, 1).

(ii) Let G = (gij) , H = (hij) . For any pair of indices (i, j) ,

deg (gij − hij) ≤ max {deg (gij) ,deg (hij)}

≤ max
k,l

{max {deg (gk,l) ,deg (hk,l)}}

hence the inequality stated.
(iii) If degF (G) > degF (H) , there exists a pair of indices (i, j) such that

degF (G) = deg (gij) > deg (hkl) for all pairs of indices (k, l) , hence

degF (G−H) = max
k,l

{deg (gkl − hkl)} = deg (gij) = degF (G)

(iv) For any pair of indices (i, j) ,

deg

�
�

l

gilhlj

�

≤ max
l

deg (gilhlj) ≤ max
l

deg (gil) +max
k

deg (hkj)

and the inequality stated follows.
(v) is obvious.

Remark 5 The inequality in Lemma 4(iv) is not an equality in general, even for
diagonal nonsingular matrices, as shown by the example where G = diag {s, 1},
H = diag {1, s}, hence GH = diag {s, s}. Nevertheless, degF is a degree on the
polynomial algebra Mn (A) ([2], Chapter IV, Section 1.2)).
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Put σ = s−1. Then (2) can equivalently be written

aσ = σaα + σaδσ ⇔ σa = aβσ + σaβδσ
�
β = α−1

�
(7)

and S := K [[σ;α, δ]] denotes the ring of skew formal power series with coeffi-
cients in K and indeterminate σ equipped with the commutation rule (7) . This
is an Ore domain and its quotient skew field is the field of skew formal Laurent
series denoted as L :=K ((σ;α, δ)). Any nonzero element f of L is of the form

f =
�

i≥k

fiσ
i =

�

i≥k

σif ′i (8)

where the coefficients fi, f ′i are uniquely determined and fk, f ′k �= 0; f belongs to
S if and only if k ≥ 0. Since σ = s−1, through its series expansion any element
of Fpr is identified with an element of S, hence Fpr ⊂ S and F ⊂ L. Further,
the element f in (8), where fk �= 0 (or equivalently f ′k �= 0), belongs to A if
and only if k ≤ 0 and the index i varies from k to an integer l ≤ 0, and then
deg (f) = −k, thus A ⊂ L. Since F is the smallest skew field containing A, this
implies F ⊂ L. To summarize:

A ⊂ F ⊂ L

U U

Fpr ⊂ S

2.2 Normal forms of polynomial and rational matrices

Let R be a principal ideal domain and N ∈ Rp×m be a matrix of rank r > 0
over Q(R). The following is classic ([12], Chapter 8): There exist unimodular
matrices U ∈ GLp (R), V ∈ GLm (R) such that

U−1NV = diag {e1, ..., er, 0, ..., 0}� 	
 �
S

(9)

(in other words, N is equivalent to S, and we write N ∼R S) where ei ∈ R×

(i = 1, ..., r) and for i = 1, ..., r−1, ei is a total divisor of ei+1, written ei � ei+1,
which means that there exists an invariant element c (i.e. c �= 0 and the equality
Re = eR holds) such that ei|c|ei+1 (“|” meaning “divides”). These elements ei
are uniquely determined up to similarity, i.e. if e′i (i = 1, ..., r) are other such
elements, then R/Rei ∼=R R/Re′i, written ei ≈R e′i. The matrix S on the right
hand-side of (9) is called a Jacobson-Teichmüller normal form of N . If R = A

(A =K [s;α,δ]), similarity ei ≈R e′i implies deg (ei) = deg (e′i) since

dimK {R/Rei} = deg (ei) (10)

([12], Section 8.4).
If A = K [s] (case of constant coefficients), all nonzero elements of A are

invariant so that ei � ei+1 if and only if ei|ei+1, the polynomials ei (i = 1, ..., r)
are uniquely determined up to associates and can be assumed to be monic, and
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S is the usual Smith normal form of N . Let G = d−1N ∈ Fp×m be a nonzero
transfer matrix where d �= 0. Then

U−1GV = diag {n1/d1, ..., nr/dr, 0, ...., 0} (11)

where ni/di = ei/d, the rational fraction ni/di is irreducible and ni, di are
monic (i = 1, ..., r). The matrix on the right-hand side of (11) is the McMillan
normal form of G, and the transmission poles and zeros of the system with
transfer matrix G (also called the McMillan poles and zeros of G) are the roots
of the di’s and the ni’s respectively (multiplicities accounted for) in an algebraic
closure of K.

2.3 The determinantal degree deg det

Let R be a skew field and A ∈ Mn (R). The Dieudonné determinant det (A)
of A is zero if A is singular and, if not, belongs to the abelianization R×ab =
R×/D(R×) of the multiplicative group R×, where D(R×) = (R×,R×) is the
derived subgroup of R× ([13], Section 9.2).

Let F =K (s;α, δ) and A =K [s;α, δ]. The following results are proved in
[39]:

1. If a ∈ F×, then deg (a) depends only on the class ā of a in F×ab, therefore
the function det : F× → Z induces an epimorphism of abelian groups

deg : F×ab ։ Z (12)

2. Let us extend the group epimorphism deg det := deg ◦ det : GLn (F) ։
Z to Mn (F) by putting deg det (A) = −∞ if A is singular; then the
mapping deg det :Mn (F)→ Z ∪ {−∞} is surjective and deg det (AA′) =
deg det (A) + deg det (A′) (A,A′ ∈Mn (F)).

3. For n = 1, deg det = deg.

4. The restriction of deg det to Mn (A) is a surjection onto N ∪ {−∞}.
Furthermore, if A ∈ Mn (A), then deg det (A) > −∞ if and only if
A is regular (over F), i.e. if the A-module cokerA (•A) (where (•A) is
the right-multiplication by A) is torsion, and in that case deg det (A) =
dimK {cokerA (•A)}; if A is singular (over F), there exists a free A-
module F �= 0 such that cokerA (•A) = F ⊕ tor (cokerA (•A)) , thus
dimK {cokerA (•A)} = +∞. Therefore, deg det (A) is finite if and only
if dimK {cokerA (•A)} is finite. The matrix A ∈Mn (A) is unimodular if
and only if dimK {cokerA (•A)} = 0, i.e. deg det (A) = 0.

If G ∈ Fp×m and M ∈ Mk (R) (k ≤ min (p,m)) is a submatrix of G, then
det (M) ∈ R×ab ∪ {0} is called a minor of order k of A. The k-th compound
matrix G(k) of G is the matrix of dimension

�
p
k

�
×
�
m
k

�
, all entries of which are

minorsMij of order k of G, written in lexicographic order by rows and columns.
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If G′ ∈ Fp×m, G′′ ∈ Fm×q and k ≤ min {p,m, q} , we have the generalized
Cauchy-Binet identity

(G′G′′)
(k)

= G′(k)G′′(k) (13)

([11], Theorem 5.2).

3 Generalized degree of a transfer matrix

3.1 The LTI case

Assume that F = K (s) and let G ∈ Fp×m be a transfer matrix. If G �= 0,
consider its McMillan normal form (11). We put

degpM (G) =
r�

i=1

deg (di) , degzM (G) =
r�

i=1

deg (ni) (14)

degM (G) = degzM (G)− degpM (G) = deg det
�
diag {ni/di}1≤i≤r


(15)

Further, if G = 0, we put degM (G) = −∞.

Definition 6 degM (G) (resp. degpM (G) , resp. degzM (G)) here above is called
the generalized degree (resp. the generalized degree relative to poles, resp. the
generalized degree relative to zeros) of G.

Note that degpM (G) is the McMillan degree δM (G) of G if this transfer
matrix is proper ([23], p. 466) and that degM (G) = deg (G) when p = m = 1
(see (6)), which justifies the notation. As shown in Theorem 11 below, the
generalized degree enjoys some properties of a usual degree, as do degF (Remark
5) and δM ([23], p. 466), but, contrary to degF and δM , not all of them (Remark
12). Using the following lemma we will be able to extend (14) and (15) to the
LTV case in the next subsection.

Lemma 7 Let D−1
l Nl (resp. NrD

−1
r ) be any left- (resp. right-) coprime fac-

torization over A of G ∈ Fp×m, assumed to be of rank r > 0. The generalized
degrees degpM , degzM in (14) satisfy the equalities

degpM (G) = dimK {cokerA (•Dl)} = dimK {cokerA (•Dr)} , (16)

degzM (G) = dimK {tor (cokerA (•Nl))} = dimK {tor (cokerA (•Nr))}(17)

Proof. 1) Let U−1GV be the McMillan normal form on the right
of the equality (11). With Nl = diag {n1, ..., nr, 0, ..., 0}V

−1, Dl =
diag {d1, ..., dr, 1, ..., 1}U

−1, D−1
l Nl is a left-coprime factorization of G over

A and we have cokerA (•Dl) ∼=A
�r

i=1 cokerA (•di), tor (cokerA (•Nl)) ∼=A�r
i=1 cokerA (•ni) from which the first equality of (16) and that of (17) fol-

low since dimK {cokerA (•di)} = deg (di), dimK {cokerA (•ni)} = deg (ni) by
(10). The other equalities are established similarly.
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2) If D̃−1
l Ñl (resp. ÑrD̃

−1
r ) is another left- (resp. right-) coprime factoriza-

tion of G over A, there exist unimodular matrices U ∈ GLp (A) , V ∈ GLm (A)

such that
�
D̃l Ñl

�
= U

�
Dl Nl

�
(resp. col

�
D̃r, Ñr

�
= col {Dr, Nr}V ),

thus cokerA
�
•D̃l


∼=A cokerA (•Dl) and cokerA

�
•Ñl


∼=A cokerA (•Nl) (resp.

cokerA
�
•D̃r


∼=A cokerA (•Dr) and cokerA

�
•Ñr


∼=A cokerA (•Nr)).

3.2 The LTV case

Let F =K (s;α, δ) and A =K [s;α, δ] �=K [s]. The generalized degrees degM ,
degzM , degpM can no longer be defined by (14) and (15) since the McMillan
normal form of a matrix G ∈ Fp×m does not exist.

Let us recall the notion of state-space system according to Fliess [15] (see
also ([6], Sections 1.6 and 2.1) where the connection — here a duality — between
Fliess’s approach and the behavioral approach is detailed). A linear system
over A is (described by) a finitely generated A-moduleM = cokerA (•R) where
R = (rji) ∈ A

q×k. Denoting bywi the canonical image of the i-th elementwi of
the canonical basis ofA1×k in the quotientM = A1×k/A1×qR, we have Rw = 0
where w = col {wi}1≤i≤k and M = [w]A, i.e. M is the A-module generated by
thewi. So,M is determined up to isomorphism to be theA-module [w]A where
the column w satisfies the relation Rw = 0 (and no additional nonredundant
one1). A control for such a system is a column u of m elements ui such that
[u]A is a free submodule of rank m of M and the quotient module M/ [u]A is
torsion; an output is a column y of p elements yi such that [y]A is a submodule
of M . The triple (M,u,y) is called a linear control system ([8], Definition 851)
(or a linear dynamics in Fliess’s terminology [15]). Consider the F-vector space
M̂ := F⊗AM and let ûi, ŷj be the canonical image of ui, yj , respectively, in

M̂ (i = 1, ...,m; j = 1, ..., p), i.e. ûi = 1⊗ ui, ŷj = 1⊗ yj . Then {û1, ..., ûm} is

a basis of M̂, hence there exists a unique F-linear mapping G such that ŷ = Gû
where ŷ = col {yj}1≤j≤p , û =col {ui}1≤i≤m, and G is the transfer matrix of

(M,u,y) [16]. The control system (M,u,y) is controllable if and only if M is
free, and is observable if and only if M = [u,y]A [15]. As shown in the latter
reference, the control system (M,u,y) has a state-space representation of finite
order n

sx = Ax+Bu, y = Cx+Du (18)

A ∈ Mn (K), B ∈ Kn×m, C ∈ Kp×n, D ∈ Ap×m. The order of this system
is n = dimK {cokerA (• (sIn −A))} = dimK {M/ [u]A} since M = [x,u]A . Be-

sides, (18) is a state-space realization of G if and only if G = C (sIn −A)
−1B+

D and as usual, the state-space realization (18) is minimal if and only if it is
both observable and controllable.

The following result generalizes that of Kalman [24] regarding Statement (i),
and ([46], Section 4.1, Theorem 49) regarding (ii):

1Strictly speaking, the module M is then said to be determined by generators wi and

relations
��

1≤i≤k rjiwi : 1 ≤ j ≤ q
�

([37], Section 3.1, p. 106).
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Theorem 8 Let G ∈ Fp×m be a transfer matrix of rank r > 0, and D−1
l Nl

(resp. NrD
−1
r ) be any left- (resp. right-) coprime factorization of G over A.

(i) dimK {cokerA (•Dl)} is the order of any minimal state-space realization of
G.
(ii) We have

cokerA (•Dl) ∼=A cokerA (•Dr) , tor (cokerA (•Nl)) ∼=A tor (cokerA (•Nr))
(19)

therefore the invariant factors of Dl coincide with those of Dr up to similarity,
and likewise the nonzero invariant factors of Nl coincide with those of Nr up to
similarity; hence

dimK {cokerA (•Dr)} = dimK {cokerA (•Dl)} , (20)

dimK {tor (cokerA (•Nr))} = dimK {tor (cokerA (•Nl))} . (21)

Proof. (i) From the above, the linear control system (M,u,y) , of order n, is
observable if and only if y,u satisfy a relation of the form

Dly = Nlu (22)

(and no additional nonredundant relation is satisfied, so that M = [u,y]A),
Dl ∈ Mp (A) is regular (since M/ [u]A is torsion) and Nl ∈ Ak×m; then,
G = D−1

l Nl. This observable system is controllable if and only if
�
Dl −Nl

�

is right-invertible (freeness condition of M), in other words D−1
l Nl is a left-

coprime factorization of G over A. We have M/ [u]A
∼=A cokerA (•Dl) , thus

n = dimK {cokerA (•Dl)}.
Conversely, if D−1

l Nl is a left-coprime factorization of a transfer matrix G,
there exists a controllable and observable linear control system (M,u,y), of
order n, with module M = [y,u]A where y,u are linked by the only nonre-
dundant relation (22) , and whose G is the transfer matrix. Thus, M/ [u]A

∼=A
cokerA (•Dl) and n = dimK {cokerA (•Dl)}, which proves (i).

(ii) Let the linear control system (M,u,y) be controllable and let ξr be a
column, the entries of which form a basis ofM. This system has a representation
of the form

Drξr = u, Nrξr = y (23)

The column ξr is called a partial state ([23], Section 6.4.1), and Dr is regular
square. ThusM/ [u]A

∼=A coker (•Dr). This controllable system is observable if
and only if NrD

−1
r is a right-coprime factorization of G over A (in other words,

M = [y,u]A).
Conversely, if NrD

−1
r is a right-coprime factorization of the transfer matrix

G, there exists a controllable and observable control system (M,u,y) , with
module [ξr,u]A and output y where ξr,u,y are linked by the only relations
(23) , and whose G is the transfer matrix, henceM/ [u]A

∼=A coker (•Dr). Thus
the first isomorphism of (19) as well as the equality (20) are proved.

Let the control system (M,u,y) be controllable and observable. From (22),
M/ [y] ∼=A cokerA (•Nl). From (23), M/ [y] =

�
ξ̄r, ū

�
A

where the entries of the

11



column ξ̄r (resp. ū) are the canonical images of the entries of the column ξr
(resp. u) in the quotient M/ [y]; hence we have

M/ [y] ∼=A cokerA

�
•

�
Nr 0
Dr −Im

��
∼=A cokerA (•Nr)

which proves the second isomorphism of (19) and the equality (21).
We are led to the following definition of the generalized degrees degM , degpM

and degzM which, according to Lemma 7, generalizes (14) and (15):

Definition 9 Let G ∈ Fp×m be a matrix of rank r and, if r > 0, let D−1
l Nl

(resp. NrD
−1
r ) be a left- (resp. right-) coprime factorization of G over A. We

put

degpM (G) = dimK {cokerA (•Dr)} = dimK {cokerA (•Dl)} , (24)

degzM (G) = dimK {tor (cokerA (•Nr))} = dimK {tor (cokerA (•Nl))}(25)

if r > 0 and

degM (G) =

�
degzM (G)− degpM (G) if r > 0

−∞ if r = 0
(26)

The generalized degrees degpM (G), degzM (G) , degM (G) are further detailed
in the following lemma:

Lemma 10 Let G ∈ Fp×m be a matrix of rank r > 0.
(i) There exist U ∈ GLp (A) , V ∈ GLm (A) such that

UGV −1 =

�
Ḡ 0
0 0

�

where Ḡ ∈ GLr (F) .
(ii) Let D̄−1N̄ be a left-coprime factorization or N̄D̄−1 be a right-coprime
factorization of Ḡ over A. Then degzM (G) = deg det

�
N̄
�

= degzM
�
Ḡ
�

and degpM (G) = deg det
�
D̄
�
= degpM

�
Ḡ
�
, hence degM (G) = degM

�
Ḡ
�
=

deg det
�
Ḡ
�
.

Proof. (i) There existG′ ∈ Fp×r andG′′ ∈ Fr×m, both of rank r, such thatG =
G′G′′, as a consequence of ([1], Chapter II, §10, Proposition 13). Let N ′D′−1

(resp. D′′−1N ′′) be a right- (resp. left-) coprime factorization of G′ (resp. G′′)
over A. There exist U ∈ GLp (A) , V ∈ GLm (A) such that UN ′ = col

�
N̄ ′, 0

�

(resp. N ′′V −1 =
�
N̄ ′′ 0

�
), choosing for N̄ ′ ∈Mr (A) (resp. N̄ ′′ ∈Mr (A))

a column (resp. row) Hermite form of N ′ (resp. N ′′) ([32], Section II.6). Thus

UGV −1 = col
�
N̄ ′, 0

�
∆
�
N̄ ′′ 0

�
where ∆ = (D′′D′)−1 ∈ GLr (F). We get

UGV −1 =

�
Ḡ 0
0 0

�
where Ḡ = N̄ ′∆N̄ ′′ ∈ GLr (F) .
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(ii) Let D̄−1N̄ be a left-coprime factorization of Ḡ over A. Then

UGV −1 =

�
D̄−1N̄ 0

0 0

�
=

�
D 0
0 I

�−1 �
N̄ 0
0 0

�

and this is a left-coprime factorization of UGV −1 over A. Thus D−1N where

D = U

�
D 0
0 I

�
, N =

�
N̄ 0
0 0

�
V

is a left-coprime factorization of G over A. Hence degpM (G) = deg det (D) =
deg det

�
D̄
�

= degpM
�
Ḡ
�

and degzM (G) = dimK {tor (cokerA (•N))} =

dimK

�
cokerA

�
•N̄
��

= degzM
�
Ḡ
�
, thus degM (G) = degM

�
Ḡ
�
. Since Ḡ =

D̄−1N̄ , deg det
�
Ḡ
�
= deg det

�
N̄
�
− deg det

�
D̄
�
= degzM

�
Ḡ
�
− degpM

�
Ḡ
�
=

degM
�
Ḡ
�
.

The case where G = N̄D̄−1 is a right-coprime factorization of Ḡ over A is
similar.

Statements (i), (ii) of Lemma 1 are extended to the matrix case in the
theorem below with deg changed to degM :

Theorem 11 (i) The mapping degM : Fp×m → Z∪{−∞} is surjective.
(ii) If G′ ∈ Fp×r, G′′ ∈ Fr×m are two matrices of rank r > 0, then degM (G′) ,
degM (G′′) are both > −∞ and degM (G′G′′) = degM (G′) + degM (G′′) .

Proof. The proof of (i) is identical to that of Lemma 4(i).
(ii) As shown using elementary operations, there exist U ∈ GLp (A) , V ∈

GLm (A) such that UG′ = col
�
Ḡ′, 0

�
, G′′V −1 =

�
Ḡ′′ 0

�
where Ḡ′, Ḡ′′ ∈

GLr (F) , thus

U (G′G′′)V −1 =

�
Ḡ′Ḡ′′ 0
0 0

�

and by Lemma 10, degM (G′G′′) = deg det
�
Ḡ′Ḡ′′

�
= deg det

�
Ḡ′
�
+

deg deg
�
Ḡ′′
�
= degM (G′) + degM (G′′) .

Remark 12 Property (iii) in Lemma 1 does not extend to the matrix case with
deg changed to degM , as shown by the following example:

�
s 1

�
� 	
 �
degM (G)=0

−
�
0 1

�
� 	
 �

=

degM(H)=0

�
s 0

�
� 	
 �

degM (G−H)=1

3.3 Irreducible polynomial matrices

Let us study irreducible polynomial matrices in the sense of ([23], p. 378) in
the case where A = K [s;α, δ] . First note that the restriction of the mapping
degM to Ap×m is a surjection onto N ∪ {−∞} .
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Lemma 13 Let H ∈ Ar×p be a matrix such that rkF (H) = r > 0. The follow-
ing conditions are equivalent:
(i) degM (H) = 0.
(ii) (•H) : A1×r −→ A1×p is a split monomorphism.
(iii) For any y ∈

�
F1×rH

�
∩A1×p, if x ∈ F1×r is such that

y = xH (27)

then x ∈ A1×r.

Proof. First note that degM (H) = degzM (H) and that the equality rkF (H) = r
means that (•H) is a monomorphism.

(i)⇔(ii) : If degM (H) = 0, then the quotient module cokerA (•H) of A1×p

is torsion-free, thus free since A is a principal ideal domain, therefore the
monomorphism (•H) is split. Conversely, if the monomorphism (•H) is split,
cokerA (•H) is torsion-free and degM (H) = 0 by (25).

(ii)⇔(iii) : (ii) means that f := (•H) : A1×r −→ A1×p admits a retraction
([1], Chapter II, §1, Proposition 15), i.e. there exists g = (•J) : A1×p −→ A1×r

such that g ◦ f = 1A1×r , and since g ◦ f = (•HJ), this means that H is right-
invertible over A, i.e. (iii) holds true.

Definition 14 A polynomial matrix H ∈ Ar×p of rank r > 0 is said to be
irreducible if the equivalent conditions of Lemma 13 are satisfied. An irreducible
matrix K ∈ Am×r of rank r > 0 is likewise defined, replacing (27) (where x, y
are rows of r and p elements respectively) by y′ = Kx′ (where x′, y′ are columns
of m and r elements respectively).

4 Structure and valuation at infinity of a trans-

fer matrix

4.1 Valuation at infinity of a rational fraction and struc-

ture of Fpr

As in the case where F =K (s) ([2], p. IV.20), the mapping

ν∞ : F −→ Z ∪ {+∞} : g �→ −deg (g) (28)

is a discrete valuation on the skew field F = K (s;α, δ). The valuation ring of
F, i.e. the set of all elements g ∈ F such that ν∞ (g) ∈ N ∪ {+∞} , is the ring
Fpr of proper skew rational fractions. An element υ ∈ Fpr is a unit if and only
if ν∞ (υ) = 0 and ν∞

�
s−1

�
= 1, thus σ := s−1 is a normed uniformizer of ν∞

([3], Chap. VI, §3, Definition 3). It follows that σFpr = Fprσ = (σ) (where (σ)
is the two-sided ideal in Fpr generated by σ) is the unique maximal left ideal
and the unique maximal right ideal in Fpr, and that every nonzero element g of
Fpr can be written in the form

g = υσk = σkυ′, k = ν∞ (g) , υ, υ′ ∈ U(Fpr) (29)
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As a result, Fpr is a local principal ideal domain ([12], section 0.5), ([3], Chap.
VI, §3, n◦6) and two elements of Fpr are similar if and only if they are associated.
Further, by (29), every nonzero element of Fpr is invariant and if n, n′ ∈ F×pr,

n � n′ ⇔ n | n′ ⇔ ν∞ (n) ≤ ν∞ (n′) . (30)

More generally, if g, g′ ∈ F×, we write

g | g′ ⇔ ν∞ (g) ≤ ν∞ (g′) (31)

and notice that if µ1, ..., µq ∈ Z,

ν∞ (gcd {σµ1 , ..., σµq}) = min
�
µ1, ..., µq

�
. (32)

Likewise, considering the element f of L := K ((σ;α, δ)) defined by (8) ,
let ν̂∞ (f) = min {i ∈ Z : fi �= 0} = min {i ∈ Z : f ′i �= 0} if f �= 0 and ν̂∞ (0) =
+∞; then ν̂∞ : L։ Z ∪ {+∞} is a discrete valuation on the skew field L and
S :=K [[σ;α, δ]] is the valuation ring of L. The connection between Fpr and S
is clarified by the following lemma:

Lemma 15 The ring S is the completion of Fpr in the (σ)-adic topology. In
particular, U(Fpr) =

identification
U(S) ∩F.

Proof. Let f =
�

i≥0 fiσ
i be an element of S. Then fλ =

�
0≤i≤λ fiσ

i belongs
to Fpr for any λ ≥ 0 and (fλ) → f as λ → +∞, thus Fpr is dense in the
complete ring S in the (σ)-adic topology which is the topology determined by
ν̂∞ ([3], Chap. VI, §5, n◦1), ([18], §I.3). Let υ ∈ F; then υ ∈ U(Fpr) if and
only if ν∞ (υ) = 0 which is equivalent to ν̂∞ (υ) = 0, i.e. υ ∈ U(S).

4.2 Equivalence of matrices over the ring of proper trans-

fer functions

Let R be a principal ideal domain. The Jacobson-Teichmüller form S of
N ∈ Rp×m (see (9)) can be obtained using a finite sequence of elementary
and secondary row and column operations ([12], Section 8.1). Recall that ele-
mentary row operations are defined as follows where A ∈ Rp×m is the matrix
obtained from N at any step:

1. Replace the row li of A by li + λlj (i �= j, λ ∈ R); this is equivalent to
left multiplying A by the matrix Bij (λ) = Ip + λEij ∈ GLp (R) where
Eij ∈Mp (R) is the matrix whose all elements are zero except that with
indices i, j which is equal to 1;

2. Replace the row li of A by υli where υ ∈ U(R); this is equivalent to left
multiplying A by the matrix ∆i (υ) = diag {1, ..., 1, υ, 1, ..., 1} ∈ GLp (R)
where υ is at the i-th place;

3. Exchange li and lj (i �= j); this is equivalent to left multiplying A by a
permutation matrix Pij ∈ GLp (R).
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The matrices Bij (λ) , ∆i (υ) , Pij are called elementary matrices. Elemen-
tary column operations are likewise defined (with p changed to m and left mul-
tiplications to right ones). The following result generalizes Corollary 1 of [42]
where F =K (s) (see also ([40], Corollary 3.10)):

Lemma 16 Every nonzero matrix N ∈ Fp×mpr can be reduced to its Jacobson-
Teichmüller normal form using a finite number of elementary row and column
operations. Thus the group GLn (Fpr) is generated by elementary matrices
Bij (λ) ,∆i (υ) , Pij ∈ GLn (Fpr) (λ ∈ Fpr, υ ∈ U(Fpr)) .

Proof. According to ([25], Theorem 5.1), to prove the first statement for any
N ∈ Fp×mpr , it is sufficient to prove it for 1 × 2, 2 × 1 and 2 × 2 matrices. Let

N =
�
a1 a2

�
∈ F1×2pr . There exist units υi ∈ U(Fpr) and integers ηi ∈ N

such that ai = υiσ
ηi (i = 1, 2) . Using a permutation of columns, we are led

to the case where η1 ≤ η2. Then N ∼Fpr
�
ση1 0

�
where the equivalence

is obtained using two additional elementary column operations. Likewise, any
2 × 1 matrix is reduced to its Jacobson-Teichmüller normal form using three
elementary row operations and any 2 × 2 matrix is reduced to its Jacobson-
Teichmüller normal form using a finite number of elementary row and column
operations.

As a result, if N ∈ GLn (Fpr), there exist matrices U, V ∈ GLn (Fpr), each
of them being a finite product of elementary matrices, such that U−1NV =
In, thus N = UV −1, which proves that the group GLn (Fpr) is generated by
elementary matrices.

Note that the statement of Lemma 16 is still true if Fpr is replaced by any
discrete valuation ring, for example S (and as is well known, it is true if Fpr is
replaced by any Euclidean domain, for example A).

Corollary 17 Let k ∈ Z and U ∈ GLn (Fpr) . There exist matrices Uk, U ′k ∈
GLn (Fpr) such that Uσk = σkUk, σ

kU = U ′kσ
k.

Proof. We prove this statement for k = 1 since the result for k arbitrary
then follows by induction. By Lemma 16, it is sufficient to prove the stated
property for elementary matrices. The case where U = Pij is trivial. If U =
∆i (υ) , υ ∈ U(Fpr), then there exists υ1 ∈ U(Fpr) such that Uσ = σ∆i (υ1)

by (29). If U = Bij (λ) = In + λEij , then Uσ = σBij

�
λα + λδσ


by (7),

where Bij

�
λα + λδσ


∈ GLn (Fpr). So, in the three cases, Uσ = σU1 for

some U1 ∈ GLn (Fpr), and this is still true for any U ∈ GLn (Fpr). Likewise,
σU = U ′1σ for some U ′1 ∈ GLn (Fpr).

As a consequence of the structure of the ring Fpr and of Corollary 17, we
obtain the theorem below which improves ([7], Proposition 2) and generalizes
to the case where F = K (s;α, δ) Theorem 2 of [42] (see also ([40], Theorem
3.13)) where F =K (s) .

Theorem 18 Let G ∈ Fp×m be a transfer matrix of rank r. We have

G ∼Fpr Σ := diag {σµ1 , ..., σµr , 0, ..., 0} , µi = ν∞ (σµi) ∈ Z, µi ≤ µi+1
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i.e. there exist matrices Uk ∈ GLp (Fpr) , V ∈ GLm (Fpr) such that Σ =
U−1k GV . Equivalence ∼Fpr is obtained using a finite number of elementary
row and column operations.

Proof. There exists an integer k ≥ 0 such that N = σkG ∈ Fp×mpr and there
exist matrices U ∈ GLp (Fpr), V ∈ GLm (Fpr) such that U−1NV is a Jacobson-
Teichmüller form of N which, by (29), can be assumed to be

U−1NV = diag {σγ1 , ..., σγr , 0, ..., 0} , γi = ν∞ (σγi) ∈ N, γi ≤ γi+1

By Corollary 17, U−1k σ−kNV =
�
σkUk

�−1
NV =

�
Uσk

�−1
NV = σ−kU−1NV ,

hence U−1k GV = diag
�
σγ1−k, ..., σγr−k, 0, ..., 0

�
which proves the statement

with µi = γi − k.
The key difference with ([7], Proposition 2) is that the equivalence ∼S is

replaced by ∼Fpr .

4.3 Extension of the valuation at infinity to transfer ma-

trices

LetG ∈ Fp×m. A nonzero minor of G is an element of the abelianization F×ab of
the multiplicative group F× (see Subsection 2.3). The following result improves
the one given in ([8], lemma 1061):

Lemma 19 We have D(F×) ⊳ U(Fpr) (i.e. the derived group D(F×) is a
normal subgroup of U(Fpr)), thus the canonical epimorphism of groups ϕ :
F× ։ F×ab is given by υσi �→ ῡσi where i ∈ Z and ῡ is the canonical image of
υ ∈ U(Fpr) in the quotient group U(Fpr) /D(F×).

Proof. The derived group D(F×) consists of all commutators (x1, x2) :=

(x2x1)
−1 (x1x2) of elements x1, x2 ∈ F

×. If x1, x2 ∈ F
×, then ν∞ (x1x2) =

ν∞ (x1) + ν∞ (x2) = ν∞ (x2x1), thus ν∞ ((x1, x2)) = 0 and (x1, x2) ∈ U(Fpr),
which proves that D(F×) is a subgroup of U(Fpr). In addition, if υ ∈ U(Fpr)
and x1, x2 ∈ F

×, we have υ (x1, x2) =
�
υx1υ

−1, υx2υ
−1
�
υ, hence D(F×) ⊳

U(Fpr).
For any i ∈ Z and any ῡ ∈ U(Fpr) /D(F×), we put ν∞

�
ῡσi

�
:= i and call

this integer the valuation at infinity of ῡσi. This applies when ῡσi is a nonzero
minor m of G and, if m = 0, ν∞ (m) := +∞. Let ῡiσµi ∈ F×ab (i = 1, 2) and
write ῡ1σ

µ
1 | ῡ2σ

µ
2 if and only if µ1 ≤ µ2 (compare with (31)). This combined

with (32) yields the following lemma :

Lemma 20 Assume that r = rkF (G) > 0 and let q be an integer such that
1 ≤ q ≤ r. Then with the notation in Theorem 18

q�

i=1

µi = min {ν∞ (m) :m ∈ {minors of order q of G}} (33)
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Proof. Let N = σkG ∈ Fp×mpr be as in the proof of Theorem 18 and
diag {e1, ..., er, 0, ..., 0} be its Jacobson-Teichmüller form where ei = σµi . One
has the relation

�

1≤i≤q

ei = gcd {m :m ∈ {minors of order q of N}} (1 ≤ q ≤ r) (34)

classic in the commutative case and still valid here (although A is a noncommu-
tative) by (30) and the proof of ([22], Theorem 3.9). The equality (33) follows
immediately.

Assuming rkK (G) = r, we put as in ([23], Section 6.5.3, (30a)):

ν∞ (G) =

�
min {ν∞ (m) :m ∈ {minors of order r of G} if r > 0}

+∞ if r = 0
(35)

so that, by Lemma 20, ν∞ (G) =
�r

i=1 µi if r > 0. Note that for a full rank
square matrix G, ν∞ (G) = ν∞ (det (G)). We modify ([7], Definition 2) as
follows, using the terminology in ([23], Section 6.5.3):

Definition 21 Let G ∈ Fp×m. The matrix Σ in Theorem 18 is the McMillan
normal form of G at infinity and {µi : i = 1, ..., r} is the set of structural indices
of G at infinity. If there exists i ∈ {1, ..., r} such that µi > 0 (resp. µi < 0), then
G is said to have a zero (resp. a pole) at infinity and ωz∞ (G) := maxi:µi>0 {µi}
(resp. ωp∞ (G) : maxi:µi<0 {−µi}) is the order of this zero (resp. this pole) at
infinity; furthermore, dz∞ (G) :=

�
i:µi>0

µi (resp. dp∞ (G) :=
�

i:µi<0
(−µi))

is the degree of this zero (resp. this pole) at infinity. If G has no zero (resp.
no pole) at infinity, then ωz∞ (G) and dz∞ (G) (resp. ωp∞ (G) and dp∞ (G)) are
defined to be zero.

As a consequence, if G �= 0

ν∞ (G) = dz∞ (G)− dp∞ (G) (36)

The following definition is adapted from ([41], Definition 3):

Definition 22 A transfer matrix G ∈ Fp×mpr is called left (resp. right) biproper

if it has a left (resp. right) inverse G−L (resp. G−R) which is proper. It is called
biproper if it is left and right biproper.

The properties of the valuation ν∞ extended as above to Fp×m are detailed
in the theorem below :

Theorem 23 (i) A transfer matrix G ∈ Fp×m is proper if and only if
dp∞ (G) = 0 and this implies ν∞ (G) ≥ 0.
(ii) Let G′ ∈ Fp×m and G′′ ∈ Fm×q. Then ν∞ (G′G′′) ≤ ν∞ (G′) + ν∞ (G′′)
with equality if G′ and G′′ are both of rank r = m.
(iii) Let G′, G′′ ∈ Fp×m. Then ν∞ (G′ +G′′) ≥ min {ν∞ (G′) ,ν∞ (G′′)} with
equality if ν∞ (G′) �= ν∞ (G′′) .
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(iv) Assuming that G has a left inverse G−L (resp. a right inverse G−R), then
ν∞

�
G−L

�
= −ν∞ (G) (resp. ν∞

�
G−R

�
= −ν∞ (G)), G−L (resp. G−R) is

proper if and only if dz∞ (G) = 0, and G is left (resp. right) biproper if and
only if dz∞ (G) = 0 and dp∞ (G) = 0, which implies ν∞ (G) = 0.

Proof. (i) is clear.
(ii) Thus, assuming rkK (G′G′′) = r and taking k = r

ν∞ (G′G′′) = min
i,j

�
ν∞

�
(G′G′′)

(r)
ij

�
= min

i,j

�
ν∞

��
G′(r)G′′(r)



ij

��

≤ min
i,j

�
ν∞ (G′)

(r)
ij

�
+min

i,j

�
ν∞ (G′′)

(r)
ij

�

with equality if rkF (G′) = rkF (G′′) = m since in that case r = m and there
exists among all products of minors

�
G′(m)G′′(m)

�
ij

at least one term which is

the product of factors, each of them with minimal valuation at infinity.
(iii) Let G ∈ Fp×m, G �= 0. There exists a nonzero matrix G0 ∈ K

p×m

such that G = G0σν∞(G) + Op,m

�
σ(ν∞(G)+1)

�
where Op,m

�
σ(ν∞(G)+1)

�
∈

Fp×m is a matrix, all entries of which belong to the ideal generated by
σ(ν∞(G)+1) in Fpr. With this notation, if G′, G′′ �= 0, there exist nonzero

matrices G′0, G
′′
0 ∈ K

p×m such that G′ = G′0σ
ν∞(G′) + Op,m

�
σ(ν∞(G′)+1)


,

G′′ = G′′0σ
ν∞(G′′) + Op,m

�
σ(ν∞(G′′)+1)


. If ν∞ (G′) < ν∞ (G′′), then G′′ ∈

Op,m

�
σ(ν∞(G′)+1)


and ν∞ (G′ +G′′) = ν∞ (G′). If ν∞ (G′) = ν∞ (G′′) = η,

we have ν∞ (G′ +G′′) = η if G′0+G
′′
0 �= 0 and ν∞ (G′ +G′′) > η if G′0+G

′′
0 = 0.

(iv) If G has a right inverse G−R, then by Theorem 18 there exist integers
µi ∈ Z (i = 1, ..., p) such that G ∼Fpr

�
diag {σµi}1≤i≤p 0

�
and G−R ∼Fpr

col
�
diag {σ−µi}1≤i≤p , 0

�
, thus ν∞

�
G−R

�
= −ν∞ (G). In addition, G−R is

proper if and only if µi ≤ 0 (1 ≤ i ≤ p), i.e. dz∞ (G) = 0; and G is right
biproper if and only if µi = 0 (1 ≤ i ≤ p), i.e. dz∞ (G) = 0 and dp∞ (G) = 0.
The rationale is similar when G has a left inverse G−L.

Remark 24 1) In the case where F = K (s), statements (i), (ii) in Theorem
23 are classic ([36], Theorem 4), ([44], Section I.5.6), ([23], Section 6.5.4).
2) In ([41], Definition 6) and ([40], Section 1.2, Definition 1.1), the “degree”
of a nonzero matrix G ∈ K [s]p×m is the mapping degV such that degV (G) =
−ν∞ (G). Consider the matrices

H1 =

�
1 0 s
0 1 0

�
, H2 =

�
1 s
0 1

�

Then degV (H1) = 1, degV (H2) = 0 whereas degM (H1) = 0 and degF (H2) =
1, hence degV coincides neither with degF nor with degM .
3) Some errors can be found in the literature: the transfer matrix G =
diag {s, 1/s} is not biproper although ν∞ (G) = 0; in addition, with G′ =
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diag {1/s, 0}, G′′ = diag {1, 1/s}, we have ν∞ (G′) = ν∞ (G′′) = 1 and
ν∞ (G′G′′) = 1 < ν∞ (G′) + ν∞ (G′′); last, G′ = NrD

−1
r where Nr =

diag {1, 0}, Dr = diag
�
s, s2

�
, so degV (Nr) = 0, degV (Dr) = 3 and

degV (Dr)− degV (Nr) = 3 > ν∞ (G′). These examples contradict respectively
Propositions 5, 6 and 7 of [41] which are identical respectively to Propositions
3.81, 3.80, 3.82 of [40]. The two last examples also show that the inequality in
Theorem 23(ii) is not an equality in general if the rank condition specified in
that statement is not satisfied.

5 Defect of a transfer matrix

5.1 Forney’s predictable property

Recall that a polynomial matrix H is said to be row reduced (or row proper)
if the coefficient matrix of the highest degree term in each row of H is full
row rank. This definition, classic for a matrix over K [s] ([23], p. 384), ([48],
Definition 2.5.6), is still valid for a matrix over A =K [s;α, δ].

Lemma 25 Let H = col {hi}1≤i≤r ∈ A
r×p be a matrix such that rkF (H) =

r > 0.
(i) For any x ∈ A1×r, let y = xH as in (27) . Then H is row reduced if and
only if Forney’s “predictable property” holds, i.e.

degF (y) = max
i:xi �=0

{deg (xi) + ηi} , ηi := degF (hi)

(ii) If H is row reduced, then dp∞ (H) =
�
1≤i≤r ηi.

Proof. Statement (i) is a part of Forney’s “Main Theorem” ([17], p. 495); its
proof is identical to that of ([23], Theorem 6.3-13).

Statement (ii) follows from the equivalenceH ∼Fpr diag {sηi}1≤i≤r obtained
using elementary column operations (with elementary matrices whose entries
belong to Fpr).

5.2 Definition and elementary properties of the defect

We let F =K (s;α, δ) and A =K [s;α, δ].

Definition 26 The defect of G ∈ Fp×m is def (G) := − (degM (G) + ν∞ (G)).

By (26), (36), def (G) = degpM (G) + dp∞ (G)− (degzM (G) + dz∞ (G)), which
shows that, roughly speaking, def (G) is the difference between the total number
of poles and the total number of zeros of G, as in the LTI case. The following
result generalizes the “product formula” (see [17], Appendix, p. 518):

Lemma 27 If G ∈ GLr (F) (r > 0), then def (G) = 0.
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Proof. The equality def (G) = 0 is clear when r = 1 and the result follows
when r is any positive integer by applying this equality to g = det (G).

The following result is classic when F = K (s) ([23], p. 461); it is extended
here to the case where F =K (s;α,δ):

Lemma 28 Let G ∈ Fp×m be a matrix of rank r > 0. There exist matrices
G′ ∈ Fp×r, G′′ ∈ Fr×m, both of them of rank r, such that G = G′G′′, and we
have

def (G) = def (G′) + def (G′′) (37)

Proof. There exist matrices U ∈ GLp (F) , V ∈ GLm (F) such that ([1], Chapter
II, §10, Proposition 13)

U−1GV =

�
Ir 0
0 0

�
⇒ G = U col {Ir, 0}� 	
 �

G′

�
Ir 0

�
V −1

� 	
 �
G′′

(38)

Thus degM (G) = degM (G′) + degM (G′′) by Theorem 11(ii), and (37) follows
by Theorem 23(ii) and Definition 26.

5.3 Minimal polynomial basis of the left- or right-kernel

of a rational matrix

This notion is classic and due to Forney [17] for a matrix G ∈ Fp×m when
F = K (s) and its properties are well explained in ([23], Section 6.5.4) in that
case. We consider below the case where F =K (s;α, δ).

The left F-vector space kerF (•G) is the space of those rows x ∈ F1×p which
are such that xG = 0; kerF (•G) is of dimension p − r where r = rkF (G) . Let
x =

�
x1 · · · xp

�
∈ F1×p; sinceA is an Ore domain, the xi (i = 1, ..., p) have

a left common denominator d, thus x = d−1x′ where x′ = A1×p and x′G = 0.
Therefore, kerF (•G) admits a basis consisting of p − r elements of A1×p, and
called a polynomial basis of the left-kernel of G. We write kerF (•G) ∩A1×p =
kerA (•G). A polynomial basis of the right-kernel of G, i.e. of kerA (G•) =
{y ∈ Am : Gy = 0}, is likewise defined.

For the reader’s convenience, let us recall the construction of a minimal
polynomial basis: Among all nonzero x ∈ kerA (•G), let h1 be one of minimal
F -degree η1. Then, among all x ∈ kerA (•G) which are A-linearly independent
of h1, let h2 be one of minimal F -degree η2 (η2 ≥ η1). Continuing this way we
obtain p − r rows hi and a matrix H = col {hi}1≤i≤p−r ∈ A

(p−r)×p of rank
p − r over F. These rows h1, h2, ..., hp−r have F -degrees η1 ≤ η2 ≤ ... ≤ ηp−r
and constitute a basis B of kerA (•G). This polynomial basis is called minimal
since the F -degrees ηi (i = 1, ..., p− r) are minimal. As shown in ([23], p. 456),
whose rationale is still valid, the set

�
η1, ..., ηp−r

�
is (contrary to H and to

the minimal basis B) uniquely determined by G, and we recall the following
definition:

Definition 29 (i)
�
η1, ..., ηp−r

�
is the set of left minimal indices of G. The set

of right minimal indices of G is likewise defined (with rows replaced by columns
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and kerA (•G) by kerA (G•)).
(ii) Given a polynomial basis B′ =

�
h′1, ..., h

′
p−r

�
of kerA (•G) , the inte-

ger ω′ =
�p−r

i=1 degF (h′i) is called the order of B′ (or of the matrix H ′ =
col {h′i}1≤i≤p−r). The order of a polynomial basis of kerA (G•) is likewise de-
fined.

Thus, a polynomial basis is minimal if and only if it has minimal order. The
following result generalizes ([23], Theorem 6.5-10).

Lemma 30 Let G ∈ Fp×m be a matrix of rank r > 0 and H ∈ A(p−r)×p (resp.
H′ ∈ Am×(m−r)) be a matrix, the rows (resp. the columns) of which form a
basis B (resp. B′) of kerA (•G) (resp. kerA (G•)). The following conditions
are equivalent:
(i) The polynomial basis B (resp. B′) is minimal.
(ii) The matrix H (resp. H ′) is row- (resp. column-) reduced and irreducible.
(iii) The basis B (resp. B′) has minimal order.

Proof. The rationale is made for H and applies to H ′ by symmetry. It is
identical to the proof of ([23], Theorem 6.5-10) (using Lemmas 13 and 25(i)),
with one exception: that (i) implies that H is irreducible, which is a part of
(i)⇒(ii).

So, let us prove that if H is not irreducible, then B = {h1, ..., hp−r} is not
minimal. Assume that the monomorphism (•H) : A1×(p−r) → A1×p is not split.
Then the module M = cokerA (•H) contains a torsion element x̄ �= 0 and x̄ is
the canonical image in the quotientM = A1×p/A1×(p−r)H of an element x �= 0
of A1×p. There exists a nonunit α ∈ A such that αx̄ = 0, thus αx ∈ imA (•H)
and there exist elements λi ∈ A (i = 1, ..., p− r) such that αx =

�p−r
i=1 λihi.

Since αxG = 0, we have xG = 0 and x ∈ kerA (•G) . There exists at least one
index i ∈ {1, ..., p− r} such that λi �= 0. Among all hi for which λi �= 0, let hj
be a row with highest F -degree ηj . We get degF (x) = ηj − degF (α) < ηj by

lemma 4(v), thus, replacing hj by x in the basis B, we obtain a new basis B̄ of
kerA (•G), and a new matrix H̄, the j-th row of which has F -degree η̄j < ηj ,
so B is not minimal.

The following lemma was obtained by Verghese ([44], section I.5.8) from a
result due to Forney ([17], Theorem 3) when F =K (s). We show that it is still
valid when F =K (s;α, δ):

Lemma 31 Let G ∈ Fp×r be a matrix of rank r > 0 and H = col {hi}1≤i≤p−r ∈

F(p−r)×p where {hi : i = 1, ..., p− r} is a basis of kerF (•G). Then def (H) =
def (G) .

Proof. After a permutation of the rows of G if necessary, one can as-
sume that the r first rows of G are linearly independent over F. Then
G = col {R,W} where R ∈ GLr (F) and W ∈ F(p−r)×r. As a consequence,
GR−1 = col {Ir, Y } where Y = WR−1 ∈ F(p−r)×r. Therefore, HGR−1 = 0
whereH =

�
Y −Ip−r

�
and, since rkF (H) = p−r, the p−r rows hi ofH form
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a basis of kerF (•G) . We have def (H) = degpM (Y ) = def
�
GR−1

�
= def (G) by

lemmas 27 and 28. In addition, ifH ′ ∈ F(p−r)×p is another matrix, the p−r rows
h′i of which form a basis of kerF (•G), there exists a matrix L ∈ GLp−r (F) such
that H′ = LH. We have as above def (H ′) = def (H) + def (L) and def (L) = 0.

The theorem below is the main result of this section. It generalizes to the
case where F =K (s;α, δ) Theorem 2.1 of Kung and Kailath [28] and Theorem
3 of Verghese, van Dooren and Kailath [45] (see also ([23], Theorem 6.5-11)),
obtained when F =K (s).

Theorem 32 Let G ∈ Fp×m be a matrix of rank r > 0, and
�
η1, ..., ηp−r

�

(resp.
�
ρ1, ..., ρm−r

�
) be the set of its left (resp. right) minimal indices. We

have

def (G) =

p−r�

i=1

ηi +
m−r�

j=1

ρj ≥ 0

Proof. As in (38), let G′ ∈ Fp×r, G′′ ∈ Fr×m be two matrices of rank r
such that G = G′G′′. Let B = {hi : 1 ≤ i ≤ r} be a minimal polynomial
basis of kerA (•G′) = kerA (•G) and H = col {hi}1≤i≤r ∈ A(p−r)×p. We
have def (G′) = def (H) by Lemma 31. In addition, according to Definition
26, def (H) = − (degM (H) + ν∞ (H)) where ν∞ (H) = dz∞ (H) − dp∞ (H) =
−
�p−r

i=1 ηi by Lemma 30, Definition 14 and Lemma 25(ii). By Lemmas 13 and
30, and again Definition 14, degM (H) = degzM (H) − degpM (H) = 0 − 0 = 0,

thus def (G′) =
�p−r

i=1 ηi. By a similar rationale, we get def (G′′) =
�m−r

j=1 ρj ,
and the result follows by Lemma 28.

6 Exact matching problem

Again, F =K (s;α,δ).

6.1 Exact left model-matching

Given two nonzero transfer matrices A ∈ Fp×m and B ∈ Fq×m, the problem
considered below is the following:

1. To determine a necessary and sufficient condition for a post-compensator
to exist with transfer matrix H ∈ Fq×p such that

HA = B (39)

2. Assuming that this condition is satisfied, to determine a necessary and
sufficient condition for this compensator to be proper, i.e. H ∈ Fq×ppr .

This problem was treated when F = K (s) by Wang and Davison [47], by
Forney ([17], Section 8), and by Kung and Kailath [28] ; the two latter authors
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gave a nice solution; see also ([23], pp. 462-464). The solution of [28] was
extended to the case where F = K (s;α, δ) by Marinescu and Bourlès [31],
nevertheless with S instead of Fpr, which is artificial. We show below that this
change of ring is not necessary.

Lemma 33 (i) There exists H ∈ Fq×p satisfying (39) if and only if

rkF (A) = rkF (G) , G := col {A,B} (40)

(ii) Assuming that the necessary and sufficient condition (40) is satisfied, let
r = rkF (G), and let Ḡ = col

�
Ā, B̄

�
∈ F(p+q)×r, Q ∈ Fr×m, both of them of

rank r, be such that G = ḠQ. The set H of all transfer matrices H ∈ Fq×p

satisfying (39) is parametrized as follows:

H =
��
B̄ +X

� �
Ā−L + Y

�
: X ∈ Fq×r,XQ = 0, Y ∈ Fr×p, Y Ā = 0

�
(41)

where Ā−L is a left inverse of Ā.

Proof. (i) Putting H = col {Hi}1≤i≤q , B = col {Bi}1≤i≤q , then (39) is

equivalent to HiA = Bi, i = 1, ..., q. There exists Hi ∈ F1×p such that
HiA = Bi if and only if the row Bi belongs to the F-vector space F1×pA,
i.e. rkF (col {A,Bi}) = rkF (A). The necessary and sufficient condition (40)
follows immediately.

(ii) By Lemma 28, there exist matrices Ḡ and Q as indicated. Since r =
rkF

�
ĀQ

�
≤ rkF

�
Ā
�
, we have rkF

�
Ā
�
= r and Ā has a left inverse. Given a

left inverse Ā−L ∈ Fr×p of Ā, Z is a left inverse of Ā if and only if Ā−LĀ = ZĀ,
which is equivalent to Y Ā = 0 where Y = Z − Ā−L, thus the set of all left
inverses of Ā is

�
Ā−L + Y : Y ∈ Fr×p, Y Ā = 0

�
. Condition (39) is equivalent

to
�
HĀ− B̄

�
Q = 0 which can be written HĀ − B̄ = X, XQ = 0. Let X be

such that by the first of these two equalities holds and put H = H ′
�
Ā−L + Y

�

where Y Ā = 0. Then

H ′
�
Ā−L + Y

�
Ā = B̄ +X ⇒ H′ = B̄ +X ⇒ H =

�
B̄ +X

� �
Ā−L + Y

�

Conversely, let H =
�
B̄ +X

� �
Ā−L + Y

�
where Y Ā = 0 and XQ = 0. It follows

that col {Ip,H} Ā = col
�
Ā, B̄ +X

�
= Ḡ+ col {0,X} whence col {Ip,H} ĀQ =

ḠQ = col {A,B} and HA = B.
The following theorem is the main result of this section. The necessary and

sufficient condition and the parametrization provided improve those in ([31],
Theorem 1) and ([30], Proposition 4), respectively. In these references, it is
assumed that p = r, which is no longer the case below.

Theorem 34 (i) There exists a matrix H ∈ Fq×ppr satisfying (39) if and only if
(40) holds and ν∞ (A) = ν∞ (G) .

(ii) There exist matrices Ḡ = col
�
Ā, B̄

�
∈ F

(p+q)×r
pr and Q ∈ Fr×m, both of

them of rank r = rkF (G), such that G = ḠQ. If the necessary and sufficient
condition in (i) is satisfied, the set H of all transfer matrices H ∈ Fq×ppr satisfying
(39) is given by (41) where the conditions X ∈ Fq×r and Y ∈ Fr×p are replaced
by X ∈ Fq×rpr and Y ∈ Fr×ppr respectively.
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Proof. Let

�
∆ 0
0 0

�
be the McMillan normal form at infinity of G where ∆ =

diag {σµi}1≤i≤r (Definition 21). Then we have (38) where U ∈ GLp+q (Fpr) ,

V ∈ GLm (Fpr), so G = ḠQ with Ḡ = G′, Q = G′′ and Ḡ ∼Fpr col {Ir, 0},
Q ∼Fpr

�
∆ 0

�
, hence ν∞ (Q) = ν∞ (G) by Theorem 11(ii).

As in the proof of Lemma 33(ii), let H =
�
B̄ +X

� �
Ā−L + Y

�
where Ḡ =

col
�
Ā, B̄

�
∼Fpr col {Ir, 0}, XQ = 0 and Y Ā = 0. Let us show that H is proper

if and only if X and Ā−L+Y are both proper. This condition is obviously suffi-
cient. To prove that it is necessary, let us assume that H is proper. Since HĀ =
B̄ + X, X is proper. In addition, col {Ip,H} =

�
Ḡ+ col {0,X}

� �
Ā−L + Y

�

where Ḡ + col {0,X} ∼Fpr col {Ir, 0}, hence ν∞
�
Ḡ+ col {0,X}

�
= 0. Thus

by Theorem 23(ii) we have 0 = ν∞ (col {Ip,H}) = ν∞
�
Ā−L + Y

�
and, since

Ā−L + Y is a left inverse of Ā, ν∞
�
Ā−L + Y

�
= −ν∞

�
Ā
�
by Theorem 23(iv).

Since Ā is proper and ν∞
�
Ā
�
= 0, Ā is left biproper and Ā−L + Y is proper.

As shown here above, Ā−L+Y is proper if and only if ν∞
�
Ā
�
= 0. SinceA =

ĀQ, by Theorem 23(ii) we have ν∞ (A) = ν∞
�
Ā
�
+ν∞ (Q) = ν∞

�
Ā
�
+ν∞ (G).

As a consequence, ν∞
�
Ā
�
= ν∞ (A)−ν∞ (G) and Ā−L+Y is proper if and only

if ν∞ (G)−ν∞ (A) = 0. Thus, the latter condition is necessary and sufficient for
any left inverse Ā−L of Ā to be proper. Assuming that Ā−L is proper, Ā−L+Y
is proper if and only if Y is proper too.

6.2 Exact right model-matching

The problem considered below is the following: given two nonzero transfer ma-
trices A ∈ Fp×m, B ∈ Fm×q,

1. To determine a necessary and sufficient condition for pre-compensator
with transfer matrix H ∈ Fm×qpr to exist such that

AH = B (42)

2. When this necessary and sufficient condition is satisfied, to determine a
parametrization of all solutions H ∈ Fm×qpr to this problem.

See [38] in the nonlinear case. We note that H ∈ Fm×qpr is a solution to (42)

if and only if H⊤A⊤ = B⊤. Thus Theorem 34 yields immediately the following
result :

Corollary 35 (i) There exists a matrix H ∈ Fm×qpr satisfying (42) if and only

if rkF (A) = rkF
��
A B

��
and ν∞ (A) = ν∞

��
A B

��
.

(ii) If this necessary and sufficient condition is satisfied, there exist matri-

ces
�
Ā B̄

�
∈ F

r×(m+q)
pr and Q ∈ Fp×r, both of them of rang r, such that�

A B
�
= Q

�
Ā B̄

�
. The set H of all matrices H ∈ Fm×qpr satisfying (42)

is parametrized as follows :

H =
��
Ā−R + Y

� �
B̄ +X

�
: X ∈ Fr×qpr , QX = 0, Y ∈ Fm×rpr , ĀY = 0

�

where Ā−R is a right inverse of Ā.
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Remark 36 With a diagonal or block-diagonal matrix B, the above ex-
act model-matching problems become decoupling problems by post- or pre-
compensation [19]. In the case of time-varying coefficients, all solutions H with
entries in the ring S to these decoupling problems were obtained by Marinescu
([30], Section 5) when A is full column- or row-rank. Using Theorem 34 and
Corollary 35, it is easy to improve the results in [30] in such a way that the
solutions H be obtained with entries in the ring Fpr of proper transfer matrices,
without assuming A to be full column- or row-rank. The details are left to the
reader.

7 Example: application to a FACTS

7.1 Description of the system

The electric circuit in Figure 1 represents the so-called π-model of a hight-
voltage transmission system. Such a model is used for simulation and control of
electric power systems ([27], p. 236) and to represent a Flexible Ac Transmission
System (FACTS) to control the power flow on a transmission line ([27], p. 650).
It is assumed that the resistance R is negligible, the inductance L depends on
time in an affine way (L = L (t) , L̇ =const.) in order to adapt the impedance
of the transmission line while the load and the network topology are changing,
and the capacitances C1, C2 are constant. Put u = (iA, iB) = (u1, u2) and
y = (V1, V2) = (y1, y2). By (4), the system equations can be written






Cksyk = ik (k = 1, 2)
y1 − y2 = Ls (u1 − i1)
u1 − u2 = i1 + i2

The system has a symmetry and its equations are invariant under substitution
(y1, y2, i1, i2, C1, C2, u1, u2) �→ (y2, y1, i2, i1, C2, C1,−u2,−u1) . Let

D : =
�
C1 +C2 + L̇C1C2s+ LC1C2s

2

s

Nk : = 1 + L̇Cks+ LCks
2 (k = 1, 2)

Using the commutation rule (2) with K = C (t) , α = 1K, one obtains the
following expression for the transfer matrix A of the control system with input
u and output y :

A =

�
D−1N2 −D−1

D−1 −D−1N1

�

(this expression corrects those given in [31] and ([8], Section 10.6)).

7.2 Defect

Consider the transfer matrixG of the control system with input u and output y1,
i.e. G = D−1

�
N2 −1

�
. Since

�
N2 −1

�
∼A

�
1 0

�
and deg (D) = 3,
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Figure 1: Electric circuit

we have by Definition 9 degzM (G) = 0, degpM (G) = 3 and degM (G) = 0− 3 =
−3. In addition, G ∼Fpr

�
σ 0

�
, so by Definition 21 dz∞ (G) = 1, dp∞ (G) = 0,

and by (36) ν∞ (G) = 1. According to Definition 26, def (G) = 3− 1 = 2.
Let F = K (s; 1K, d/dt). Obviously, kerF (•G) = 0. Let us calculate

kerF (G•) . A vector x = col {x1, x2} ∈ F2×1 belongs to kerF (G•) if and only if�
N2 −1

�
x = 0, thus kerF (G•) is the K-vector space with basis col {1, N2}

which has F -degree deg (N2) = 2. Therefore, ρ1 = 2 and def (G) = ρ1 as ex-
pected from Theorem 32.

7.3 Exact right model-matching

Using elementary operations (Lemma 16) and the commutation rule (7), one
obtains A ∼Fpr diag {σ, σ} which is the McMillan normal form at infinity of
A (Definition 21). This calculation is greatly facilitated by the fact that every
element of Fpr is of the form (29). Likewise, with B = diag {ki/s

ni}1≤i≤2 , we

can easily check that ν∞
��
A B

��
= ν∞ (A) if and only if ni ≥ 1 (i = 1, 2) .

By Corollary 35, this is the necessary and sufficient condition for a matrix H ∈
M2 (Fpr) to exist such that the equality (42) holds. The physical interpretation
of this condition is clear. In this case, A is invertible over F, thus H = A−1B
is the unique solution to the problem.
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