N

HAL

open science

Overview on Secure Comparison

Quentin Sinh, Jan Ramon

» To cite this version:

‘ Quentin Sinh, Jan Ramon. Overview on Secure Comparison. 2024. hal-04612505

HAL Id: hal-04612505
https://hal.science/hal-04612505

Submitted on 14 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04612505
https://hal.archives-ouvertes.fr

Overview on Secure Comparison

Quentin Sinh and Jan Ramon
MAGNET Team, Univ. Lille, Inria, CNRS, Centrale Lille
UMR 9189 - CRIStAL, F-59000 Lille, France
Email: Quentin.Sinh@inria.fr, Jan.Ramon @inria.fr

Abstract—Introduced by Yao’s Millionaires’ problem [1], Se-
cure Comparison (SC) allows parties to compare two secrets in
a privacy-preserving manner. This article gives an overview of
the different SC techniques in various settings such as Secret
Sharing (SS) or Homomorphic Encryption (HE).

Index Terms—Secure Comparison, Secret Sharing, Homomor-
phic Encryption, Function Secret Sharing

I. INTRODUCTION

Multi-party computation (MPC) allows a set of n
parties P, P»,...,P, to jointly compute a function
f(z1,29,...,2,) over their respective inputs xi, s, ..., T,
without revealing those inputs. While linear operations are
easy to realize in a secure multi-party setting, some non-linear
operations such as comparison are non trivial. With Privacy-
Preserving Machine Learning (PPML) being increasingly stud-
ied, computing securely statistics has become a priority. Sev-
eral statistics requires comparisons, for this reason, we are
interested in studying and optimizing Secure Comparison. We
describe now some statistics requiring comparisons.

A. Applications

1) The Kendall T coefficient: In the field of statistics, the
Kendall rank correlation coefficient [2] measures the rank
correlation of two quantities. Let {(x,%;)}ic[1,n) be a set of
observation. A pair of observation (x;,v;) and (x;,y;) for
1 <14,7 < nis said to be discordant if the following holds

(i < Ny > y;) V(x> ANy < yj).

The Kendall 7 uses multiple comparisons as it can be
defined as

2(number of discordant pairs)
(3)

2) Survival analysis: Survival analysis is a branch of statis-
tics that aims at modeling the time remaining before death of
biological subjects. The Kaplan-Meier estimator [3] may be
used to estimate the survival function. It gives the probability
that life is longer than ¢ for a given time ¢. The Kaplan-Meier
estimator S(t) is defined as

T=1-

D

st = [Ja-2%) @

it <t i
where d; is the number of death at time t;, n; is the
number of individuals who survived and t; is a time that

This work has been partially funded by the Horizon Europe TRUMPET
project grant no. 101070038.

happened before ¢. Computing the Kaplan-Meier estimator in
a privacy-preserving manner is challenging since parties may
want to hide the death times ¢;, emphasizing the need for
secure inequality comparison.

MPC is an important building block in Federated Learn-
ing (FL), where due to the large volumes of data and the
increasing availability of dedicated hardware such as GPU the
communication cost of SC approaches is the main bottleneck.
Although various ways of accomplishing MPC exists (e.g.
oblivious transfer, garbled circuits, ...), we mainly focus on
the Secret Sharing and Homomorphic Encryption settings. The
main contribution of the paper is to compare the different
approaches to realize the Less-Than (LT) operation.

The remainder of the article is structured as follows. Sec-
tion 2 will give some brief preliminaries on notations and
background to understand this paper. Section 3 will review
the former works done on secure comparison in the SS
setting and discuss some new approach using Function Secret
Sharing (FSS). Section 4 will summarize some works on
secure comparison in the HE setting. Section 5 will provide a
comparison between the different approach.

II. PRELIMINARIES

A. Notation

We let A\ denote the security parameter throughout this
paper. The security parameter measures the probability of an
adversary breaking the scheme by brute-force. We let [x]s be
the sharing of a secret x in the ring Zjy; where M can be a
prime number or a power of 2. [x]p will denote the shared
vector representing the bit decomposition of value x. We let
¢ = [log M]. We denote the indicator function by I[-], i.e.,
[[true] = 1 and I[false] = 0. We denote @ the bitwise XOR

operation. Let r < .S denote r is sampled uniformly from set

S.

B. Security Models

1) Semi-honest model: In the semi-honest (passive) model,
the participants follow the execution of protocols as expected.
However, the goal of the corrupted participants is to gather
undisclosed information. We assume that the corrupted parties
can collude. While this model seems weak in practice, it
ensures that a protocol do not leak information.

2) Malicious model: In the malicious (active) model, the
corrupted participants may deviate from the expected execu-
tion of the protocol. Thus, this model provides a high level of
security.

If n is the number of parties and ¢ is the number of corrupted
parties, in the honest majority, we have t < n/2, whereas we
have ¢ > n/2 in the dishonest majority.

C. Linear Secret Sharing (LSS)

Secret Sharing allows a secret x € Zj; to be distributed be-
tween n parties. We consider here linear secret sharing scheme
which allows to perform linear operations on the shares. Let
[a]ar and [b]ps be sharings of some secrets a,b € Zps. Let
d € Zjp; a public constant value. An LSS scheme should be
able to compute [a + b mod M] and [da]ys without commu-
nication. The LSS scheme should also be able to compute
multiplication of [a]y; and [b]p; with some communication
such that [ab mod M] < MULT([a]as, [b]ar)- It should also
have an operation REVEAL such that a < REVEAL([a]as).

D. Homomorphic Encryption

Homomorphic Encryption allows computation on encrypted
data without decryption beforehand. More formally, let P be
the set of plaintexts with the operation ®j;, C be the set of
ciphertexts with ®¢, Ey : P — C an encryption function
parameterized by a key k € K with K the set of all the pos-
sible keys. An encryption scheme is said to be homomorphic
if Vimq,ma € P, Ex(mq @ mg) = Ei(m1) @ Ex(ms).

E. Complexity

For both settings, we make the distinction between com-
plexities in the offline phase and the online phase. During the
offline phase, some randomized and independent information
from the private inputs is computed in order to speed up the
calculations during the online phase. We measure the com-
plexity of the offline phase as the number of bits exchanged
during this period for the HE setting and the number of
multiplications in the SS setting.

We will measure the complexity of most of the protocols
in the SS setting using two metrics. The round complexity
describes the number of sequential multiplications. The com-
munication complexity gives the overall number of multiplica-
tions involved in the protocol. As for the HE setting, we will
measure complexity as the size of the ciphertexts exchanged
between the parties.

III. SECRET SHARING SETTING
A. Classic approaches

1) Damgard et al. [4]: In this seminal work, two values
a,b € Zp, where M is a prime number, are secretly
shared. The protocol involves a bit decomposition of a and
b that are shared between the parties. Once the shares of the
bit decomposition are available, the BIT-LT primitive allows
parties to compute a share of [a]g < [b]5.

The authors describe the protocol in the semi-honest model
but it can be extended to the malicious model if the multipli-
cation protocol is secure against active adversaries. In terms of

complexity, the proposed LT protocol does not have an offline
phase. In the online phase, it can be run in a constant number
of rounds and requires &'(¢ log ¢) multiplications.

2) Nishide and Ohta [5]: This article is the first work
achieving secure comparison without bit decomposition. The
authors noticed that comparison a < b with a,b € Zy
can be expressed as an equation of (a < £),(b < %) and
(@ —b mod p < £). If we note respectively w,z,y,z for
(a<8),(b<?%)(a—bmodp < E)and (a <b), one can
write the following

z = wx V wry V wry
=w(@+y—2ry)+1l-y—r+ay

which can easily be computed in a secret sharing context.

The protocol is described in the semi-honest model. It does
not require offline computation and has online communication
complexity of & (¢) in constant rounds.

3) Reistad [6]: Reistad studied LT on bounded inputs
[a], [b] € Zr where M is a prime number and [a], [b] < 2.
Let ¢ = 2(a—b) mod p and let ¢y denote the least significant
bit of ¢. Since M > 2 is prime, there follows ¢y = [[a < b].

Then, let [r]p and [s] be a random bitwise shared values,
let [¢'] = [¢]+[r]p and reveal ¢’. One can see that [[[a < b]] =
[co] = ¢ @ [ro] @ [I[[r]s > ¢/]]. We hence need to compute
I[lr)s > /). Let [z] = SiZ5[ri)(1 = ¢)2=+ @0, then
one can verify that [xo] = I[[r]p > ¢/]. To compute [z], it
requires fan-in multiplications that can be done in &(¢) mul-
tiplications. To compute [xo] from [], let [d] = [s]p + [2] and
[d] = [8] p+[z] where [s]p = 27! [s;_1] 5+2'%[s; 2] p+[3] B
(ensuring no modulo p is needed to get [d]). d is revealed.
Then, [xo] can be obtained from [zo] = [30]p ® |do] after
computing [dq].

This requires a linear number of online secure multiplica-
tions in a constant number of rounds, and in offline a linear
number of multiplications is needed to generate [r|p and [s] 5.
The protocol proposed by Reistad is described in the semi-
honest model.

4) Catrina and De Hoogh [7]: The authors split the
working space Zj); into two spaces categorized as positive
and negative integers. If we take M = 2* then we can
consider the set {0,...,28~1 — 1} to be the positive integers
and {21 ... 2% — 1} to be the negative values. Under
this assumption, the authors construct a truncation for shared
values to take the most significant bit of ¢ = a — b mod M
which acts as a sign function for values in the ring Zj;.
The truncation is done by computing ([c] — [¢/])(2- (¢~
mod M) where [¢/] = [¢] mod 2¢~1. To calculate [¢'], one
first generate masks [r"'], ['], [r'] 5 and reveal d = 2~ +[c]+
2F=1[7"”] + [r']. Let ' = d mod 2¥~1. One can verify that
[c] =d' — [r'] + 28~ 1[u] where [u] =1[d’' < [r']B].

The protocol works in the semi-honest model. It does not
require an offline phase. During the online phase, it requires
O (¢) multiplications in & (log{) rounds.

5) Lipmaa and Toft [8]: The proposed LT protocol will be
built on an equality test. The authors first introduce two equal-

ity tests based on the hamming distance and on a Disclose-If-
Equal protocol. The intuition behind the LT protocol is that it
can be performed by doing log ¢ equality tests. In a recursive
manner, we can compare the ¢/2 most significant bits first.
If they differ, the protocol divides those bitstrings into two
bitstrings each, etc. More formally, let [2] = 2¢ + [a] — [b]
and [m] = [z] + [RY] with [Rf] a shared mask. Parties
can reveal m and calculate mt = |m/2%?] mod 2¢/? and
m, =m mod 2%/2. Similarly, one can define [R7] and [R_].
Let [b] = [[mT = [R7]]. If [b] = 1, then recursively, one can
LT on m with [R,]. At the end, parties get [z mod 2¢] and
can compute ([z] — [2])27¢ mod 2°, similar to [7].

The given protocol for LT works in the malicious setting.
Complexity-wise, the scheme needs ¢'(¢) multiplications for
the offline phase for generating masks. During the online
phase, LT can be done in &'(log ¢) multiplications in &'(log ¢)
rounds as searching for the different bits is done as a di-
chotomic search.

While works presented above were addressing the issue of
security in the honest majority, we now describe protocols that
are secure in the dishonest majority (malicious model).

6) Escudero, Ghosh, Keller, Rachuri, Scholl [9]: This more
recent work (2020) allows a secret shared arithmetic value
[x]ar to be easily transformed into binary shared data [z]g.
edaBit stands for extended doubled authenticated bits. An
edaBit is a shared arithmetic value [z]y; along with the bit
decomposition of x shared which will be denoted ([x]as, [2] B)-
Hence, the value z is not known to any of the parties and the
bit decomposition as well. edaBits can be generated in the
dishonest majority malicious setting in two phases: the first
phase allows parties to create private edaBits which will be
combined into a global edaBit in the second phase.

The article also proposes a scheme to do the LT operation
on edaBits which is similar to [7] by using a truncation and
requires ¢'(¢) multiplications in &'(log ¢) rounds.

7) Makri, Rotaru, Vercauteren, Wagh [10]: The authors use
edaBits to build a more efficient LT protocol in the dishonest
majority setting. It uses two edaBits 7,7’ to mask the two
shared values [a]as, [b]ar € Zpr we want to compare. The
scheme is built on the primitive Less-Than-Bits (LTB) that
compares a public known value with a shared bit decomposi-
tion. First, parties reveal [z]p = [a+7]a and [y]a = [’ —b]m
and compute T=a+b mod M =b—a+r+r" mod M.
They get shares [w;] = [I[z < [r]g]] and [w2] = [I]y, [] B]]
using LTB. Let w3 = I[T < b]. Then, parties compute bitwise
addition of [s]ps = [r]ar + [r']a. This operation requires
O (£log¢) multiplications. We extract the last carry bit [sy]
and compute [ws] = [I[T" < [s]g]]. Finally, [I[a < b]] =
[w1]+ [we]+ws —[w4] — [ws]. The intuition behind the protocol
is that we can express 7' as a sum in two different ways.

Overall, the scheme requires two edaBits that can be
computed during the offline phase, thus requiring &'(¢log ¢)
multiplications. In the online phase, the protocol requires
O (¢1og ¢) multiplications in &'(log ¢) rounds.

B. Novel approach using Function Secret Sharing

1) Function Secret Sharing: Introduced by [11], it allows
parties to split a function f into additive shares f1, fo,..., fn
such that f = f1 + fo+ -+ + f,,. Here, we give the primitive
for a two party setting. FSS consists of two algorithms
(Gen, Eval):

o Gen(1*, f*): outputs a pair of keys (ko, k1). f* is the

description of a function f.

o Eval(b, kp, z): outputs fp(z).

Correctness: if (kg, k1) < Gen(1*, f*) then Pr[Eval(0, kq,
x) + Bval(l, k1,) = f(x)] = 1.

Security: There exists a PPT Simulator S such that, for
a function f* and a bit b € {0,1}, {S(1*,b)}ren and
{kp|(ko, k1) < Gen(1*, f*)}ren are indistinguishable.

2) Distributed Interval Function (DIF): An interval func-
tion f(4p),5, for a,b € G and b € G, is a function such
that f(x) = 8 if a <x < b and f(z) = 0 otherwise.

3) Boyle et al. [12]: The general protocol describes a way
for two parties Py and P; to compute any circuit composed of
functions g with optimal communication complexity if g can
be expressed efficiently by a FSS scheme such as DIFs.

Suppose that function g can be expressed by a FSS scheme.
g can be wrapped into another function §,n(z) = g(x — ri")
with z,r" € G™. During the offline phase, each party will
receive a key k7 with o € {0,1} of the function g,» and
additive shares of r°" = (rg", r$") and r" = (ril, ri). When
evaluating the function g on x, parties reveal the masked value
x4 7", Party P, evaluates its key k7 on 2+ r" with the Eval
algorithm to get a share [§,n(x+1™)] = [g(z)]. Party P, adds
to it its additive share 2" to get [g(x)]+79". They then reveal
g(z) + r°" so that they can continue to evaluate the circuit
without revealing the values. If function g is the last function
to be evaluated, r°" can be disregarded.

4) Case of LT operation: Suppose Py, P; has respective
inputs z,y € G™. It is required that the inputs z,y € G™
should respect the following inequality |z — y| < |G™. This
allows us to split the inequality into two simple cases:

e if y — z wrap-around, then = > v,

e if y — z does not wrap-around, then = < y.

Now, we need to take into account the offset created by
ri" = (rin 70y hence, this can be implemented using 2
instances of DIFs. Let p = [|G™)|/2].

o If —p < ’I”lln — T‘bn <0, then, fn = fDH:[(O’i(,rilnirion))’l] +

ForF((0 prip—rit),~1]- A
o If 0 < 7,,11n — ’I"bn < P, then, frin = fDIF[(O,T'ln—TiO“),l] +
Jore((p+rin—rin Gy 1)

5) Benefits: Boyle’s approach allows parties to compute
any function that can be efficiently represented by an FSS
scheme on secretly shared values. Suppose working with
input 2 € G secretly shared between parties Py, P, where
x = g + 1. If parties want to a function g with masks "
and r°", the trusted dealer can sample random additive shares
{rin 70y of 7" such that each party P, can mask their share
of =, with r,. After evaluation, each party has a share [g(x)].

This protocol has optimal online communication complexity
as parties are only required to exchange their inputs for an
evaluation. Thus, online communication complexity requires
no multiplication and can be done in constant rounds. We
will measure the online complexity for this scheme in bits
exchanged which equals &'({) bits.

6) Limits: This optimal online phase comes with costs in
the offline phase. Indeed, FSS keys are large and requires
to exchange ~ 4M\{ bits in the offline phase for LT. The
scheme requires to generate a pair of distinct FSS keys for
each function as changing the mask is needed.

IV. HOMOMORPHIC ENCRYPTION SETTING

1) Damgard, Geisler, Kroigard [13]: The scheme uses
a combination of additive secret sharing and homomorphic
encryption. The described setting is the following: we want
to compare a private value m that is bitwised shared between
two parties such that m; = m{ +m} mod u for 1 < i < ¢
and a public known value x. We have sk = (p,q,v) and
pk = (n,u,g,h) such that n = pg with p, g prime numbers,
u|(p —1),v|(qg — 1), g,h € Z* such that the order of h is v
mod p, ¢ and g has order uv. The keys are generated by Fj.
The plaintext space is Z,, while the ciphertext space is Z;,.
e Enc(pk,m) = ¢g™h" mod n for r < ZZ.
o Dec(sk,c): it is not a real decryption as it decides if ¢
encrypts O or not. If ¢ mod n =1 then ¢ encrypts 0.

Party P, calculates =z —mi +1+ Z] i41 Wy such
that w!, = m’ & ;. We have ¢’ —Co+C1 If m > z, then
there is exactly one position ¢ where ¢* = 0, otherwise no
such position exists. Then, parties compute Enc(pk, c) and
send it to P;. Party P, can use the homomorphic property to
add the shares of ¢’ and sends to P, the encryption for each
bit. Py can then check if any bits is equal to 0 using the Dec
algorithm. If so, m < x, otherwise m < z.

Security can be achieved for malicious adversaries. We
require in the offline phase to exchange the public key,
which is roughly about &'()\) bits long. If & = [logw] and
I = [logn], then during the online phase, k encrypted bits
are exchanged. Thus, the online communication complexity is
O(k - 1) bits in constant rounds.

2) Carlton, Essex, Kapulkin [14]: The proposed scheme is
based on the Small RSA Subgroup Decision Problem: given
(n,b,d, g,u) and x a quadratic residue modulo n = pg where
p = 2b%,py + 1 and ¢ = 2b%q,q + 1 with ¢, p, primes of
bit-length u, q;, p; primes whose bit-length is not u, the goal
is to determine if = has order psqs. Py, P1 have respectively
private inputs mg, m; and the result of comparison is public.
We require Py to generate the public key pk = (n, b, d, g, h,u)
where g, h are generators of some subgroups of Z; and sk =
T = psqsx’ where 2’ = (psqs)~' mod be.

e Enc(pk,m € Zd) pick a r & {1,. — 1} and
compute C' = g*"' A" mod n with C € Z:‘L.
« Dec(sk,C): compute C* mod n = (gP" hrypeas’ =

gVt = gt To recover m, b™ = log,(¢""

mod n) then m = log, (b™). It is easily computable since

the order of g is a power of d of a small prime base b
where b is chosen to be small.
The LT scheme works as follows:
1) Party P, encrypts mg such that C' + Enc(pk, mg) and
sends C' to P;.

2) P, computes D <« C* "'gSh"™t where 1 <
{1,...,2% — 1} and s « {1,...,b% — 1} and sends
D to Po.

3) Py calculates g <= D and w <« log,(g9").

4) Both party engage in a Plaintext Equality Test (PET)
protocol to determine if w = s.

D can be Enc(pk,mo)® " ghTt =
g T ks b for some b, If mg — my > 0, then,
when decrypting, b9+™0=™1 1+ s mod b¢ = b?te + 5 for
some a. Thus, bt + s =0-b%+s =5 If mg+my <0
then b%+™0~™1 4 5 mod b? = b™° "™ 4+ 5 mod b

Let [= [logn]. Complexity-wise, 2 ciphertexts of size
O(l) are being exchanged and 2 PETs are used (4 Elgamal
ciphertexts exchanged ~ ¢(1)) in £/(1) rounds.

V. COMPARISON

written as

We remind that the online and offline complexity is mea-
sured in the number of multiplications (m) for [4]-[10] and
in the bits exchanged (b) for [12]-[14]. k is the length of a
plaintext and [the length of a ciphertext while ¢ denotes the
length of the sharing space. A’ means active model and 'P’
means passive model. "THM’ stands for Honest Majority while
’DM’ is for Dishonest Majority. A is the security parameter
which is different depending on the schemes. [12] requires
A = 128 as it uses a symmetric primitive whereas [13], [14]
requires A = 2048 as the schemes are based on RSA modulus.

The HE setting generally addresses the problem in the 2-
party setting instead of n-party setting. The SS setting has the
benefit of giving an immediate scalable solution.

TABLE I
COMPLEXITY COMPARISON OF THE DIFFERENT SCHEMES

Protocol Setting Offline Online Rounds | Model | Setting
[4] SS (m) - O(Clog?) 0(1) A HM
[5] SS (m) - Z40) o(1) P HM
[6] SS (m) o(L) 20 o(1) P HM
[7] SS (m) - 20 O(log?) P HM
[8] SS (m) o(L) O(log¥) | O(log¥) A HM
[91 SS (m) O(Llogt) oL) O(logt) A HM
[10] SS (m) Ollogl) | O(Llogl) | O(logl) A DM
[12] SS (b) () 0(1) 0(1) P DM
[13] SS / HE (b) O(N) Ok -1) 0(1) A HM
[14] HE (b) o) ol-) o(1) P HM

VI. CONCLUSION

We have compared several different ways to conduct SC,
both in the HE and SS settings. One of the most promising
way is to use FSS as this leads to optimal communication
complexity for the online phase. However, computing the
overhead might be costly. Therefore, one line of work could
be to reduce this overhead by creating a reusable gate for the
same function.

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[9]

[10]
[11]
[12]
[13]

[14]

REFERENCES

Yao, A. C. "Protocols for secure computations.” 23rd annual symposium
on foundations of computer science. IEEE, 1982.

Kendall M., “Rank correlation methods.” Griffin, 1948.

Kaplan E. L., Meier P. "Nonparametric estimation from incomplete
observations.” JASA, 53(282), 457-481, 1958.

Damgard L., Fitzi M., Kiltz E., Nielsen J. B., Toft T. "Unconditionally
secure constant-rounds multi-party computation for equality, compari-
son, bits and exponentiation.” In TCC (pp. 285-304), 2006.

Nishide T., Ohta K. "Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol.” In PKC 2007, April
16-20, 2007. Proceedings 10 (pp. 343-360), 2007.

Reistad T. I. "Multiparty comparison-an improved multiparty protocol
for comparison of secret-shared values.” In SECRYPT, 2009.

Catrina O., De Hoogh S. "Improved primitives for secure multiparty
integer computation.” In SCN 2010, (pp. 182-199), 2010.

Lipmaa H., Toft T. ”Secure equality and greater-than tests with sublinear
online complexity.” In ICALP 2013, July 8-12, (pp. 645-656), 2013.
Escudero D., Ghosh S., Keller M., Rachuri R., Scholl P. “"Improved
primitives for MPC over mixed arithmetic-binary circuits.” In CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, (pp. 823-852), 2020.
Makri E., Rotaru D., Vercauteren F., Wagh S. "Rabbit: Efficient com-
parison for secure multi-party computation.” In FC’2021, 2021.

Boyle E., Gilboa N., Ishai Y. ”Function secret sharing.” In Eurocrypt
2015 (pp. 337-367), 2015.

Boyle E., Gilboa N., Ishai Y. ”Secure computation with preprocessing
via function secret sharing.” In TCC 2019, (pp. 341-371), 2019.
Damgard 1., Geisler M., Kroigard M. "Homomorphic encryption and
secure comparison.” IJACT, 1(1), 22-31, 2008.

Carlton R., Essex A., Kapulkin K. ”Threshold properties of prime power
subgroups with application to secure integer comparisons.” In RSA
Conference (pp. 137-156), 2018.

