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Abstract
We define an abstract interpreter for programs manipulating scalars, immutable
non-recursive algebraic data types (ADTs), functional arrays and non-recursive
functions. We define a first domain that expresses relations between values of
ADTs. Our domain extends numeric domains in a generic way, by a disjunctive
completion over a reduced product of domains for numeric relations, equalities,
and variant constructors. We further extend the segmentation approach for array
analysis, in order to allow for values of ADTs inside arrays, and also to capture
relations between the content of arrays and the other variables in the program.
Our analysis is inter-procedural and modular: it proceeds by computing summaries
of the input-output relations of functions, which are then instantiated at call sites.
The analysis of ADTs has been implemented in OCaml and tested on a sample
of small-to-medium examples, some of which are simplified versions of functions
from the formal specification of the seL4 microkernel.

Keywords: Static analysis, Abstract interpretation, Relational abstract domains,
Algebraic data types, Input-output relations, Function summaries, Arrays.

1 Introduction
Research in static analysis has successfully developed automatic techniques to ensure
the safety and security of programs, by detecting bugs before a program actually runs.
In particular, there exists a substantial number of analyses that target programs with
numeric or pointer-based computations and which can detect frequent bugs that arise
from arithmetic overflows or memory safety issues. Another important class of programs
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are those manipulating algebraic data types (ADTs). ADTs form the core of modern
programming languages—such as OCaml, Haskell, Scala, Rust or Swift—that have
been adopted by the software industry. The static analysis of this class of programs
has seen important progress too, with the development of type systems [1, 2] or by
leveraging tree automata techniques [3] for approximating the tree structures described
by ADTs [4–6].

In this paper, we focus on the automatic analysis of programs that perform numeric
operations, feature arrays and manipulate ADTs. So far, few works [7–10] have put
emphasis on the combined analysis of numeric properties and ADT properties; and even
fewer [10] have combined these two analyses with array analysis. Such combined analyses
can provide additional safety guarantees—such as the unreachability of branches of
a pattern matching under some numeric condition, or information on array contents
depending on which constructor is used to build an ADT value. Such static analyses
can also alleviate the interactive verification of large, critical programs that compute
over ADTs, by automatically discharging a substantial number of proof obligations [10].

To this end, we first develop a novel relational abstract domain that can express
relations between numeric-algebraic values of a program state (section § 3). We build
this abstract domain in a generic way, by taking as a parameter any relational abstract
domain that fulfils an Apron-like interface [11] to handle the numeric properties. One
difficulty in designing this domain is to handle soundly and precisely the mutually
exclusive cases that an algebraic value may take. We tackle this issue using projection
paths that point inside algebraic values, and by devising a notion of compatibility
between paths: two paths are compatible when they make consistent assumptions over
the constructors of variant values. The resulting abstract domain can describe sets of
states of algebraic data structures with scalar data.

Then, we show how to turn our abstract domain into RAND—the Relational
Algebraic-Numeric Domain—an abstract domain that can express relations between
different states (section § 4). For an example process management program from
an idealised operating system (Fig. 4), RAND can express that the input and
output processes p and p’ satisfy the constraint p’.status@Running.count =
p.status@Asleep.count + 1, meaning that the status fields of p and p’ differ by 1,
whenever the process p has a running status, and p’ a sleeping status. This is indi-
cated by the projections on constructor cases @Running and @Sleeping. We discuss
this example further in the paper (section § 2.3).

Using RAND, we define a relational analysis for a while language that features
non-recursive ADTs (section § 5). Our analysis infers relations between the inputs
and the outputs of programs. In particular, we explain how a standard static analysis
for reachable states can be turned into an analysis for input-output relations. This
relational analysis is well suited for designing an inter-procedural analysis based on
function summaries.

Finally, we describe how to extend our approach to analyse programs with functional
arrays (section § 6). Thus, we define the Diorana domain (Domain for Input-Output
Relations on Algebraic types, Numbers and Arrays), that allows to analyse programs
where arrays can contain ADT values.

Our work offers the following contributions:
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• We present a novel abstract domain that expresses relations between values of
non-recursive immutable ADTs (sections § 3 and 4). Our abstract domain can be
instantiated with any numeric relational domain. This offers the possibility to
choose domains with different precision vs cost balances, and allows to capture
numeric inequalities. This improves upon the correlation domain [10], that is
restricted to information about equality and reachability.

• Our abstract domain uses a form of disjunctive completion (section § 3.6.2), where
we limit the number of disjuncts by merging some of them. Our merging strategy
is guided by observing the different cases of algebraic values.

• We give a formal justification to the folklore assertion that “a static analysis
can be made relational by duplicating variables”, by showing that a non input-
output relational and an input-output relational analysis actually share the same
structure (Lemma 1) and by showing how any relational domain can express
relations between different stores (section § 4.2).

• We formally define a relational analysis (section § 5) that infers relations between
inputs and outputs of programs, and propose a modular inter-procedural extension
that is based on function summaries. We illustrate the analyser’s results on a
running example taken from an idealised operating system.

• We extend the approach to encompass functional arrays that can contain algebraic
data types (section § 6). This extension of our abstract domain is based on the
notion of array segmentation [12].

• We provide an OCaml implementation [13] of our analyser, for a while language
with algebraic types; together with 43 test cases, some of which are inspired from
an operating system code (section § 7). Our implementation is limited, as it does
not support the extension for functional arrays. We briefly discuss the complexity
of our implementation.

We do not handle polymorphism or higher order functions in this work.
This article is an extended version of a paper published at the SAS 2022 confer-

ence [14]. The main addition with respect to [14] is the extension to support functional
arrays (section § 6). In order to analyse arrays, we build on the work of Cousot, Cousot
and Logozzo [12] (CCL). Our approach has three main differences with respect to CCL:

• We allow for arrays to contain values from algebraic types, whereas CCL supported
only arrays of scalars.

• We allow the summaries of array segments to refer to other variables of the
program, hence capturing the relations between the array contents and the values
stored in other variables, such as the parameters of functions.

• We have a different definition for the pre-order between array segmentations. Our
definition allows the concretisation to be monotonic with respect to the pre-order.

2 Syntax and Semantics
Our programming language is an extension of a classic while language with algebraic
data types (products and sums). Section § 2.1 presents algebraic types, section § 2.2
presents the language and its semantics, and section § 2.3 introduces our running
example.
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2.1 Algebraic Types and Values
ADTs are pervasively used in functional languages like OCaml, Haskell, Coq, or F⋆,
and have become a central feature of more recent programming languages, such as
Swift or Rust, just to name a few. We briefly recall the definitions of algebraic types,
and of the structured values that inhabit them.
Definition 1 (Algebraic types and structured values). Algebraic types and structured
values are inductively defined as follows:

τ ∈ Types ::= Int | {fi → τi
i∈I} | [Ai → τi

i∈I
]

v ∈ Values ::= n | {fi = vi
i∈I} | A(v)

Here, Int is the type of numbers, the (fi)i∈I are field names, the (Ai)i∈I are
constructor names, and I ranges over finite sets. The compound type {fi → τi

i∈I} is a
record type, in which a type τi is associated to each field fi. The type [Ai → τi

i∈I
] is a

sum type containing values formed with a head constructor that must be one of the Ai,
and whose argument must be of type τi. {fi = vi

i∈I} denotes a record value where each
field fi has value vi for every i ∈ I. A(v) denotes a variant value, built by applying the
constructor A to the value v. Constructors expect exactly one argument. Constructors
with arities other than 1, as typically found in functional languages, are encoded by
providing a (possibly empty) record value as argument to constructors. The numeric
type Int and the record type with no fields {} are the two base cases for types.

We use projection paths to refer to a part of a structured value (i.e., to a value
embedded inside another structured value). A path is either the empty path ε, or the
path p.f , that first accesses the value at path p and then accesses the record field f , or
the path p@A, that first accesses the value at path p and then accesses the argument
of variant constructor A.
Definition 2 (Paths). Paths are inductively defined as follows:

p ∈ Paths ::= ε | p.f | p@A

ε is not a terminal symbol, but denotes the empty path.
Because paths are simply sequences of atomic paths (.f or @A) we allow their

creation or destruction from either side, and write for example .fp to denote a path
that starts with .f .

The projection of the value v on the path p, written v ⇓val p, is the value pointed to
by p inside v. It is defined as follows:
Definition 3 (Projection of a value on a path).

v ⇓val p =


v if p = ε

v′ ⇓val p′ if p = @Ap′ and v = A(v′)

vi ⇓val p′ if p = .fip
′ and v = {fj = vj

j∈I} and i ∈ I

Undef otherwise

We use Undef to indicate that a path does not exist in an input value.
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SeqStep
(c1, s)→ (c′1, s

′)

(c1 ; c2, s)→ (c′1 ; c2, s
′)

SeqSkip

(skip ; c2, s)→ (c2, s)

Assign
v ∈ JtKexps

(x := t, s)→ (skip, s(x 7→ v))

Branch
1 ≤ i ≤ n

(branch c1 or . . . or cn end, s)→ (ci, s)

Assert
tt ∈ JbKbools

(assert(b), s)→ (skip, s)

WhileTrue
tt ∈ JbKbools

(while b do c end, s)→ (c ;while b do c end, s)

WhileFalse
ff ∈ JbKbools

(while b do c end, s)→ (skip, s)

Fig. 1: Small-step semantics of commands. B = {tt, ff} is the set of boolean values.

2.2 A Language With Algebraic Data Types
The syntax of the language consists of expressions t, boolean conditions b, and com-
mands c. Vars denotes the set of variables that may appear in commands. Expressions
include the projection of a variable x ∈ Vars over a path p ∈ Paths, written x.p. The
expression t1 ⊞ t2 denotes some arithmetic operations on the expressions t1 and t2,
and t1 ▷◁ t2 ranges over arithmetic comparisons.

t ∈ Exp ::= n | A(t) | {fi = ti
i∈I} | x.p | t1 ⊞ t2

b ∈ BExp ::= t1 ▷◁ t2 | b1 ∧ b2 | b1 ∨ b2 | ¬b
c ∈ Cmd ::= skip | c1 ; c2 | branch c1 or . . . or cn end |

while b do c end | assert b | x := t

We restrict our attention to well-typed commands (that we call programs), following a
standard structural type system [1]. For instance, well-typedness ensures that arithmetic
tests and operations receive arguments of integer type, and that every projection x.p
is consistent with the type of the variable x.

Programs operate on stores, denoted by s, that are finite maps from Vars to Values.
We define the semantics of programs using a standard small-step semantics that specifies
the effects of commands on stores (Fig. 1). The relation (c, s) → (c′, s′) states that
the command c transforms the store s into a store s′, and that command c′ is to be
executed next.

The command skip performs no operation, whereas the sequence c1 ; c2 executes c1
followed by c2. The branching command branch c1 or . . . or cn end non-deterministically
chooses one of the commands ci and executes it, discarding the other branches. The
command while b do c end executes the command c as long as the condition b holds,
and successfully terminates otherwise.

The command assert(b) tests whether the condition b holds, in which case the
command succeeds, and the execution of the program continues. When b is not satisfied,
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Jx.pKexps =

{
{s(x)⇓val p} if s(x) is defined and s(x)⇓val p ̸= Undef

∅ otherwiser
{fi = ti

i∈I}
zexp

s
=
{
{fi = vi

i∈I} | ∀i ∈ I, vi ∈ JtiK
exp
s

}
JA(t)Kexps = {A(v) | v ∈ JtKexps }

Jt1 ⊞ t2K
exp
s = {v1 ⊞ v2 | v1 ∈ Jt1K

exp
s ∧ v2 ∈ Jt2K

exp
s }

Fig. 2: Denotation of expressions.

Jt1 ▷◁ t2K
bool
s = {v1 ▷◁ v2 | v1 ∈ Jt1K

exp
s ∧ v2 ∈ Jt2K

exp
s }

Jb1 ∧ b2Kbools = {b1 ∧ b2 | b1 ∈ Jb1K
bool
s ∧ b2 ∈ Jb2K

bool
s }

Jb1 ∨ b2Kbools = {b1 ∨ b2 | b1 ∈ Jb1K
bool
s ∧ b2 ∈ Jb2K

bool
s }

J¬bKbools = {¬b | b ∈ JbKbools }
Fig. 3: Denotation of conditions.

assert(b) fails, i.e., the program remains stuck. We can express the conditional construct
if b then c1 else c2 as branch assert(b) ; c1 or assert(¬b) ; c2 end.

Finally, the assignment command x := t evaluates t to some value v and updates
the variable x with v. We write s(x 7→ v) to denote the store that is identical to the
store s, except that it maps the variable x to the value v.

The evaluation JtKexps of an expression t in a store s proceeds by induction on
the structure of t to evaluate sub-expressions, and reads in the store s the values of
variables (Fig. 2). JtKexps is either a singleton, which denotes normal execution, or the
empty set, which denotes a failure, such as an invalid projection x.p. For example, if
s(x) = A(v) then Jx@BKexps = ∅, because the constructors A and B are different. The
evaluation of booleans JbKbools is standard (Fig. 3).

Importantly, records and variants are immutable in our language: it is not possible
to update some field f of a record in-place, for example. Instead, the programmer must
follow the functional idiom, and create a new record value, that contains a different
value for the field f .

We recover the pattern matching construct match twithA1(x1) → c1 | · · · |
An(xn) → cn end as a syntactic sugar for command z := t ; branch x1 := z@A1 ; c1 or
. . . or xn := z@An ; cn end for a freshly chosen variable z.

2.3 Running Example
Figure 4 shows an example program for which we would like to infer precise input-output
properties. This program features algebraic data types that represent the meta-data of
a process, as usually found in operating system implementations. Here, a process is
a record composed of an identifier, some incoming message that was sent by another
process and finally a piece of data that describes the status of the process. The message
is a record that contains some payload and whether it needs a reply (and to whom). The
process status is either running, in which case it records how many times the process
has been activated, or it is asleep, in which case it also records how many seconds the
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type status = [ (∗ Scheduling status ∗)
| Running of { count: int }

(∗ Running: activation times ∗)
| Asleep of { secs: int; count: int }

(∗ Sleeping : remaining seconds, activation times ∗)
]
type msg = { (∗ Messages ∗)
data : int ; (∗ Payload ∗)
reply : [ (∗ Whether to reply or not ∗)
| Reply of int (∗ Who to reply to ∗)
| DontReply of {} (∗ No reply expected ∗)

]
}
type process = { id: int; msg: msg; status: status } (∗ Process structure ∗)

def do_ticks(process p, int n) : process = {
(∗ Performs n clock ticks on the process p ∗)
int count; int secs; int i
assert (n > 0)
i = 0
while (i < n) do (∗ loop n times, i .e .: perform n clock ticks ∗)
branch (∗ case where p is running ∗)
count = p.status@Running.count

or (∗ case where p is asleep and can sleep longer ∗)
assert (p.status@Asleep.secs > 0)
count = p.status@Asleep.count
secs = p.status@Asleep.secs
p = { id = p.id; msg = p.msg;

status = Asleep { secs = secs - 1; count = count } }
or (∗ case where p is asleep and has no more sleeping budget ∗)
assert (p.status@Asleep.secs = 0)
count = p.status@Asleep.count
p = { id = p.id; msg = p.msg;

status = Running { count = count + 1 } }
end
i = i + 1

end
return p

}

Fig. 4: Example program performing clock ticks on a process’ meta-data.

process should remain asleep before waking up again. The function do_ticks(p, n)
simulates the action of n clock ticks on a process p: a clock tick leaves the process p
unchanged if p is already running, or, if it is asleep, decrements the sleeping budget of
p. If that budget is already zero, the clock tick promotes p into a running process.

The important properties of do_ticks(p, n) that we intend to infer automatically
are the following:
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N (section § 3.1)

NPR(N) (section § 3.3)
(numeric constraints)

NPR lifting

seq (section § 3.5)
(structural equalities)

×cc (section § 3.4)
(constructor constraints)

×

Tan (N)

Reduction (section § 3.6.1)

S (N)

Disjunctive completion
(section § 3.6.2)

Structural
lifting

Rand (N)

Relational lifting (section § 4.2)

P(Vars → Int)

P(Vars → Values)

P
(
(Vars → Values)

2
)

Fig. 5: The construction of the RAND abstract domain. The frame-enclosed sets are
the sets the abstract domains concretize to.

1. If p is initially running, then it remains unchanged;
2. If p is initially sleeping, then it might wake up: in this case, its original sleep-

ing budget was less than n, and count—its number of activations—has been
incremented by one;

3. If p is initially sleeping, then it might remain sleeping: in this case, its sleeping
budget is decreased by n, and its number of activations remains the same;

4. The field id, of integer type, of the process p has not changed;
5. The field msg, of record type, of the process p has not changed either.
Sections § 3 to 5 explain in detail how we express and capture these properties

by presenting the structure of the RAND abstract domain. The correlation abstract
domain [10] was also designed to handle programs that manipulate algebraic data
types, but cannot express, on numbers, properties other than binary equalities. Using
the correlation domain, we could infer all the properties listed above, except the ones
that involve arithmetics: properties 2 and 3.

3 Extending Numeric Domains to Algebraic Types
In this section, we introduce an abstract domain that is able to express equality and
numeric constraints between parts of structured values. Our construction is summarised
in Fig. 5. It is parametric with respect to a numeric abstract domain N, so that we
can instantiate it on domains with different precision versus cost trade-offs. We expect
the numeric domain N to provide the operations described in section § 3.1, which are a
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subset of the API offered by Apron [11]. An essential ingredient of our construction is
the use of extended variables (section § 3.2), i.e., regular program variables equipped
with a projection path. Our example do_ticks on Fig. 4 features extended variables,
such as p.status@Asleep.secs. Using extended variables, we define in section § 3.3 a
first way to lift numeric domains to languages with algebraic types: the Numeric Path
Relations lifting, or NPR lifting for short. This first lifting builds on the ideas of [15],
but achieves a better precision. It can express, for example, that a call to do_ticks
can only decrease the value in the field secs of processes (that denotes the number
of seconds for which a process should remain asleep), thanks to the constraint on
extended variables p.status@Asleep.secs ≥ p′.status@Asleep.secs.

We improve the precision of the NPR lifting by combining it with two other
domains (sections § 3.4 and 3.5) in a product domain (section § 3.6.2). A first domain
of constructor constraints tracks which constructors are used for values of sum types
(section § 3.4). Constructor constraints allow us to distinguish between different cases,
by stating which extended variables are valid in each case. For the do_ticks program,
a possible case is when the input process p is sleeping—i.e., p.status@Asleep is valid—
and the output process p’ is running—i.e., p’.status@Running is valid. Another
domain, called structural equalities (section § 3.5), uses equality constraints between
extended variables to express equalities that must hold between arbitrary parts—of any
type—of structured values. With this domain, we can tell for the do_ticks program
that the msg field of processes cannot change, by saying that the extended variables
p.msg and p’.msg are equal.

In order to obtain additional precision when analysing pattern-matching, we use a
disjunctive completion of the product of these domains (section § 3.6.2): we obtain the
structural lifting of the numeric abstract domain. Each value of the structural lifting
can contain multiple cases, and each case has three components: one that expresses
constructor constraints, one that expresses structural equalities, and one that expresses
numeric constraints. In sections § 3.3 to 3.5 we define abstractions for assignments and
conditionals, that are needed in section § 5 to define the analysis of our language.

Finally, we define the relational lifting which extends the intra-procedural analysis
to an inter-procedural analysis that computes function summaries of the input-output
relation of a function. This lifting extends the relational domain constructions to
describe relations between input and output stores, by introducing variables that
represent the store at intermediate points in the execution of the function.

3.1 Background: Numeric Abstract Domains
We first review the structure of traditional numeric domains [16] such as intervals,
octagons and polyhedra. The domains are parametrised by a set of variables, and
describe sets of numeric stores over those variables, i.e., sets of maps from variables to
numbers.

Given a set of variables V , we expect a numeric abstract domain N(V ) to provide the
operations listed below (which are included in the user interface of the Apron library [11])
in such a way that the standard soundness properties of abstract interpretation [17,
18] are met: A set of abstract values N(V ) with a concretisation function γN(V ) ∈
N(V ) → P(V → Int), a pre-order on abstract values ⊑N(V ), abstract union ⊔N(V )
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and intersection ⊓N(V ), and a widening operator ▽N(V ). The domain must also offer
abstractions for boolean conditions CondN(V ) ∈ BExp → N(V ) → N(V ) and for
assignment AssignN(V ) ∈ V ×Arith (V ) → N(V ) → N(V ) (where Arith (V ) is the set
of arithmetic expressions over the variables V ), satisfying the soundness properties:

γN(V )(AssignN(V )(x := t)(d)) ⊇ {s(x 7→ v) | s ∈ γN(V )(d) ∧ v ∈ JtKexps }
γN(V )(CondN(V )(b)(d)) ⊇ {s ∈ γN(V )(d) | tt ∈ JbKbools }

Additionally, we assume a predicate CanSatN(V ) ∈ N(V )×BExp → B for querying
an abstract value to know whether a boolean condition can be satisfied or not. This
operation must verify the property(

∃s ∈ γN(V )(d), JcKexps = {tt}
)
⇒ CanSatN(V )(d, c)

From this predicate, another predicate SatisfiesN(V ) can be derived, by taking
SatisfiesN(V )(d, c) = ¬CanSatN(V )(d,¬c). The predicate SatisfiesN(V ) verifies the
property

SatisfiesN(V )(d, c) ⇒ ∀s ∈ γN(V )(d), JcKexps ⊆ {tt}
In other words, SatisfiesN(V )(d, c) guarantees that condition c is either true or blocking
for all states in the concretisation of d.

We also assume the existence of “variable management” operators for removing,
adding and renaming variables:

• Rem
N(V )
V ′ projects an element of N(V ) onto N(V \ V ′).

• Add
N(V )
V ′ embeds an element of N(V ) into the domain N(V ∪ V ′).

• RenameN(V1)
r translates elements of N(V1) into N(V2), given bijection r : V1 → V2.

These operators satisfy the soundness properties:

γN(V \V ′)(Rem
N(V )
V ′ (d)) ⊇ {s|(V \V ′) | s ∈ γN(V )(d)}

γN(V ∪V ′)(Add
N(V )
V ′ (a)) ⊇ {s : (V ∪ V ′) → Int | s|V ∈ γN(V )(a)}

γN(V2)(RenameN(V1)
r (d)) ⊇ {s | s ◦ r ∈ γN(V1)(d)}

When adding adding variables with Add
N(V )
V ′ , the new variables V ′ are uncon-

strained: they can hold any value.

3.2 Extended Variables
We use the name extended variable for a pair of a variable and a path. Extended
variables designate values that are located inside a structured value. We only consider
paths that make sense for the given variables, i.e., paths whose projections on a
variable’s type are valid in the following sense:
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Definition 4 (Projection of a type on a path). The judgement τ ⇓typ p defines when
a path p is consistent with a type τ , and is inductively defined by:

τ ⇓typ ε

τi ⇓typ p i ∈ I

{fj → τj
j∈I} ⇓typ .fip

τi ⇓typ p i ∈ I

[Aj → τj
j∈I

] ⇓typ @Aip

For example, for the type status from Fig. 4, the judgements status ⇓typ

@Running.count and status ⇓typ @Asleep.secs both hold. However, the judgement
status ⇓typ @Cons.head does not hold, since constructor Cons does not belong to the
sum type status.

Typing contexts, written Γ, are mappings from variables to types. We write
E(Γ) = {x.p | x ∈ domΓ ∧ Γ(x) ⇓typ p} for the set of extended vari-
ables x.p such that p is consistent with the type of x in Γ. For example, if
a typing context Γ contains a single binding Γ = [x 7→ status], then E(Γ) =
{x, x@Running, x@Asleep, x@Running.count, x@Asleep.secs, x@Asleep.count}.

We say that two extended variables x.p1 and x.p2 are incompatible—written
x.p1<>x.p2—if they would force a value (or part of a value) to be in two different
variants of a sum type. Definition 5 formalises this notion of incompatibility, using the
prefix order ≼ on extended variables (x.p ≼ y.q iff x = y and p is a prefix of q).
Definition 5 (Incompatibility and inconsistency). Two extended variables x1.p1 and
x2.p2 are incompatible, written x1.p1<>x2.p2, if and only if x1 = x2 and there is
a path p and two distinct constructors A1 and A2, such that x1.p@A1 ≼ x1.p1 and
x2.p@A2 ≼ x2.p2. A set of extended variables E is inconsistent if it contains two or
more incompatible extended variables. Two sets of extended variables are incompatible,
written E1<>E2, if their union is inconsistent.

For example, if the typing context is Γ = [x 7→ status], then the two extended
variables x@Running.count and x@Asleep.count are incompatible. Therefore, the set
of extended variables {x@Running.count, x@Asleep.count, x@Asleep.secs} is inconsis-
tent. This implies that the two sets of extended variables {x@Running.count} and
{x@Asleep.count, x@Asleep.secs} are incompatible.

In section § 3.4, we use the fact that inconsistent sets of extended variables denote
empty sets of stores. Such inconsistent sets correspond to unreachable program points,
and can be safely removed from the disjunctive completion of section § 3.6.2.

Assignment decomposition
To simplify the definition of the abstract transfer functions for assignment in the next
subsections, it is useful to decompose an assignment command x := t—where t can
be a compound expression—into an equivalent set of parallel assignments of the form
x.p := t′, where t′ is either an expression of numeric type or an extended variable. The
idea is to model the effect of the assignment as a set of parallel assignments on the
paths of variable x.
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Definition 6. The decomposition of the assignment x := t is defined by:

Decomp (x.p := t) =


⋃

i∈I Decomp (x.p.fi := ti) if t = {fi = ti
i∈I}

Decomp (x.p@A := t′) if t = A(t′)

{x.p := t} if Γ ⊢ t : Int ∨ t ∈ E(Γ).

We write Decomp (x := t) as a shorthand for Decomp (x.ε := t).
For example, in the typing context Γ = [st 7→ status; secs 7→ Int; count 7→ Int] the

assignment st := Asleep{secs = secs− 1; count = count} is decomposed as follows:

Decomp (st := Asleep{secs = secs− 1; count = count}) =
{st@Asleep.secs := secs− 1; st@Asleep.count := count}

We overload the function Env (�) to denote the function that returns the set of
extended variables that appear in an expression (boolean or numeric), in a set of
commands, or in a set of constraints C.

3.3 Numeric Domains Over Extended Variables
In this section, extending ideas from [15], we define the Numeric Path Relations lifting
NPR(N) as a generic way to lift a domain N that is numeric—i.e., that denotes sets of
stores that map variables to numbers—to a domain that denotes sets of stores that
map variables to structured values (Definition 1). The main idea is to use extended
variables as the variables of the underlying numeric domain.

For a typing context Γ, the abstract values of NPR(N)(Γ) are pairs of a set E of
extended variables that are valid in Γ, and a numeric abstract value d ∈ N(E) whose
variables belong to E.
Definition 7. NPR(N)(Γ) = {(d,E) | E ∈ P(E(Γ)) ∧ d ∈ N(E)}

In this definition, an abstract numeric value d can refer to any extended variable
x.p declared in E, and does not need to reason on whether x.p is a valid projection.
In practice, though, the complete domain of section § 3.6.2 will only consider sets E
that are consistent. When writing examples in the rest of the paper, we may omit the
set E when it can be deduced from context, for example when E is exactly the set of
extended variables used in d. For example, for the type status defined in Fig. 4, the
abstract value {st@Asleep.secs ≥ 0; st@Asleep.count ≥ 0} is an element of NPR(N)(Γ),
where Γ = [st 7→ status].

Intuitively, an abstract value (d,E) denotes a set of stores that map regular variables
to structured values, such that the paths listed in E point to integer values, and such
that those integers are related by the numeric abstract value d. Using the projection
function for values (Definition 3), it is easy to transform a store whose indices are
variables into a store whose indices are extended variables:
Definition 8 (Projection of a store). The projection of a store s ∈ Vars → Values on
a set of extended variables E ∈ P(E(Γ)) is a store in E → (Values∪ {Undef}), written
s⇓stoE, and is defined by: (s⇓stoE)(x.p) = s(x)⇓val p.

As an example, consider the store s = [st 7→ Asleep{secs = 42; count =
7}], where the variable st has type status, and the set of extended variables
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E = {st@Asleep.secs; st@Asleep.count}. The projection of s on E is the store
[st@Asleep.secs 7→ 42; st@Asleep.count 7→ 7].

The concretisation of an element (d,E) ∈ NPR(N)(Γ) easily follows: it is the set of
well-typed stores whose projections on E satisfy the numeric constraints d. The typing
judgement Γ ⊢ s means that s(x) has type Γ(x) for every x.
Definition 9. γNPR(N)(Γ)(d,E) =

{
s | Γ ⊢ s ∧ s⇓stoE ∈ γN(E)(d)

}
For example, if the typing context is Γ = [st 7→ status], then the concretisation of

the abstract value p = {st@Asleep.secs ≥ 0; st@Asleep.count ≥ 0} contains any store in
which the variable st is mapped to a value of type status that is built using constructor
Asleep, and where both fields secs and count are non-negative. In particular,

[st@Asleep.secs 7→ 42; st@Asleep.count 7→ 7] ∈ γNPR(N)(Γ)(p)

We briefly explain how to define the abstract intersection in NPR(N)(Γ). The
intersection of (d1, E1) and (d2, E2) denotes the conjunction of the constraints d1 and
d2. Therefore, the extended variables that appear in the conjunction are in E1 ∪ E2.
Thus, one must inject d1 and d2 in E1 ∪ E2 using the Add

N(Ei)
Ej

operators, before
actually taking their intersection in the numeric domain:

(d1, E1) ⊓NPR(N)(Γ) (d2, E2) =
(
Add

N(E1)
E2

(d1) ⊓N(E1∪E2) Add
N(E2)
E1

(d2), E1 ∪ E2

)
The pre-order, union and widening are defined in a similar way:

(d1, E1) ⊑NPR(N)(Γ) (d2, E2) iff E2 ⊆ E1 ∧ Rem
N(E1)
E1\E2

(d1) ⊑N(E2) d2

(d,E) ⊓NPR(N)(Γ) (d′, E′) =
(
Add

N(E)
E′ (d) ⊓N(E∪E′) Add

N(E′)
E (d′), E ∪ E′

)
(d,E) ⊔NPR(N)(Γ) (d′, E′) =

(
Rem

N(E)
E\E′(d) ⊔N(E∩E′) Rem

N(E′)
E′\E (d′), E ∩ E′

)
(d,E) ▽NPR(N)(Γ) (d′, E′) =

(
Rem

N(E)
E\E′(d) ▽

N(E∩E′) Rem
N(E′)
E′\E (d′), E ∩ E′

)
Transfer Functions
Since our values are immutable, all the assignments are of the form x := t. In particular,
in-place updates of the form x.f := t are not part of our language. In the following
definition, Ex is the set of extended variables in E starting with variable x. The
transfer function for assignment x := t applied to an abstract element (d,E) works
by temporarily introducing a new variable x′ (that represents the value of x after
assignment). First, it applies the transfer function for assignment on every numeric
assignment in the decomposition of x′ := t (Definition 6). In order to do so, it first
computes the set E0 of extended variables appearing in the decomposition of x′ := t

and adds these to the underlying abstract domain by computing Add
N(E)
E0

(d)). This
produces the new abstract value d1. Then, it removes all the references Ex to the paths
of x from d1, and finally renames x′ into x. The auxiliary variable x′ is introduced to
avoid clashes between the paths that are valid for x before the assignment and those
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that are valid after the assignment.

AssignNPR(N)(Γ)(x := t)(d,E) = Rename
NPR(N)(Γ)
[x′ 7→x] (Rem

NPR(N)(Γ)
Ex

(d1, E ∪ E0))

where

Ex = {y.p ∈ E | y = x}
E0 = {y.p ∈ Env (Decomp (x′ := t)) | Γ ⊢ y.p : Int}
d1 =

lN(E∪E0)

x′.p:=u∈Decomp(x′:=t),Γ⊢u:Int

AssignN(E∪E0)(x′.p := u)(Add
N(E)
E0

(d))

If x does not appear in t, a simpler definition for the transfer function could be
given, where there is no need for x′ and previous constraints on x are forgotten before
adding the new ones.

The transfer function for conditionals is simpler: negation is eliminated using De
Morgan laws, whereas conjunctions and disjunctions are handled by abstract intersection
and union, respectively. The remaining case is that of a numeric test t1 ▷◁ t2: it suffices
to call the transfer function of domain N for conditionals, and to extend the extended
variables with those that occur in the test.

CondNPR(N)(Γ)(b)(d,E) =(
CondN(E∪Env(b))(b)(Add

N(E)
Env(b)(d)), E ∪ Env (b)

)
if b = t1 ▷◁ t2

3.4 Constructor Constraints
We introduce the abstract domain of constructor constraints, that intuitively describes
in which cases the values of a store might be, i.e., which are the allowed variant
constructors of the values of a store. We write cc(Γ) for the set of constructor constraints
for a typing environment Γ. An element E ∈ cc(Γ) is a set of extended variables, that
restricts the possible sets of stores to those that are compatible with every path in
E. In other words, if a path in E mentions some constructor, then the corresponding
value in any store of the concretisation must be built using that constructor. Elements
of cc(Γ) can contain paths which start with different variables, providing a limited
form of relational information. For example, the set {x, x@Asleep, y, y@Asleep} states
that the values in variables x and y both are built using the same constructor Asleep.
Constructor constraints are a key ingredient of the disjunctive completion of section
§ 3.6.2, as they serve as hints for which disjuncts need to be kept separate, and which
should be merged.

Formally, an element E ∈ cc(Γ) is either the bottom value ⊥cc(Γ), or a set of
extended variables that is consistent and closed under the prefix order ≼.
Definition 10 (Constructor constraints). The domain of constructor constraints is
defined by cc(Γ) = {E ⊆ E(Γ) | E ≼-closed and consistent }∪{⊥cc(Γ)} and is equipped
with the ordering ⊑cc(Γ) defined as E1 ⊑cc(Γ) E2 iff E1 = ⊥cc(Γ) or E1 ⊇ E2.

We write closcc(Γ)(E) to denote the prefix-closure of E, i.e., the smallest ≼-closed
set that contains E. For example, if we consider the type status from Fig. 4 and the
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typing context Γ = [x 7→ status] where variable x has type status, then the prefix-
closure of the singleton E = {x@Asleep.secs} is the set {x@Asleep.secs, x@Asleep, x}.
For a given Γ, the domain cc(Γ) is finite: because our types are not recursive, the valid
paths necessarily have finite lengths.

The concretisation γcc(Γ) defines the stores denoted by constructor constraints.
Definition 11 (Concretisation for constructor constraints).

γcc(Γ)(⊥cc(Γ)) = ∅ γcc(Γ)(E) = {s | Γ ⊢ s ∧ ∀x.p ∈ E, s(x)⇓val p ̸= Undef}

The concretisation of a set E produces a set of well-typed stores such that the values
in the stores can be projected along the paths in E. For example, the concretisation of
the abstract value E = {x@Asleep.secs, x@Asleep, x} contains all the stores in which
the variable x holds a value that is built with constructor Asleep. In particular, the store

s1 = [st 7→ Asleep{secs = 42; count = 7}]

belongs to γcc(Γ)(E), whereas the store s2 = [st 7→ Running{count = 8}] does not.
The abstract union and intersection for the cc(Γ) domain are easily obtained:

⊥cc(Γ) ⊔cc(Γ)E = E ⊔cc(Γ)⊥cc(Γ) = E E1 ⊔cc(Γ)E2 = E1 ∩ E2 otherwise

E1 ⊓cc(Γ) E2 =

{
⊥cc(Γ) if E1 = ⊥cc(Γ) or E2 = ⊥cc(Γ) or E1<>E2

E1 ∪ E2 otherwise

Because the domain is finite, there is no issue with infinite ascending chains, and we
can simply define the widening as the abstract union.

Transfer Functions
We express the abstract transfer function for assignment in the cc(Γ) domain in a
“kill-gen” form as follows:

Assigncc(Γ)(x := t)(E) = (E \Killcc(Γ)(x)(E)) ⊓cc(Γ) Gencc(Γ)(x := t)(E)

where

Killcc(Γ)(x)(E) = {y.p ∈ E | y = x}
Gencc(Γ)(x := t)(E) =

closcc(Γ)({y.q ∈ Env (t) | y ̸= x}∪{x.p | ∃t′, x.p := t′ ∈ Decomp (x := t)})

The extended variables that must be removed are those that have x as root, since
the new value for x might be modified by the assignment. The newly added extended
variables are those of t that are still live after x is updated, and the ones that are
effectively assigned, as given by the decomposition of the assignment. We ensure that
the added variables remain prefix-closed thanks to a call to closcc(Γ).

15



The transfer function for conditionals is straightforward: it only adds the extended
variables of the boolean expression:

Condcc(Γ)(b)(E) = E ⊓cc(Γ) closcc(Γ)(Env (b))

3.5 Structural Equalities
The NPR lifting of Section § 3.3 can only express relations between the numeric parts
of values. It can’t record whether some non-numeric part of a value has not changed.
In our example of Fig. 4, this is the case of the msg field of processes, that is not
modified, and is of record type. We introduce in this section the domain seq(Γ), that
tracks structural equalities. The domain seq(Γ) tells which parts of the values of a store
must be identical.

One could argue that any equality between structured values could be replaced with
a conjunction of equalities between the integer fields of those values, and, consequently,
that the seq(Γ) domain is hardly useful. Such a decomposition could lead, however, to
more verbose abstract values, and could also introduce extra disjunctions when dealing
with values of sum types. Thus, our choice of handling equality constraints between
structured values is beneficial, as it helps keep our abstract values small in size.

We give here a simplified definition of the domain, where the abstract values of
seq(Γ) are either the bottom element—denoting the empty set of stores—or a finite set
of pairs of extended variables (x.p, y.q)—denoting a set of stores s in which the value
at path p in s(x) is equal to the one at path q in s(y). In practice, our implementation
uses a map from extended variables to equivalence class indices, to ensure we remain
closed by reflexivity, symmetry and transitivity.
Definition 12 (Domain of structural equalities). The domain of structural equalities
seq(Γ) = P(E(Γ) × E(Γ)) ∪ {⊥seq(Γ)} is equipped with the concretisation function
γseq(Γ) ∈ seq(Γ) → P(Vars → Values) that is defined as follows:

γseq(Γ)(⊥seq(Γ)) = ∅
γseq(Γ)(C) = {s | Γ ⊢ s ∧ ∀(x.p, y.q) ∈ C, s(x)⇓val p = s(y)⇓val q ̸= Undef}

Abstract values in this domain might carry some implicit information. For example,
if x and y have type {f → Int; g → Int}, the abstract value {(x, y)} also implicitly
implies that x.f = y.f and x.g = y.g. To avoid losing precision, it is sometimes
necessary to saturate an abstract value by congruence, so that it contains all the valid
equalities that mention a given set of extended variables. For this purpose, we define
the following closure operator.
Definition 13 (Closure of structural equalities). The closure of a set of structural
equalities C with respect to a set of extended variables E, written closseq(Γ)

E
(C), is the

smallest set that contains C, that contains the equalities x.p = x.p for all x.p ∈ E, that
is closed under symmetry, reflexivity and transitivity, and that satisfies the following
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congruence property:

(x.p, y.q) ∈ closseq(Γ)
E

(C) ∧ x.pr ∈ Env
(
closseq(Γ)

E
(C)
)
⇒ (x.pr, y.qr) ∈ closseq(Γ)

E
(C)

We use this closure operator to gain precision in the transfer function for assignment,
and in the reduction operator of the product domain of section § 3.6.
Definition 14 (Pre-order, abstract union, abstract intersection and widening for
the structural equalities domain). A pre-order for the structural equalities domain is
defined by

C1 ⊑seq(Γ) C2 iff C1 = ⊥seq(Γ) or C2 ⊆ C1

Abstract union for this domain is defined by

⊥seq(Γ) ⊔seq(Γ) C = C ⊔seq(Γ)⊥seq(Γ) = C
C1 ⊔seq(Γ) C2 = C1 ∩ C2 otherwise

Abstract intersection is given by

C1 ⊓seq(Γ) C2 =

⊥seq(Γ) if C1 = ⊥seq(Γ) or C2 = ⊥seq(Γ)

or Env (C1)<>Env (C2)

C1 ∪ C2 otherwise

For widening, we use abstract union

C1 ▽
seq(Γ) C2 = C1 ⊔seq(Γ) C2

If this domain was used on its own, then the union, intersection and widening given
here would be unnecessarily imprecise, because of the lack of closure. But since we use
it as part of the reduced product of section § 3.6.1, the closure operator will actually
be applied.

The reason why taking the abstract union (that is, intersection of the underlying
sets of equalities) as widening works here, is because every element of this domain is a
finite set of equalities, and abstract union can only decrease it. A decreasing sequence
of finite sets necessarily stabilises in finite time.

Transfer Functions
The transfer function for assignment x := t for the seq(Γ) domain exploits the decom-
position of assignments from Definition 6. It considers only the assignments of the
form x.p := y.q, where the right-hand side is an extended variable. We express the
transfer function in a “kill-gen” form, where we kill every equality that involves x, and
add the new equalities x.p = y.q where we are careful to avoid any use of x that refers
to the state before the assignment.

Assignseq(Γ)(x := t)(C) =
(
C \Killseq(Γ)(x)(C)

)
∪Genseq(Γ)(x := t)(C)
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where

Killseq(Γ)(x)(C) = {(y.p, z.q) ∈ C | y = x ∨ z = x}
Genseq(Γ)(x := t)(C) =⋃

x.p:=y.q∈Decomp(x:=t){(x.p, z.r) | z ̸= x ∧ (y.q, z.r) ∈ closseq(Γ){y.q}(C)}

The transfer functions for conditionals can only exploit equality tests between
extended variables: Condseq(Γ)(b)(C) = C ⊓seq(Γ) {(x.p, y.q)} if b is x.p = y.q.

3.6 Bringing Everything Together: Product Domain and
Disjunctive Completion

In this section, we describe the remaining steps of our construction, that lead to the
structural lifting S of the numeric domain N that we have considered. We combine the
domains we have defined in the previous sections—the constructor constraints (section
§ 3.4), the structural equalities (section § 3.5), and the NPR lifting (section § 3.3)—into
a reduced product, that we call Tan (N), for Tuple for Algebraic types and Numbers.
Then, we add a disjunctive completion layer on top of that product. We will ultimately
obtain the domain of relations RAND once we apply the relational lifting defined in
section § 4.2.

3.6.1 Reduced Product

We equip the product domain Tan (N) = cc× seq×NPR(N) with a reduction operator
ρ, that enables information transfer between the different domains of the product.
Definition 15 (Reduction operator). The reduction operator ρ for the product of
constructor constraints, structural equalities and the NPR lifting is defined as follows:

ρ(E,C,N) =

E ⊓cc(Γ) closcc(Γ)(Env (C ′)),
C ′,

CondNPR(N)(Γ)(
∧

(x.p,y.q)∈C′∧Γ⊢x.p:Int x.p = y.q)(N)


where C ′ = closseq(Γ)closcc(Γ)(Env((E,C,N)))(C)

The reduction operator ρ transfers the following pieces of information between the
three components of the product:

• Structural equalities are completed with additional constraints, so that all the
extended variables that are used in the constructor constraints and the numeric
constraints are constrained (this is the role of C ′).

• If some equalities between integers are deduced from the structural equalities,
then they are added to the numeric constraints.

• The extended variables from the structural equalities and the numeric constraints
are added to the constructor constraints, which may reveal some inconsistent cases.

Union, intersection and widening for the reduced product domain add variables to the
structural equalities component, use component-wise operations and use the reduction
operator. For widening, reduction is only applied to the right-hand side argument to
avoid interfering with convergence. We invite the reader to look at [19] for further
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details. The transfer functions for assignment and conditionals use the transfer functions
of each component.

3.6.2 Using Disjunctions to Handle Incompatible Cases

Pattern matching performs a case analysis on the different constructors a value may
start with: these cases are pairwise incompatible. To analyse pattern matching with
precision, we add disjunctions to our abstract domain by means of a disjunctive
completion, so that each pattern matching case has a distinct disjunct. Hence, for any
numeric domain N, we take the disjunctive completion [18] of the reduced product of
constructor constraints, structural equalities and the NPR lifting of N. We call this
the structural lifting of N, written S, and defined as S (N) = P(Tan (N)). To control
the number of disjuncts, however, we merge some cases together: merging is performed
when the constructor constraints of two abstract values concretise to the same sets of
stores—i.e., when they impose the same constraints on the constructors used for variant
values. Definition 16 defines what it means for two sets of constructor constraints to
be equivalent. This definition is used in Definition 17 to describe how, for the elements
of the disjunctive completion, cases with equivalent constructor constraints are merged
together, using abstract union. Because we merge equivalent cases by computing their
unions, we cannot produce incorrect results, even when some numeric variables are
defined in some cases only. For example, if some variable x is undefined in one case of a
disjunction, it is considered as unconstrained in the numerical domain for that case of
the disjunction, i.e., no numeric information is known about this x. Thus, merging this
case with another one will not create any meaningful information on x in the merged
abstract value.
Definition 16 (Equivalence of constructor constraints). Two sets of constructor
constraints E1 and E2 are said to be equivalent, written E1 ≡ E2, if any path ending
with a constructor present in one of them is also present in the other. Formally:

E1 ≡ E2 iff ∀x.(p@A) ∈ E1, x.(p@A) ∈ E2 ∧ ∀y.(q@B) ∈ E2, y.(q@B) ∈ E1

≡ is an equivalence relation for constructor constraints.
Notice that this equivalence is not an equality because the Ei can contain paths

that do not end in a constructor, but in a field selector. For such paths there is no
requirement that they either be present in both or none of the Ei. We can extend this
into an equivalence relation for elements of the Tan domain, by:

(E1, C1, N1)≡Tan
E (E2, C2, N2) iff E1 ≡ E2

This equivalence is restricted to the extended variables, and does not correspond to an
equivalence with respect to ⊑Tan nor to a semantic equivalence. The sub-script in the
notation ≡Tan

E reminds of that. Given an element O of S, we write O/≡Tan
E for the set

of equivalence classes of O with respect to ≡Tan
E .

This notion of equivalence allows us to define an operator that collapses together
equivalent triplets in an element of P(Tan).
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Definition 17 (Collapse operator for the disjunctive completion). We define an
operator CollapseS that takes a set of elements of Tan and merges together (by taking
the abstract union), the elements that are equivalent with respect to ≡Tan

E . Formally,

CollapseS(O) =

{⊔Tan

a∈a

a | a ∈ O/≡Tan
E

}

We use this collapse operator to provide an abstract union and intersection for the
structural lifting

O1 ⊔S O2 = CollapseS(O1 ∪ O2)

O1 ⊓S O2 = CollapseS
({

t1 ⊓Tan t2 | t1 ∈ O1 ∧ t2 ∈ O2∧
t1 ⊓Tan t2 ̸= ⊥Tan

})
A widening for the structural lifting is given by

O1 ▽S O2 =
{t1 ▽Tan t2 | t1 ∈ O1 ∧ t2 ∈ O2 ∧ t1 ≡Tan

E t2}
∪{t2 ∈ O2 | ∄t1 ∈ O1, t1 ≡Tan

E t2} ∪ {t1 ∈ O1 | ∄t2 ∈ O2, t1 ≡Tan
E t2}

The other constructions of the structural lifting are the standard ones of disjunctive
completion domains. For example, abstract inclusion is given by a Hoare ordering:

O1 ⊑S O2 iff ∀a ∈ O1,∃a′ ∈ O2, a ⊑Tan a′

4 A Collecting Semantics of Relations
The term “relational analysis” is widely used in the literature, and may refer to two
different notions. In a majority of related works, a “relational analysis” designates a
static analysis that infers relations that hold between variables of a single program
point, i.e., relations in space. In other works, a “relational analysis” denotes a static
analysis that infers relations between (variables of) different states, i.e., relations in
time. Relations between different versions of variables at several program points are
discovered, for instance, during the symbolic expression analysis [20] that is part of
the construction of the SSA form of a control-flow graph. In the rest of this paper, the
term “relational” refers to to input-output relational analysis, that computes relations
between the input states and the output states of a program.

In this section, we define an input-output relational semantics of programs, that
forms the semantic basis of an input-output relational analysis. Our relational semantics
determines relations that relate the input stores of a program with its output stores,
i.e., the stores that are obtained when there are no more commands to evaluate.
Definition 18 (Relational semantics). The relational semantics of a command c is
defined as follows: S JcK = {(s1, s2) | (c, s1)→∗ (skip, s2)}.

S JcK is a binary relation that may be employed to derive fully compositional
static analyses, such as CRA [21, 22]. Indeed, it enjoys equations (e.g., S Jc1 ; c2K =
S Jc1K ;S Jc2K) that help defining the analysis of a compound command from the
independent analyses of its constituents. A drawback of this approach, however, is its
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inability to exploit any information about the states that have been reached so far, which
may degrade the precision of an analysis. The following piece of code illustrates this
issue: assert (x > 1 && y > 1); x := y * x. If we analyse the assignment x := y * x
with no knowledge that the preceding assertion succeeded, then, using a linear relational
domain—e.g., octagons or polyhedra—we will not obtain any precise information about
how the value of x has changed, as the domain cannot express non-linear relations. The
relational collecting semantics of the next section waives this limitation, as it allows to
exploit the information that has so far been obtained for the current program point.

4.1 Relational Collecting Semantics
In this section, we build a collecting relational semantics on top of S JcK, that can
exploit the information about the states that have been reached. Let us consider
again the example from the previous paragraph: with the knowledge that the assertion
assert (x > 1 && y > 1) succeeded, then a linear relational domain will be able to
express, for example, that after the assignment x := y * x, the value of x has strictly
increased. Our collecting semantics P JcK is a function from relations to relations:
given some initial relation a that holds between initial stores si and the stores sb at
the current program point (before the execution of c), P JcK (a) computes a relation
between the initial stores si and the final stores sf that are produced by evaluating the
command c from the stores sb. Thus, P JcK extends the relations in time by composing
on the right-hand side with the behaviour of command c. Our collecting semantics is
defined as follows:
Definition 19 (Collecting semantics). P JcK (a) = a;S JcK

P JcK is an abstraction of a semantics of computation traces [23], that collects the
intermediate stores that a program may reach, that only keeps the initial and the final
states of such traces. The collecting semantics P JcK satisfies the equations listed in the
next lemma, that shows how it decomposes by following the syntax of commands.
Lemma 1 (Inductive Characterisation of the Collecting Semantics). The following
equations hold:

P JskipK (a) = a
P Jc1 ; c2K (a) = P Jc2K (P Jc1K (a))

P Jbranch c1 or . . . or cn endK (a) =
⋃

1≤i≤n P JciK (a)
P Jwhile b do c endK (a) = P Jassert(¬b)K (lfp fa)

where fa(r) = a ∪ P JcK (P Jassert(b)K (r))
P Jassert(b)K (a) = {(s1, s2) | (s1, s2) ∈ a ∧ JbKbools2

= {tt}}
P Jx := tK (a) = {(s1, s2(x 7→ v)) | (s1, s2) ∈ a ∧ v ∈ JtKexps2

}

Proof. The proof of the three first cases rely on the algebraic properties of relational
composition, namely: Id is its neutral element, composition is associative, and it
distributes over union. To prove the fourth case, we first notice that for any fixed a and
b, for the function g(r) = a∪ (r; b), we have gi(⊥) =

⋃
0≤j<i a; b

j . Then, it follows that
lfp g =

⋃
i≥0 g

i(⊥) =
⋃

i≥0

⋃
0≤j<i a; b

j =
⋃

j≥0

⋃
i>j a; b

j =
⋃

j≥0 a; b
j = a;

⋃
j≥0 b

j =
a; b∗. The proofs of the last two cases proceed by unfolding definitions.

This inductive characterisation of the collecting semantics will serve as the semantic
basis for the analysis that we describe in section § 5.2.
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Lemma 1 shows that the syntax-directed decomposition of the relation transformer
P JcK follows the same structure as the standard set-based collecting semantics, that
collects the set of reachable states. Most transfer functions of our collecting semantics
are the same, but they operate on different objects (binary relations on stores instead of
sets of stores). The two transfer functions that are specific to this relational semantics
are the ones for assertion and for assignment. We show in section § 4.2 how to define
those two transfer functions—that transform relations that relate stores in different
program points—using any relational abstract domain that represents sets of stores
for one program point. Using these two results, we can turn a folklore technique into a
formal claim: transforming a non input-output relational analysis into an input-output
relational one is “as simple as” duplicating variables [24–27].

An important difference between the two styles of analyses—set-based vs. relational—
is the choice of the most precise starting point for the initial store, when no assumption
is made on that store. In set-based analysis, that starting point is ⊤ (the set of all
stores), whereas in the relational analysis, the starting point is Id (the identity relation
on stores).

4.2 Leveraging Relations in Space to Express Relations in Time
In this section we briefly recall that any relational domain—i.e., that denotes sets
of stores and can express binary relations between different variables of a single
store—can be lifted to a domain for pairs of stores, that is able to express relations
between input stores and output stores. The main idea is simple: a pair of stores
(s1, s2) ∈ (Vars → Values)2 can be represented as a single store, provided we can
distinguish the variables in s1 from those in s2, i.e., using a two-vocabulary relation [26].

Formally, this is achieved by assuming two bijections prime : Vars → Vars′ and
second : Vars → Vars′′ where Vars′ and Vars′′ are disjoint “copies” of Vars. We write
x′ as a shorthand for prime(x), and x′′ for second(x), and use the same convention
as in [21, 26], i.e., we use regular variables for the left-hand sides of relations—the
input stores—and primed variables for the right-hand sides—the output stores. For
any map f , we write f ′ as a shorthand for f ◦ prime−1, and we write f ∪ g for the
union of maps with disjoint domains.

We can abstract a relation between stores s1 and s2 using a single abstract value,
that represents the set of stores s1 ∪ s′2, which effectively duplicates a variable into its
input and its output versions.
Definition 20 (Relational lifting). Let D be a family of abstract domains, such
that for any Γ, the domain D(Γ) has a concretisation function γD(Γ) ∈ D(Γ) →
P(Vars → Values). For any Γ1 and Γ2, the relational lifting R(D)(Γ1,Γ2) of D and
its concretisation function are defined as follows:

R(D)(Γ1,Γ2) = D(Γ1 ∪ Γ′
2)

γR(D)(Γ1,Γ2)(a) = {(s1, s2) | s1 ∪ s′2 ∈ γD(Γ1∪Γ′
2)(a)}

R(D)(Γ1,Γ2) is naturally equipped with a pre-order relation, abstract union, intersection
and widening, by reusing those of D(Γ1 ∪ Γ′

2).
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The relational lifting expects two typing contexts—one for the input stores, and
one for the output stores. The use of two contexts is necessary to properly handle
function calls and returns (section § 5.3), where the variables of the caller’s context
need to be distinguished from those of the callee’s.

To obtain a relational input-output analysis, now that we can express relations on
stores, the question remains of how to express the transfer functions for conditionals
and assignments. It appears they can both be expressed in a generic way, by exploiting
the transfer functions of the underlying domain.

The transfer function for conditionals

CondR(D)(Γ1,Γ2)(b)(a) = CondD(Γ1∪Γ′
2)(b′)(a)

constrains the right-hand side of the relation a to satisfy the boolean expression b. This
is achieved by calling the transfer function for conditions of the underlying domain
on b′, to enforce that the variables of b refer to the outputs of a.

The transfer function for assignments

AssignR(D)(Γ1,Γ2)(x := t)(a) = AssignD(Γ1∪Γ′
2)(x′ := t′)(a)

calls the underlying domain on the primed version of the assignment, x′ := t′, to ensure
that it applies to the outputs of relation a, leaving the inputs unchanged.

In the rest of this article, we use the relational lifting of the abstract domain from
section § 3, that we call RAND—short for Relational Algebraic and Numeric Domain.

5 Analysis
This section explains how to use the abstract domain built in sections § 3 and 4,
to analyse the language described in section § 2.2. After providing an example that
illustrates what the analysis computes (section § 5.1), we first describe an intra-
procedural analysis (section §5.2) and then extend it to support function calls, yielding
a modular, summary-based, inter-procedural analysis (section § 5.3).

The inter-procedural version of our analysis does not currently handle recursive
or mutually recursive functions, as we chose to focus solely on the topic of handling
algebraic values and arithmetic relations. Nevertheless, we expect that the analysis of
recursive functions can be achieved by performing a widened fixpoint iteration sequence
at the level of function summaries.

5.1 Analysis Result for the do_ticks Function
Before giving the formal description of the analysis, we give an example of the properties
that it can infer. Figure 6 shows the result of running our analyser on the example
from Section § 2.3 using polyhedra as a numeric domain. We see that our disjunctive
completion considers three different cases, and contains all five properties that we
wanted to infer automatically. In the first case, both the input and the output are
running processes and the structural equality p = p′ tells us that the process remained
unchanged (Property 1). In the two other cases, the structural equality p.msg = p′.msg
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Function summary for function do_ticks(p, n) returning p’ :
(Constructor constraints : p.status@Running; p’.status@Running ...
with structural equalities : p = p’ ; ...
and numeric constraints : n >= 1 ; ... )
Or (Constructor constraints : p.status@Asleep; p’.status@Running ...
with structural equalities : p.msg = p’.msg
and numeric constraints :

p.id = p’.id; p’.status@Running.count = p.status@Asleep.count + 1;
p.status@Asleep.secs >= 0; n >= p.status@Asleep.secs + 1 )

Or (Constructor constraints : p.status@Asleep; p’.status@Asleep ...
with structural equalities : p.msg = p’.msg
and numeric constraints :

p.id = p’.id; p.status@Asleep.secs >= n; n >= 1;
p.status@Asleep.count = p’.status@Asleep.count;
p’.status@Asleep.secs = p.status@Asleep.secs - n )

Fig. 6: Result of our analysis on the example of Fig. 4. Ellipses mark information that
is also present in other components of the same case and is elided.

conveys that the msg field has not changed (Property 5) while numeric constraints
indicate that the id field has not changed (Property 4). In the second case, the input
process is asleep while the output process is running. The numeric properties tell us
that the wake up count has increased by one and the sleeping budget of the input
process is lower than argument n (Property 2). In the third case, both the input and
output process are asleep. The numeric relations tell us that the initial sleeping budget
was greater than n and has decreased by n; also, the wake up count remains unchanged
(Property 3).

5.2 Intra-Procedural Analysis
We define a function Analyse that takes a program c and an abstract value a—
representing the relation gathered so far between the input states and the current
state—and returns the abstract value Analyse(c)(a) that over-approximates the effect
of running c after a. This section deals with basic constructs, while Section § 5.3
explains how we analyse functions.
Definition 21 (Intra-procedural version of the analysis function).

Analyse(assert(b))(a) = CondRand(b)(a)

Analyse(x := t)(a) = AssignRand(x := t)(a)
Analyse(c1 ; c2)(a) = Analyse(c2) (Analyse(c1)(a))

Analyse(branch c1 or . . . or cn end)(a) =
⊔Rand

i∈1,...,n Analyse(ci)(a)

Analyse(while b do c end)(a) = CondRand(¬b) (limn→∞ an)

where a0 = a and an+1 = an ▽Rand Analyse(assert(b); c)(an)
The analysis of assertions and assignments use the transfer functions we built in

previous sections. Sequence and branching follow the structure outlined in Lemma 1.

24



We analyse loops in a standard way, using a widening-based Kleene iteration, which
ensures that we reach a post-fixpoint in a finite number of iterations. In practice, our
implementation performs a loop unrolling [28, p.131] of the first iteration, in order to
obtain better precision.

The Analyse function is sound, in the sense that it over-approximates the relational
collecting semantics.
Theorem 2 (Soundness w.r.t. the collecting semantics). For any command c and
abstract value a ∈ Rand,

P JcK
(
γRand(a)

)
⊆ γRand (Analyse(c)(a))

Proof sketch. Given the inductive characterisation of P from Lemma 1 and the definition
of Analyse, Theorem 2 can be proven by induction on the syntax of programs. The
different cases rely on the soundness of the operators from the Rand domain.

By instantiating Theorem 2 with the abstraction of the identity relation, we get a
soundness result with respect to the relational semantics of commands:
Corollary 1 (Soundness w.r.t. the relational semantics). For any command c,

S JcK ⊆ γRand
(
Analyse(c)

(
IdRand

))
Where IdRand is the element of Rand that has a structural equality x′ = x for all
variables in the typing context.

5.3 Analysis of Function Calls
In this section, we add function definitions and function calls to our language, and
extend the intra-procedural analysis of section § 5.2 into a modular inter-procedural
analysis, based on function summaries.

Extended syntax and semantics for functions
We extend our language to support function calls in commands and function
declarations:

c ∈ Cmd ::= . . . | x := f(x1, . . . , xn)
d ∈ Decl ::= def f(τ1 x1, . . . , τn xn) : τ = {c ; returnx}
P ∈ Prog ::= d1; . . . ; dn

For simplicity, the command for function calls y := f(x1, . . . , xn) immediately saves in
a variable y the result of calling a function f . This restriction forbids to call functions
within expressions, so that the semantics of expressions and the transfer function for
assignment remain unchanged.

A program is a sequence of function declarations def f(τ1 x1, . . . , τn xn) : τ =
{c ; return r}, that specify for the function f what are its input and output variables
and their types, and defines its body c. A program effectively defines a map ∆, that
associates to every declared function f a quadruplet ∆(f) = ((x1, . . . , xn), c, r,Γ) that
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FunctionCall
∆(f) = ((x1, . . . , xn), cf , r,Γf ) ∀i ∈ {1, . . . , n}, vi ∈ JziK

exp
s

(y := f(z1, . . . , zn), s, π)→ (cf ; return r, [x1 7→ v1, . . . , xn 7→ vn], (y, s) : π)

FunctionReturn
vr ∈ JrKexps

(return r, s, (yr, sr) : π)→ (skip, sr(yr 7→ vr), π)

Fig. 7: Small-step semantics for functions

holds the formal parameters xi of f , its body c, its formal return variable r, and the
typing context Γ that specifies the types of its formal and local variables.

We extend the small-step reduction rules from Fig. 1 as follows. First, we add to our
semantic states (c, s), that are composed of a program and a store, a third component π
that denotes a call stack, and is used to properly handle function returns. The reduction
rule SeqStep that handles sequences of commands simply propagates all changes to
the stack, whereas the other rules of Figure 1 leave the stack unchanged. Then, we
augment the reduction relation with two new rules (Figure 7). Rule FunctionCall
installs the body of the called function f as the new code to execute, and installs a
new store that defines the actual values—read in the caller’s store—for the formal
parameters of f . Simultaneously, a new element (y, s) is added at the top of the call
stack, so as to remember that the caller’s store s should be restored upon f ’s return,
and that the value computed by f must be recorded in the variable y. This very action,
that must be performed at function return, is specified by rule FunctionReturn.

Analysing functions
We have chosen to develop a modular analysis, by analysing each function only once
and computing a function summary, that summarises a function’s behaviour. This
summary is then reused and instantiated each time that function is called. Such a
modular analysis allows to better scale to large code bases [29].
Definition 22 (Function summaries). For a function f defined by ∆(f) =
((x1, . . . , xn), cf , yf ,Γf ), we call summary of f the quadruplet given by:(

(x1, . . . , xn),Analyse(cf )
(
IdRand(N)(Γf ,Γf )

)
, yf ,Γf

)
The second component of the summary of a function f is an abstract value

summarising f ’s behaviour by over-approximating the input-output relation between
its formal arguments and its formal return variable. Thus, this abstract value deals
with the variables that are local to the execution of f This abstract value is obtained
by analysing the body of f , starting with the identity relation. This means that we
make no assumption on the actual arguments that will be given to f . This has the
advantage that we can reuse the same summary in every calling context. The down-
side of this choice is that the analysis of a function body cannot take advantage of
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any contextual information about the arguments to the function. Starting with other
relations than the identity relation could possibly remedy this short-coming; this has
not been explored further.

To use a function summary at some call site, we instantiate the summary on the
actual arguments and output variable used at the call site. Our method to instantiate
summaries is based on an abstraction of relational composition, that sequentially chains
together two abstract values that represent binary relations.
Definition 23 (Abstract composition). Let Γ1, Γ2 and Γ3 be typing contexts. Let a1 ∈
R(D)(Γ1,Γ2) and a2 ∈ R(D)(Γ2,Γ3) be two abstract values. The abstract composition
a1 ;

R(D) a2 of the abstract values a1 and a2 is defined by:

a1 ;R(D) a2 = Remove
Γ′′
2

(
Add
Γ′
3

c1 ⊓D(Γ1∪Γ′′
2 ∪Γ′

3) Add
Γ1

c2

)
where c1 = Renamesecond ◦ prime−1 a1 and c2 = Renamesecond a2.

Note that some domains like Rand are parametrized by typing contexts and not
by sets of variables, since variables of different types are handled differently by the
abstract domain. Hence the Add and Remove operators are here parametrized by
typing contexts, and not by sets of variables. Additionally, the renaming functions
second and second ◦ prime−1 are extended to behave as identity on the variables that
are not in their definition domain but appear in a1 or a2.

Abstract composition chains the effects of a1 and a2 by introducing auxiliary names—
i.e., variables of the form y′′—for the states that are in the output of a1 and the input
of a2, before taking the intersection, and then removing the temporarily introduced
variables. The calls to Add are necessary name management steps, that ensure that
the abstract values deal with the same sets of variables. Abstract composition is a
sound approximation of relational composition, as stated by the following lemma:
Lemma 3 (Soundness of composition). Let a1 ∈ R(D)(Γ1,Γ2) and a2 ∈ R(D)(Γ2,Γ3)
be two abstract values. We have:

γR(D)(Γ1,Γ2)(a1); γ
R(D)(Γ2,Γ3)(a2) ⊆ γR(D)(Γ1,Γ3)(a1 ;R(D) a2)

Based on abstract composition, we express summary instantiation as follows:
Definition 24 (Summary instantiation). The instantiation of the function summary
Sf = ((x1, . . . , xn), af , yf ,Γf ) on the actual parameters (z1, . . . , zn), the actual return
variable y and the caller typing context Γ is defined as follows:

Inst(Sf , (z1, . . . , zn), y,Γ) = ins ;Rand(N) af ;Rand(N) outs

where ins = CondRand(N)(Γ,Γf )
(∧

i∈{1,...,n} zi = x′i

)
and outs = CondRand(N)(Γf ,Γ)(yf = y′)

Summary instantiation simply works by composing three abstract values, using
abstract composition. Instantiation first ties each actual parameter to its formal
parameter by pre-composing the abstract value af for f ’s body with the ins abstract
value, and then ties the formal output to the actual output by post-composing with

27



the outs value. The values ins and outs are simply expressed as mere conjunctions
of equalities. The first composition deals with the call of the function, whereas the
second composition handles the return.

During a function call y := f(z1, . . . , zn), the instantiation of f ’s summary deals
with which variables might have changed and how, but does not deal with the fact that
only the variable y may have changed: every other variable that is available before
the call remains the same after the call. Thus, the transfer function for function call
augments the instantiation of the function summary Sf with equalities for the unaltered
variables, before extending the so far gathered relation a with the effect of the call to f :

Analyse(y := f(z1, . . . , zn))(a) =

a ;Rand(N)

 Inst(Sf , (z1, . . . , zn), y,Γ)⊓Rand

lRand

x̸=y

CondRand(x = x′)


The transfer function for function calls is sound:
Lemma 4 (Soundness of function call analysis). For every function definition
∆(f) = ((x1, . . . , xn), cf , yf ,Γf ) in a program, and any function summary Sf =
((x1, . . . , xn), af , yf ,Γf ) such that S Jcf K ⊆ γRand(N)(Γf ,Γf )(af ), we have:

P Jy :=f(z1, . . . , zn)K(γRand(a)) ⊆ γRand(Analyse(y :=f(z1, . . . , zn))(a))

Proof. Let s0 be a store, and s2 be the store that results from the call instruction y :=
f(z1, . . . , zn) on the initial store s0. We have (s0, s2) ∈ P Jy :=f(z1, . . . , zn)K(γRand(a)).
Unfolding the definition of P J�K gives an intermediate store s1 such that (s0, s1) belongs
to γRand(a) and (s1, s2) belongs to S Jy :=f(z1, . . . , zn)K. The function call can be
decomposed as a series of reductions (y :=f(z1, . . . , zn), s1, π)→(cf ; return yf , s

′, (y, s1) :
π)→∗ (return yf , s

′′, (y, s1) : π)→ (skip, s2, π), where s′ is the store that is initialised at
the beginning of the execution of f ’s body, and s′′ is the store that is obtained at the end
of the execution f ’s body. Let ins and outs be the abstract values used in Definition 24.
By the definition of s′ in rule FunctionCall, we get (s1, s

′) ∈ γRand(N)(Γ,Γf )(ins).
Moreover, (s′, s′′) ∈ S Jcf K is obtained by the hypothesis on f ’s summary. Finally, we
prove (s′′, s2) ∈ γRand(N)(Γf ,Γ)(outs) by the definition of s2 in rule FunctionReturn:
s′′ and s2 indeed coincide on every variable other than the actual return variable.
We conclude using the soundness of abstract composition, abstract intersection and
abstract condition.

Lemma 4 ensures that the soundness result for the intra-procedural analysis
(Theorem 2) extends to the language with function calls that we have described in this
section.

6 Analysis For Arrays and Algebraic Types
In this section, we extend our abstract domain and analysis to support functional
arrays. Unlike arrays found in most programming languages, functional arrays cannot
be modified in-place. As such, the update operation creates a new array whose contents
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are the same as in the original array, except for the cell for which an update has been
requested.

Such arrays are used in SMT solvers that handle array theories, but are also
available in theorem provers such as Coq. Some formal developments, such as seL4 [30],
employ a model of functional arrays—they use functions with natural numbers as
a domain—to represent tables that contain thread descriptors in the state of their
operating system micro-kernel.

A number of approaches for analysing programs that manipulate arrays have been
proposed [12, 31–41]. We base our development on a proposal by Cousot, Cousot and
Logozzo [12], that abstracts arrays using segmentations, and that we refer to as CCL
in the rest of the article.

Overview of the CCL domain for arrays
In CCL, each array is abstracted by a segmentation. A segmentation groups the array
indices into several intervals. These intervals are disjoint, some of them may be empty,
and they form a partition of the array indices. The group of array slots that corresponds
to each one of these intervals of indices is called a segment. For each segment of the
array, a summary is provided, that is an abstract value that denotes the possible values
that the array may hold at the indices of the segment. For example, the segmentation

{0} ⊤ {i}? [0,+∞] {7} [−∞, 2] {|a|}?

denotes a set of arrays of integers, where three segments have been selected:
• The first segment denotes the indices that are greater or equal to 0 and that are

strictly less that the value of the variable i. The entries of the arrays at such
indices may have any value, as indicated by the ⊤ summary. The presence of the
? symbol tells that this segment might be empty.

• The second segment represents the indices that are greater or equal to the value
of i and that are strictly smaller than 7. The absence of a ? symbol indicates that
this segment cannot be empty. Moreover, the values that are stored at indices
between i and 7 must belong to the abstract value [0,+∞].

• The last segment deals with indices that span from 7 to the end of the array a.
The |a| expression denotes the length of the array stored in the variable a. This
segment might be empty, as mentioned by the ? symbol, and the values in this
segment must belong to [−∞, 2].

The segments are delimited by boundsets—{0}, {i}, {7} and {|a|}—that are non-empty
sets of expressions. Each boundset might contain more than one expression, and it
specifies that all the expressions a boundset contains must evaluate to the same value.
For example, the segmentation

{0} ⊤ {i; j + 1}? [0,+∞] {7} [−∞, 2] {|a|}?

contains all the information of the previous example, and adds the additional
information that the expressions i and j + 1 must be equal.

29



The least precise segmentation for an array stored in the variable a is {0} ⊤ {|a|}?.
It only defines one segment (from indices 0 included to |a|, the size of the array), that
may be empty, and the information for the values stored in this segment is ⊤.

A segmentation also introduces two special variables l and v, that might be used
inside segment summaries. The variable l refers to some index of the segment, and v
refers to the value that is stored at that index. For example, the segmentation

{0} l ≤ v < l + 3 {|a|}

describes a non-empty array where each value is greater than or equal to the index at
which it is stored, and is less than this index plus 3. The variables l and v are bound
by the segmentation, they are not free variables. Therefore, they can be arbitrarily
renamed using fresh variables.

Differences with CCL segmentations
In this article, we extend CCL segmentations in two directions. First, we allow the
abstract values for segment summaries to refer to other program variables, including
to parameters of a function. For example, if n is an integer variable, the segmentation
{0} v = n− l {|a|}? describes a set of (possibly empty) arrays of the form

[ n ; n− 1 ; n− 2 ; . . . ; n− (|a| − 1) ]

Second, we allow for arrays to contain values from algebraic types. Hence, we use
for segment summaries the abstract values of the domain that we introduced in section
§ 3 (structural lifting).

Additionally, we give a new definition for the pre-order between segmentations,
as we have found corner cases in the CCL definitions where the concretisation for
segmentations was not monotonic with respect to the pre-order.

Section outline
This section is organised as follows: First, we extend our programming language with
primitives for arrays and provide a motivating example (section § 6.1). Second, we give
an overview of the overall structure of our abstract domain (section § 6.3). Then, we
describe our segmentations (section § 6.4), and we focus on the differences between our
definitions and the ones of CCL (section § 6.5). In section § 6.7, we give the soundness
theorem of our abstract domain. Then, we give the result of our analysis on the
motivating example (section § 6.8). Finally, we summarize our approach and its current
limitations (section § 6.9).

6.1 Extension of the Language and Motivating Example
We extend the syntax of types and values with arrays. We allow for arrays to contain
algebraic types, but we do not handle, for now, arrays nested inside algebraic types
or nested arrays. In order to enforce this, we separate, in the definitions, algebraic
types τalg ∈ AlgTypes from array types τarr ∈ ArrTypes, and values of algebraic

30



types valg ∈ AlgValues from values of array types varr ∈ ArrValues. The definition of
algebraic types and values remains exactly the same as in Definition 1:

τalg ∈ AlgTypes ::= Int | {fi → τalgi

i∈I

} | [Ai → τalgi

i∈I

]

valg ∈ AlgValues ::= n | {fi = valgi

i∈I

} | A(valg)

Array types and values are defined as follows:

τarr ∈ ArrTypes ::= Array
(
τalg

)
varr ∈ ArrValues ::= [valg1 ; . . . ; valgk ]

Each variable has either an algebraic type or an array type, hence the types of the
language are Types = AlgTypes ∪ ArrTypes. The values are Values = AlgValues ∪
ArrValues. For example, if we take type status from Fig. 4, the array

[ Running {count = 5} ; Asleep {secs = 42; count = 7} ]

is an array of size two, and of type Array (status).
We add three new commands to the language of section § 2.2, that deal with

array creation, array access, and array updates, respectively. We also add a new case
of expressions, written |x|, that denotes the length of the array that is stored in a
variable x.

c ∈ Cmd ::= . . . | y := new_array(τalg, e1, e2)
| y := x[e] | y := x[e1 → e2]

e ∈ Exp ::= . . . | |x|
The creation of a new array x := new_array(τalg, e1, e2) initialises the variable x with
a new array. This construct takes as parameters the type τalg of the values contained
in the array, an expression e1 for the size of the array, and an expression e2 for the
initial values of all the array slots. The array access y := x[e] loads in the variable
y the contents of the array that is stored in x at the index e. The array update
y := x[e1 → e2] stores in the variable y a new array that differs from the array stored
in x at one index only: the new array contains at index e1 the result of the evaluation
of e2. The array length |x| refers to the length of the array stored inside variable x.

The restriction that the main array operations (creation, access, update) should be
assigned to a variable before further manipulation does not restrict the expressiveness
of the language, but simplifies the analysis.

Motivating example
Figure 8 shows an example of a program that manipulates arrays, and that is inspired by
the functional specification of the seL4 micro-kernel [30]. It involves thread descriptors—
named Thread Control Blocks, or TCBs for short—that represent information about
the threads that are managed by an operating system kernel. TCBs are records of
properties. To keep the example short, we only exhibit one property of TCBs—their
priorities—although TCBs may exhibit more.
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type unit = {} (∗ Record type with no fields ∗)

(∗ Thread descriptors (Thread Control Block) ∗)
type tcb =
{ prio : int; (∗ Priority ∗)
... (∗ Other fields of the TCB are elided ∗)

}

(∗ An array of TCBs. Represents a scheduler queue. ∗)
type queue = tcb[]

(∗ Options of TCBs. Serves as a return type for find_max_priority ∗)
type max_result = [ NoMax of unit | SomeMax of tcb ]

(∗ Returns the TCB with the hightest priority in the queue, if any. ∗)
def find_max_priority(queue q) : max_result = {
max_result res
unit case
int i
tcb challenger

i = 0
res = NoMax{}
while (i < |q|) do (∗ Iterate over the queue ∗)
challenger = q[i]
branch
case = res@NoMax (∗ First iteration ∗)
res = SomeMax challenger

or
assert(challenger.prio > res@SomeMax.prio) (∗ Higher priority found ∗)
res = SomeMax challenger

or
assert(res@SomeMax.prio >= challenger.prio) (∗ No change needed ∗)

end
i = i + 1

end
return res

}

Fig. 8: Program that finds a thread descriptor with highest priority in an array.

Our example consists of the find_max_priority function, that searches in an array
of TCBs one TCB whose priority is the highest. It returns an option type, such that
either NoMax{} is returned if the array is empty, or SomeMax d is returned, where d is a
TCB in the table with the highest priority.

For the find_max_priority function, our analysis computes the abstract summary of
Fig. 9. Compared to the summaries of section § 5.3, some new information is available,
that associates to array variables an array segmentation.
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Function summary for function find_max_priority(p) returning res’ :
( Constructor constraints : res’@NoMax
Numeric constraints : |q| = 0
Abstract array environment : [ q -> { 0 |q| } ]

)
Or
( Constructor constraints : res’@SomeMax
Numeric constraints : |q| > 0
Abstract array environment :
[ q -> { 0 } v.prio <= res’@SomeMax.prio { |q| } ]

)

Fig. 9: Abstract value for the function find_max_priority from Fig. 8.

This summary expresses two cases:
• Either the initial array is empty—it has size 0—and the result is NoMax{}, or
• the initial array is non-empty, and the priority of all its elements are less than or

equal to the priority of the result.
Although this abstract value expresses useful properties of the find_max_priority
function, it is not an exact abstraction of the behaviour of the function. Indeed, it does
not express the fact that the returned TCB actually belongs to the input array.

In the rest of the section, we explain how we build the Diorana domain, using some
of the same ingredients from the RAND domain, to compute input-output summaries
of functions that manipulate arrays and algebraic types.

6.2 Array Lengths as Variables
Now that there are arrays in our language, we want our abstract domains to be able
to capture information on array lengths. Array lengths are numbers. Hence, if x is an
array variable, we will introduce into our abstract domains a numeric variable |x|, to
represent the length of the array stored in x. We call these numeric variables array
length variables.

To be clear, the | � | notation is overloaded and can have three different meanings.
If t is an array value, then |t| is the length of array t. If x is an array variable, then |x|
can be either an expression of the language (that appears in conditions, for example),
or an array length variable, that will appear in the constraints of our abstract domains.

For any typing context Γ we write Arr(Γ) for the set of variables in Γ that have an
array type:

Arr(Γ) =
{
x|∃τalg ∈ AlgTypes,Γ(x) = Array(τalg)

}
We also write L(Γ) for the typing context obtained from Γ by replacing any array
variable with the corresponding array length variable:

L(Γ) = (Γ \Arr(Γ)) [ |x| 7→ Int ]x∈Arr(Γ)

Similarly, for any environment ρ that is well-typed in a typing context Γ, we write
L(ρ) for the environment obtained from ρ by replacing any array variable by the
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corresponding array length variable:

L(ρ) = (ρ \Arr(Γ)) [ |x| 7→ |ρ(x)| ]x∈Arr(Γ)

We use these notations to define new abstract domains that behave almost identically
to the Tan and S domains from section § 3.6.1 and section § 3.6.2, except in that they
are able to capture information on array lengths.
Definition 25. The TanL domain. For any numeric domain N and any typing context
Γ, the TanL domain is defined by

TanL(N)(Γ) = Tan(N)(L(Γ))

and its concretisation function is given by

γTanL(t) =
{
ρ | L(ρ) ∈ γTan(t)

}
All other operators and transfer functions of the TanL domain are defined as being
those of the Tan domain.
Definition 26. The SL domain. For any numeric domain N and any typing context
Γ, the SL domain is defined by

SL(N)(Γ) = S(N)(L(Γ))

and its concretisation function is given by

γSL(d) =
{
ρ | L(ρ) ∈ γS(d)

}
All other operators and transfer functions of the SL domain are defined as being those
of the S domain.

6.3 Structure of Our Abstract Domain For Arrays
Figure 10 summarizes the different components of the construction. Extending the
structural lifting allows us to define segmentations for abstract arrays whose contents
are values from algebraic types (section §6.4). Then, a domain associates a segmentation
to each array variable. We call this domain A(N). To also handle non-array variables,
we take a product between the TanL (N) domain from Definition 25 and the array
domain A(N). We call this product domain Tana (N) = TanL (N)×A(N) for Tuple for
Algebraic types, Numbers and Arrays. Then, we take a disjunctive completion of this
product domain, to handle incompatible cases for constructors, like we did for the Tan
domain. We call this disjunctive completion Dana (N), for Disjunction for Algebraic
types, Numbers and Arrays. Finally, we apply the relational lifting of section § 4.2 to
get a domain that expresses relations between two different program states (input
and output). We call this domain Diorana, for Domain for Input-Output Relations on
Algebraic types, Numbers and Arrays.

34



N (section § 3.1)

S (N)

Structural lifting (section § 3)

SL (N)

(Definition 26)

Seg (N)

(section § 6.4)

A(N)

(section § 6.3)

TanL (N) ×

Tan (N)

(Definition 25)

(section § 3.6.1)

Tana (N)

Dana (N)

Disjunctive completion (appendix §A.1.4)

Diorana (N)

Relational lifting (section § 4.2)

Fig. 10: The construction of the abstract domain for analyzing programs that manipu-
late both values from algebraic types, and arrays containing values from algebraic types.

6.4 Array Segmentations
We recall that for each array variable x, the numeric variable |x| represents the
length of the array contained in x (section § 6.2). For a typing context Γ, we call
V(Γ) the set of variables of numeric types and of array lengths variables. Formally,
V(Γ) = {x | Γ(x) = Int}∪{|x| | x ∈ Arr(Γ)}. We also call K the set of possible numeric
constants in the programming language. In particular, 0 ∈ K.
Definition 27 (Bound expressions and boundsets). We call bound expression any
element of the set E(Γ) = K∪{x+ k | x ∈ V(Γ) ∧ k ∈ K}. We call boundset any finite
set of bound expressions, i.e., an element of Pfin(E(Γ)).

In the examples that follow, we will write x instead of x+ 0, when x+ 0 ∈ E(Γ).
The bound expressions E(Γ) will be used as formal bounds, that delimit the array
segments in segmentations.

For any set of variables V , let Fresh(V ) = Vars \ V be the set of variables that
are fresh with respect to V . We write (zi)i∈{1,...,n} for the finite sequence of elements
z1, z2, . . . , zn. The definition of segmentations follows.
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Definition 28 (Segmentations). Let x be a variable with an array type in the typing
context Γ, i.e., Γ(x) = Array(τ) for some type τ . A segmentation s ∈ Seg(N)(Γ)(x) for
variable x is a quadruplet

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
where:

• l and v are distinct fresh variables, i.e., elements of Fresh(dom(Γ)) such that
l ̸= v, and

• each bi for i ∈ {0, . . . , n} is a boundset, and
• each di for i ∈ {1, . . . , n} belongs to SL (N) (Γ[l 7→ Int; v 7→ τ ]), and
• each mi for i ∈ {1, . . . , n} is a boolean.
In a segmentation

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
, l is a variable that refers to the

indices of the array inside segment summaries, whereas the variable v refers to the
values of the array inside segment summaries. Segmentations behave like binders for
the special variables l and v, in the same way a λ-abstraction would, in a λ-calculus.
Hence, these variables can be replaced by any other variables, as long as they are
sufficiently fresh, so that accidental captures are avoided.

Each bi for i ∈ {0, . . . , n} is a boundset that marks the segment limits, and each di
for i ∈ {1, . . . , n} is a segment summary, that denotes the set of values that a segment
can contain. Finally, each mi for i ∈ {1, . . . , n} is a boolean that indicates whether the
preceding segment is allowed to be empty.

In the examples that follow, we omit the special variables l and v, and we write
boolean markers as ? when they are equal to tt and omit them when they are equal to
ff. For example, we write

{0} (NPR : {0 ≤ l < i; v = l}) {i; 5} ⊤SL {|x|}?

for the segmentation (l, v, b0, (di, bi,mi)i∈{1,2}) where b0 = {0}, b1 = {i; 5}, b2 = {|x|},
d1 = (NPR : {0 ≤ l < i; v = l}), d2 = ⊤SL, m1 = ff and m2 = tt.

Each segment summary di is an abstract value from the SL domain of Definition 26.
The segment summaries of a segmentation for the array x can refer to any variable
of an algebraic type, any array length variable, as well as to the special variables l
and v, that represent the index and the value of the different array slots, respectively.
This is why we take segment summaries in SL (N) (Γ[l 7→ Int; v 7→ τ ]), that is the SL
built from numeric domain N, for typing context Γ[l 7→ Int; v 7→ τ ]. This is the typing
context obtained from Γ by adding variable l of type Int and variable v of type τ (the
type of the values inside the array).

In the rest of this article, we only consider well-formed segmentations, that are
defined as follows.
Definition 29 (Well-formed segmentations). Let s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
be

a segmentation for the variable x. We say that the segmentation s is well-formed if it
satisfies the following properties:

• 0 ∈ b0, and
• |x| ∈ bn, and
• ∀i ∈ {0, . . . , n} , bi ̸= ∅, and
• ∀i ∈ {0, . . . , n} ,∀j ∈ {0, . . . , n} , i ̸= j ⇒ bi ∩ bj = ∅.
The indices of an array always range from 0 to the length of the array minus one.

This is why we require that the first boundset of a well-formed segmentation contains
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0 and the last boundset contains the length of the array (the segments include their
left boundset and exclude their right boundset).

Boundsets are required to be non-empty. Indeed, boundsets should evaluate to
array indices, as they delimit the range of array indices of each segment, and an empty
boundset cannot be evaluated. To prevent an operation on segmentations from creating
an empty boundset, we may need to merge the segment summaries on each side of a
boundset using abstract union. We will see later in section § 6.5.1, that the unification
of segmentations is such an operation 1.

The concretisation of segmentations (Definition 32) will enforce that all the expres-
sions of a given boundset must evaluate to the same concrete value. Therefore, we
require that distinct boundsets do not intersect, in order to avoid having boundsets
that are artificially split.

The constraint that all the expressions of a boundset must evaluate to the same
value is formalised as follows, with the definition of the concretisation of boundsets.
Definition 30 (Concretisation for boundsets). The concretisation of a boundset b is
the set of environments defined by γB(b) = {ρ | ∀e1 ∈ b,∀e2 ∈ b, Je1K

exp
ρ = Je2K

exp
ρ ≠ ∅}.

For a boundset b and an environment ρ ∈ γB(b) that belongs to the concretisation
of b, all the expressions in the boundset, if any, must evaluate to the same value. Hence,
it makes sense to talk about the evaluation of a boundset b, as the evaluation of any
bound expression contained in b.
Definition 31 (Evaluation of a boundset). For any non-empty boundset b and any
store ρ ∈ γB(b), we call evaluation of boundset b in store ρ, written JbKexpρ , the value v
such that JeKexpρ = {v}, for e ∈ b.

Definition 30 guarantees both that JeKexpρ is a singleton for any e ∈ b, and that any
choice of e in b gives the same result.

The definition of the concretisation of abstract segmentation follows.
Definition 32 (Concretisation for segmentations). For a segmentation s =(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
, its concretisation γSeg(s) is the set of pairs composed of

a store ρ and an array value t, that satisfy the following conditions:
• Equalities in each boundset: ∀i ∈ {0, . . . , n} , ρ ∈ γB(bi)
• Inequalities between boundsets: ∀i ∈ {1, . . . , n} , Jbi−1K

exp
ρ ≤ JbiK

exp
ρ

• Strict inequalities for non-empty segments:

∀i ∈ {1, . . . , n} , (¬mi) ⇒ Jbi−1K
exp
ρ < JbiK

exp
ρ

• Segment summaries:

∀i ∈ {1, . . . , n} ,∀j, Jbi−1K
exp
ρ ≤ j < JbiK

exp
ρ ⇒ ρ[l 7→ j; v 7→ t[j]] ∈ γSL(di)

• Array size: |t| = JbnKexpρ .
The five conditions of Definition 32 guarantee that the array t corresponds to

the information described by the segmentation. But the segmentation also gives
information on store ρ, through the “Equalities in each boundset” and “Segment

1Allowing empty boundsets could have an interest in itself, but we do not consider that option in the
present framework
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summaries” conditions. This is why the concretisation is a set of pairs composed of a
store and of an array, instead of only a set of arrays. For example, the segmentation
{0} ⊤SL {i; 5} ⊤SL {|x|}? tells us that the value stored in variable i must be 5, and
that the length of the array stored in variable x must be greater than or equal to 5.

The “Equalities in each boundset” condition guarantees that for each boundset, all
the bound expressions concretise to the same integer value. Without this condition,
the other four conditions of the definition would not be well-defined, as they refer to
the evaluation JbiK

exp
ρ of the different boundsets bi.

The “Inequalities between boundsets” guarantees that the boundsets are in increasing
order, with respect to their evaluation. Since we only consider well-formed segmentations
(Definition 29), we know that 0 ∈ b0, hence the first boundset evaluates to zero
(Jb0K

exp
ρ = 0).

The last condition “Array size” guarantees that the last boundset evaluates to the
size of the array t (JbnKexpρ = |t|).

For well formed segmentations, the conditions “Equalities in each boundset”,
“Inequalities between boundsets” and “Array size” guarantee that the boundsets describe
a partition into intervals of the indices of array t. These intervals of indices might be
empty.

The “Strict inequalities for non-empty segments” condition enforces that, whenever
the emptiness marker of a segment is false, then the corresponding interval of array
indices is not empty, i.e., the strict inequality Jbi−1K

exp
ρ < JbiK

exp
ρ must be satisfied.

The main difference between the segmentations defined here and the ones defined
by CCL [12] is that the numeric abstract values used to summarize each segment
can refer to the other variables of the program, in addition to referring to the index
and value of the array slots. For this purpose, the “Segment summaries” condition
guarantees that the information given by an array summary di expresses the relations
that hold between any array index j, the value stored at that index in array t, and all
other variables in store ρ.

6.5 Unification and Pre-Order for Segmentations
The goal of this section § 6.5 is to present the differences between our pre-order for
segmentations, and the one from CCL [12]. We first give an intuitive explanation of an
operator called unification, that is used in CCL’s definition of segmentation pre-order.
Then, we present some corner cases on which the concretisation of CCL’s segmentation
domain is not monotonic with respect to their definition of segmentation pre-order
(section §6.5.2), and we present our definition of segmentation pre-order (section §6.5.3).

6.5.1 Unification of Segmentations

In [12], intersection, union, widening and pre-order on segmentations are defined in
two steps: first, unification is performed to obtain two segmentations that might be
less precise, but that share the same boundsets to delimit segments; then, intersection,
union, widening or pre-order test are performed segment per segment.
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We say that two segmentations are unified when they share the same boundsets. In
other words, two unified segmentations may only differ by their segment summaries
and their emptiness markers.
Definition 33 (Unified segmentations). Let s1 =

(
l, v, b10, (d

1
i , b

1
i ,m

1
i )i∈{1,...,n}

)
and

s2 =
(
l, v, b20, (d

2
i , b

2
i ,m

2
i )i∈{1,...,p}

)
be two segmentations. s1 and s2 are called unified

iff the two following conditions are satisfied:
• n = p, and
• ∀i ∈ {0, . . . , n} , b1i = b2i .
In order to transform two arbitrary segmentations into two unified segmentations,

two basic transformations on segmentations can be applied:
Removal of bound expressions This amounts to forgetting equalities between expres-

sions. If the removal of bound expressions might create an empty boundset, then
the two enclosing summaries are joined, so that no empty boundset is created.

Split of a boundset into two parts Again, this amounts to forgetting equalities between
expressions. It has the effect of creating a new segment with an emptiness marker
set to tt, and with a summary that has to be chosen, depending on what operation—
union, intersection, widening, or pre-order—is to be performed.

For example, in order to unify segmentation s1 = {0; a; b} d1 {|x|} with segmentation
s2 = {0; a} d2 {|x|}, we can remove the bound expression b from s1. This yields
s′1 = {0; a} d1 {|x|}, which is indeed unified with s2. If instead we had started with
s1 = {0; a} d11 {b} d12 {|x|}, then removing bound expression b from s1 remains possible,
but it implies merging together, with abstract union, the segment summaries d11 and
d12. We get s′1 = {0; a} d11 ⊔ d12 {|x|}, which is unified with s2.

Removing bound expressions is sufficient to unify two segmentations for the same
array variable. Indeed, it is always possible to remove all bound expressions except the
ones for 0 and the array length, that are necessarily common to both segmentations.
When doing so, the unified segmentations contain a single segment. However, splitting
a boundset and creating a possibly empty segment, often allows to obtain more precise
unifications. For example, let us consider the two segmentations s1 = {0; a} d1 {|x|}
and s2 = {0} d21 {a} d22{|x|}. Instead of removing the bound expression a from both
segmentations, we can split the boundset {0; a} of segmentation s1 into a possibly
empty segment {0} . . . {a}?, where the choice of the abstract value that serves as a
summary for this new segment depends on what operation the unification is performed
for. For example, if the goal is to compute the abstract union of s1 and s2, then their
unification can choose ⊥—i.e., the neutral element of abstract union—as summaries for
the new segments that might be created by a split. We would get, for this unification,
s′1 = {0} ⊥ {a}? d1{|x|}, which is unified with s2.

We refer the reader to section 11.4 of [12] for a detailed description of the CCL
algorithm for unification, that uses bound expression removal and boundset splitting.
Their algorithm works by doing a parallel traversal of the two segmentations. Any
bound expression that is only present in one of the two segmentations is removed. As
long as common bound expressions are found at the current traversal position, the
algorithm splits the boundsets to keep the bound expressions that are present in the
two segmentations, and then continues the traversal. However, if at some point the
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traversal arrives at a position where there are no bound expressions in common, it
backtracks in order to remove bound expressions that resulted from previous splits.

Removing bound expressions and splitting boundsets yields segmentations that are
less precise than the initial ones (Lemmas 8 and 9 in appendix §A). For this reason, it
is sound to perform a unification before union, intersection and widening (as done both
by CCL and by us). For example, when taking the abstract union of two segmentations
s1 and s2, if we call s′1 and s′2 the result of unifying them, and if we write s′1 ⊔seg s′2

for the segment-wise union after unification, then we have

γSeg(s1) ⊆ γSeg(s′1) γSeg(s2) ⊆ γSeg(s′2) γSeg(s′1)∪γSeg(s′2) ⊆ γSeg(s′1⊔segs′2)

which allows to conclude γSeg(s1)∪ γSeg(s2) ⊆ γSeg(s1 ⊔Seg s2), which is the soundness
lemma for abstract union.

However, using unification in the definition of the pre-order, as it is done in CCL,
makes concretisation non-monotonic on some corner cases. Indeed, since unification
might replace the right-hand side value with a less precise one, pre-order is no longer
an abstraction of inclusion. We show an example of this in section § 6.5.2 below.

6.5.2 Corner Cases for the Monotonicity of Segmentation
Concretisation in CCL

In CCL, the concretisation for segmentations is not monotonic with respect to
the pre-order on segmentations. The following example illustrates this issue. Let
s1 be the segmentation {0}⊤{a}⊤{b}⊤{c}⊤{|t|} and s2 be the segmentation
{0}⊤{c}⊤{b}⊤{a}⊤{|t|}. In CCL, segmentation pre-order is tested by first unifying
segmentations, then testing pre-order segment-wise. The unification of segmentations
s1 and s2 yields {0}⊤{b}⊤{|t|} on both sides. Hence, with CCL definitions, we have
s1 ⊑Seg s2. We will show, however, that γSeg(s1) ⊈ γSeg(s2). Let t0 = [0; 0; 0; 0] be
the array of size 4 filled with zeros, and let ρ0 = [a 7→ 1; b 7→ 2; c 7→ 3; t 7→ t0] be
an environment. We have (ρ0, t0) ∈ γSeg(s1). However, (ρ0, t0) /∈ γSeg(s2), because
otherwise, we would have ρ0(c) < ρ0(a), i.e., 3 < 1. Thus, γSeg(s1) ⊈ γSeg(s2), which
proves that the segmentation concretisation from CCL is not monotonic with respect
to the segmentation pre-order of CCL.

We believe there are at least two factors thanks to which this non-monotony of
concretisation does not affect soundness in CCL:

• The segmentation domain is part of a product domain that includes a numeric
domain. During pre-order testing, the numeric bounds that delimit segments need
also to be correctly ordered according to the information captured by the numeric
domain. This prevents the counter-example shown above. Indeed the product
domain would only state s1 ⊑ s2 if we also have a = b = c, which excludes store
ρ0 from the concretisation.

• Given the way that operators like widening are defined, it is never the case that
an argument to the widening and the corresponding result belong to the corner
cases that make concretisation non-monotonic. More generally, these corner cases
do not show up in places where the monotony of concretisation is needed, thanks
to the way the operators are defined.
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However, it is a generally expected property for abstract domains that the con-
cretisation be monotonic with respect to the pre-order. Hence we propose a different
definition for segmentation pre-order: Definition 34 below. With this definition, segmen-
tation concretisation is monotonic with respect to segmentation pre-order, as proved
by Lemma 6 below.

6.5.3 Our Definition for Segmentation Inclusion

When we define operations that involve two segmentations, we always assume, without
loss of generality, that they have the same index and value variables. It is indeed always
possible to rename those variables with fresh ones, so that the two segmentations use
the same index and value variables.

To define the inclusion test between two segmentations s1 and s2, we will avoid
computing their unification. Testing inclusion between s1 and s2 is not straightforward,
since the two segmentations may have different numbers of segments. For this reason,
in our definition (Definition 34), we introduce a map ϕ between the indices of the
boundsets of s2, and the indices of the boundsets of s1, that keeps track of which
boundsets and segments of s1 correspond to the boundsets and segments of s2. The
function ϕ therefore identifies how the segments of the two segmentations can be
aligned with each other.
Definition 34 (Segmentation inclusion). Let s1 =

(
l, v, b10, (d

1
i , b

1
i ,m

1
i )i∈{1,...,n}

)
and

s2 =
(
l, v, b20, (d

2
i , b

2
i ,m

2
i )i∈{1,...,p}

)
be two segmentations for the same array variable,

with the same index and value variables. We say that s1 is included in s2, written
s1 ⊑Seg s2, if and only if there exists a non-decreasing function ϕ : {0, . . . , p} →
{0, . . . , n} such that the following conditions are satisfied:

• First and last indices: ϕ(0) = 0 ∧ ϕ(p) = n
• Boundset inclusion: ∀i ∈ {0, . . . , p} , b2i ⊆ b1ϕ(i)
• Segment summaries: ∀i ∈ {1, . . . , p} ,∀j, ϕ(i− 1) < j ≤ ϕ(i),⇒ d1j ⊑SL d2i

• Emptiness markers: ∀i ∈ {1, . . . , p} ,
(∧ϕ(i)

j=ϕ(i−1)+1m
1
j

)
⇒ m2

i

The smaller a boundset, the less equality constraints it implies on its concretisation.
This is why, if s2 is less precise than s1 (that is s1 ⊑Seg s2), then the boundsets of s2
must be smaller than their s1 counterpart. This is stated by the “Boundset inclusion”
condition.

The “Segment summaries” condition enforces that the aligned segment summaries
must be related by the inclusion relation of the abstract domain used for array cells.
Several summaries on the left-hand side might correspond to the summary d2i at index
i on the right-hand side. Since d2i is delimited by the boundsets b2i−1 and b2i , the
corresponding summaries on the left-hand side are delimited by the boundsets b1ϕ(i−1)

and b1ϕ(i). Therefore, the summaries on the left-hand side that are aligned with d2i are
the d1j for ϕ(i− 1) + 1 ≤ j ≤ ϕ(i).

The “Emptiness markers” condition is similar and considers the markers for the
same segments as for the “Segment summaries” condition. It states that if all the
segments on the left-hand side might be empty, then the aligned segment on the
right-hand side might be empty too.
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For example, let us define two segmentations s1 and s2 as follows:

s1 = {0} (v ≤ 0) {3; y}
(
3 ≤ l < 5
v = 2× l

)
{5}

(
5 ≤ l < 7
v = 3× l

)
{7} (v > 14) {|x|}?

s2 = {0} (v ≤ 0) {3} (v = 0) {y}? (v ≥ 0) {7}? (v > 14) {|x|}?

We have s1 ⊑Seg s2 because function ϕ = [0 7→ 0; 1 7→ 1; 2 7→ 1; 3 7→ 3; 4 7→ 4] is
non-decreasing and satisfies all the conditions of Definition 34. The function ϕ maps
both 1 and 2 to 1. This reflects the fact that s1 assumes one more equality than s2
on bound expressions: the equality y = 3. The “Emptiness markers” condition verifies
that this additional equality is allowed by s2. The fact that 2 is not in the range of ϕ
reflects the fact that multiple segments in s1—namely, segments 2 and 3—correspond
to a single segment in s2—namely, segment 3.

Intuitively, there are multiple reasons why s1 is more precise than s2:
• The segmentation s1 states that y and 3 must be equal, because y and 3 belong

to the same boundset. The segmentation s2, however, only requires that 3 ≤ y,
because 3 and y are in two boundsets that delimit a segment, that might be empty.

• For the indices between y and 7, the segmentation s2 only states that the values in
the array are non-negative, whereas segmentation s1 states more precise conditions.
Segmentation s1, indeed, states that between indices y and 5 the values are equal
to twice their index, and that the values that lie between indices 5 and 7 are equal
to three times their index.

Lemma 5. The segmentation inclusion relation ⊑Seg is a pre-order on segmentations.

Proof sketch. For the proof of reflexivity, it suffices to observe that the identity function
satisfies all the conditions of Definition 34. The proof of transitivity is based on the
fact that if two functions ϕ1 and ϕ2 satisfy the properties of Definition 34, so does
their composition ϕ2 ◦ ϕ1. The detailed proof is available in appendix §A.1.1.

The ⊑Seg pre-order is sound, in the sense that the concretisation for segmentations
is monotonic with respect to this pre-order.
Lemma 6. If s1 ⊑Seg s2, then γSeg(s1) ⊆ γSeg(s2).

Proof. We write s1 =
(
l, v, b10, (d

1
j , b

1
j ,m

1
j )j∈{1,...,n}

)
for the different components of

s1 and s2 =
(
l, v, b20, (d

2
i , b

2
i ,m

2
i )i∈{1,...,p}

)
for the different components of s2. Let

ϕ : {0, . . . , p} → {0, . . . , n} be the function given by the fact that s1 ⊑Seg s2.
Let (ρ, t) ∈ γSeg(s1). Given Definition 32, there are five conditions that we need to

prove to show that (ρ, t) ∈ γSeg(s2).

Condition 1 : Equalities in each boundset.
We need to prove that for any index i ∈ {0, . . . , n} and any two bound expressions
e1 ∈ b2i and e2 ∈ b2i , we have Je1K

exp
ρ = Je2K

exp
ρ . Let i ∈ {0, . . . , n}, e1 ∈ b2i and e2 ∈ b2i .

By the “boundset inclusion” property that stems from s1 ⊑Seg s2 (Definition 34),
we know that b2i ⊆ b1ϕ(i). Hence, using the “equalities in each boundset” property of
(ρ, t) ∈ γSeg(s1) (Definition 32), we have Je1K

exp
ρ = Je2K

exp
ρ , which is what we wanted.
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Condition 2: Inequalities between boundsets.
Here, we want to prove that for any index i ∈ {1, . . . , n}, we have

q
b2i−1

yexp

ρ
≤

q
b2i

yexp

ρ
.

For that, we will take two expressions e1 ∈ b2i−1 and e2 ∈ b2i and prove that Je1K
exp
ρ ≤

Je2K
exp
ρ . Let i ∈ {1, . . . , n}, e1 ∈ b2i−1 and e2 ∈ b2i . By the “boundset inclusion” property

of s1 ⊑Seg s2, we have b2i−1 ⊆ b1ϕ(i−1) and b2i ⊆ b1ϕ(i). Hence e1 ∈ b1ϕ(i−1) and e2 ∈ b1ϕ(i).
We recall that the function ϕ is non-decreasing, therefore ϕ(i − 1) ≤ ϕ(i). By using
the “inequalities between boundsets” condition of (ρ, t) ∈ γSeg(s1) for all the indices
between ϕ(i− 1) + 1 and ϕ(i), we have

r
b1ϕ(i−1)

zexp

ρ
≤

r
b1ϕ(i−1)+1

zexp

ρ
≤ . . . ≤

r
b1ϕ(i)

zexp

ρ

and hence
r
b1ϕ(i−1)

zexp

ρ
≤

r
b1ϕ(i)

zexp

ρ
. Since e1 ∈ b1ϕ(i−1) and e1 ∈ b2i−1, we have

r
b1ϕ(i−1)

zexp

ρ
= Je1K

exp
ρ =

q
b2i−1

yexp

ρ
. Similarly,

r
b1ϕ(i)

zexp

ρ
= Je2K

exp
ρ =

q
b2i

yexp

ρ
. This

allows to deduce that
q
b2i−1

yexp

ρ
≤

q
b2i

yexp

ρ
, which is what we wanted to prove.

Condition 3: Strict inequalities for non-empty segments.
Now, we need to prove that for any index i ∈ {1, . . . , n} such that the boolean m2

i

is false, we have
q
b2i−1

yexp

ρ
<

q
b2i

yexp

ρ
. Let i ∈ {1, . . . , n}. For the same reasons than

in the previous condition, we have
q
b2i−1

yexp

ρ
=

r
b1ϕ(i−1)

zexp

ρ
and

q
b2i

yexp

ρ
=

r
b1ϕ(i)

zexp

ρ
.

From the “emptiness markers” condition of s1 ⊑Seg s2 we know that the implication(∧ϕ(i)
j=ϕ(i−1)+1m

1
j

)
⇒ m2

i holds. The right-hand side of the implication being false, we
know that the left-hand side must be false as well. A conjunction of booleans is only
false if it is not empty and one of the booleans is false. Hence, ϕ(i − 1) ̸= ϕ(i) and
∃j, ϕ(i− 1) < j ≤ ϕ(i) ∧ ¬m1

j . Using the “strict inequalities for non-empty segments”
condition of (ρ, t) ∈ γSeg(s1), we deduce that

q
b1j−1

yexp

ρ
<

q
b1j

yexp

ρ
. Combining this

with the “inequalities between boundsets” condition of (ρ, t) ∈ γSeg(s1), for all the
indices between ϕ(i− 1) + 1 and ϕ(i), we have

r
b1ϕ(i−1)

zexp

ρ
≤ . . . ≤

q
b1j−1

yexp

ρ
<

q
b1j

yexp

ρ
≤ . . . ≤

r
b1ϕ(i)

zexp

ρ

Therefore,
r
b1ϕ(i−1)

zexp

ρ
<

r
b1ϕ(i)

zexp

ρ
. We recall that

q
b2i−1

yexp

ρ
=

r
b1ϕ(i−1)

zexp

ρ
and

q
b2i

yexp

ρ
=

r
b1ϕ(i)

zexp

ρ
. Hence, we have proven

q
b2i−1

yexp

ρ
<

q
b2i

yexp

ρ
; which is what we

needed to prove.

Condition 4: Segment summaries.
We want to prove that for any index i ∈ {1, . . . , n} of the the segmentation s2, and for
any index k of array t such that

q
b2i−1

yexp

ρ
≤ k <

q
b2i

yexp

ρ
, we have ρ[l 7→ k][v 7→ t[k]] ∈
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γSL(d2i ). Let i ∈ {1, . . . , n} and k be an index such that
q
b2i−1

yexp

ρ
≤ k <

q
b2i

yexp

ρ
(if no

such index exists, what we want to prove is vacuously true). Like in conditions 3 and 4,
the “boundset inclusion” condition of s1 ⊑Seg s2 allows us to deduce that

q
b2i−1

yexp

ρ
=

r
b1ϕ(i−1)

zexp

ρ
and

q
b2i

yexp

ρ
=

r
b1ϕ(i)

zexp

ρ
. Hence,

r
b1ϕ(i−1)

zexp

ρ
≤ k <

r
b1ϕ(i)

zexp

ρ
. Let’s

consider the sequence of integer intervals({q
b1j−1

yexp

ρ
, . . . ,

q
b1j

yexp

ρ
− 1
})

ϕ(i−1)<j≤ϕ(i)

These integer intervals are contiguous, their left-most bound is
r
b1ϕ(i−1)+1−1

zexp

ρ
=

r
b1ϕ(i−1)

zexp

ρ
, and their right-most bound is

r
b1ϕ(i)

zexp

ρ
− 1, hence they form a partition

of the integer interval {r
b1ϕ(i−1)

zexp

ρ
, . . . ,

r
b1ϕ(i)

zexp

ρ
− 1

}
to which k belongs. Hence, there exists a j such that ϕ(i − 1) < j ≤ ϕ(i) and
k ∈

{q
b1j−1

yexp

ρ
, . . . ,

q
b1j

yexp

ρ
− 1
}

. Using the “segment summaries” condition of (ρ, t) ∈
γSeg(s1) for index j, we have ρ[l 7→ k][v 7→ t[k]] ∈ γSL(d1j). Then, using the “segment
summaries”condition of s1 ⊑Seg s2, we know that d1j ⊑SL d2i . Hence, using the monotony
of γSL with respect to ⊑SL, we can deduce ρ[l 7→ k][v 7→ t[k]] ∈ γSL(d2i ), which is what
we wanted to prove.

Condition 5: Array size.
Here, the goal is to prove that

q
b2p

yexp

ρ
= |t|. Since ϕ(p) = n, the “boundset inclusion”

condition of s1 ⊑Seg s2 gives us that b2p ⊆ b1n and hence
q
b2p

yexp

ρ
=

q
b1n

yexp

ρ
. Using the

“array size” condition of (ρ, t) ∈ γSeg(s1), we have
q
b1n

yexp

ρ
= |t|. Hence

q
b2p

yexp

ρ
= |t|,

which is what we wanted.

Conclusion
Since these five conditions are satisfied, we have proved that (ρ, t) ∈ γSeg(s2),
for any (ρ, t) in γSeg(s1). Thus, we have proved that γSeg(s1) ⊑Seg γSeg(s2), for
any segmentations s1 and s2. Therefore, we have proved that s1 ⊑Seg s2 implies
γSeg(s1) ⊑Seg γSeg(s2). This concludes the proof of monotonicity of γSeg.

6.6 Comparison With the CCL Domain For Arrays
We have explained how our definition of segmentation pre-order differs from the version
in CCL. As we have already stated, our domain for array differs in two more aspects.
First, we allow segment summaries to refer to any other program variables—as opposed
to only the special l and v variables for index and cell value in CCL. Then, we handle
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arrays that can contain values of algebraic data types—as opposed to scalar values
only in CCL.

In this section, we discuss the main three ways in which these differences impact
our definitions:

• First, we discuss in more details the differences in our definitions of segmentations
and segmentation concretisation, compared with CCL.

• Then, we describe the three types of assignments that we need to distinguish—
whereas CCL distinguish only two types of assignments.

• Finally, we illustrate how we transfer information between segment summaries
and the TanL component of the Tana product domain, by looking at the transfer
functions for array creation, and array access at non-bound expressions.

All the aspects of abstract domain operators and transfer functions that we do not
mention in this section—such as the transfer function for array update—are similar to
CCL’s. The operators are described in details in appendix §A.

Differences in Segmentations and Segmentation Concretisation
In CCL, the segment summaries of segmentations can only talk about the special
variables l and v for array index and array value. In our definition (Definition 28),
segment summaries can talk about any variable of the program—except the one
containing the array that is summarized by the segmentation—in addition to the same
special variables l and v.

More precisely, in the definition of concretisation (Definition 28), the difference lies
in the “Segment summaries” condition. Let t be an array, j an index of t and di a
segment summary for some segment that contains the index j. The part that deals
with the segment summary di in the CCL concretisation enforces that the pair (j, t[j])
belongs to the concretisation of di. Our definition of concretisation, however, constrains
the whole store ρ, by checking that the extended store ρ[l 7→ j; v 7→ t[j]] belongs to the
concretisation of di. We consider the store—instead of just the pair (j, t[j])—precisely
because di might impose some constraints on other program variables, that are recorded
in the store. We also allow the index l and the value at this index v to be constrained
by di—and possibly related to other program variables—by adding l and v to the store.

Different Types of Assignments
Two different kinds of assignments are described in CCL: array updates, and scalar
updates. We handle these two kinds of assignments similarly as CCL do. Because
we also handle algebraic values, we need to support another kind of assignment, for
variables that are neither scalar nor arrays. We briefly review how to handle the
different kinds of assignments.

Assignment to a numeric variable. Like in CCL, the update of a numeric variable
y := e may have two sorts of consequences:

• The assignment might be propagated inside the segment summaries of arrays.
• The boundsets of segmentations may change. Indeed, the variable y can occur

inside bound expressions. Hence these bound expressions need to be either updated
or removed to remain valid after the assignment. If the assignment is of the form
y := y + k where k ∈ K is a constant, then the bound expressions where y occurs
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are updated, by replacing y with y− k. Otherwise, the bound expressions where y
occurs are removed. Additionally, the variable y might also be added (because of
its new value) to boundsets. Indeed, if the expression e in the assignment y := e
is a bound expression that occurs in a boundset, then variable y can be added to
that boundset, so as to record that y = e.

Assignment to an array variable. In CCL, when updating an array variable, the only
segmentation that changes is the one for that variable, and the other segmentations
remain unaffected. In our analysis this is no longer true. Array lengths may appear in
the boundsets and segment summaries of other segmentations. Hence assignment to
an array variable x behaves in part as an assignment to the array length variable |x|
and can introduce changes in every segmentation.

Other assignments. When updating a variable that has neither a numeric nor an array
type, then the segment summaries are updated, but the boundsets remain unchanged.
The boundsets cannot be affected by the variable update, since the expressions in a
boundset necessarily have a scalar type and are not extended variables.

Conversion: Transfer Function for Array Creation
When converting an element of the TanL domain into a segment summary, we take
three steps:

• We add the special variables for array index and array value
• We add information on those special variables, if we have any
• We embed this abstract value into the disjunctive completion of the structural

lifting, by creating a singleton out of it
This can be seen, for example, in the transfer function for array creation:
Definition 35 (Transfer Function for Array Creation [Simplified Version]). For any
algebraic type τalg ∈ AlgTypes, for any variable y of type Array(τalg), for any numeric
expression e1, any expression e2 of type τalg and any abstract value (t, a) ∈ Tana, the
transfer function for array creation is defined by

AssignTana
(
y := new_array(τalg, e1, e2)

)
(t, a) =(

CondTanL(e1 ≥ 0 ∧ |y| = e1)(t), AssignA(|y| = e1)(a) [y 7→ {0} d {|y|}? ]
)

where d =
{
CondTanL(0 ≤ l < e1 ∧ v = e2)

(
AddTanL{l,v} (t)

)}
This is a simplified version of the definition. The complete version can be found

in Definition 54 in appendix §A. The operation AssignA(|y| = e1)(a), that updates
all the boundsets in which |y| might appear, is an instance of a non-array assignment
defined in appendix §A.2.2. Indeed, the array length variable |y| is a numeric variable
and e1 is a numeric expression.

In this transfer function we see in the array component of the result, that variable
y is associated to the segmentation {0} d {|y|}?, where the segment summary d used
to summarise all the array slots of y, is a singleton, that contains the information that
the array indices are non-negative (given by condition 0 ≥ l) and also abstracts the
fact that the array slots contain e2 (given by condition v = e2). The abstraction that
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the array slots contain e2 may not be an exact one, depending on expression e2 and on
the underlying numeric domain N used to build TanL. This definition also takes into
account the fact that if the instruction succeeds, then the expression e1 given as the
size of the new array is non-negative. Which is why component t of the abstract value
is enriched with condition e1 ≥ 0 in the result.

The complete definition queries the abstract value for previous knowledge on e1,
and distinguishes four cases as a result:

• The case where e1 is known to be negative and the result is ⊥Tana, since any code
after this is unreachable.

• The case where e1 is known to be non-positive, in which case the new array is
known to have size 0.

• The case where e1 is known to be positive, in which case the emptiness marker of
the segmentation is false, as we know for certain the array is not empty.

• All the other cases, where we have no particular prior knowledge on e1, and the
result is the one described in Definition 35.

Conversion: Transfer Function for Array Access at Non-Bound Expressions
When converting a segmentation summary back into an element of the TanL domain,
two steps need to be taken:

• Abstract union is used to turn an element of the disjunctive completion into a
single element of the TanL domain

• The special variables for array index and array value are removed
This can be seen, for example, in the transfer function for array access at a non-bound
expression:
Definition 36 (Transfer function for an array access at a non-bound expression). For
any abstract value (t, a) ∈ Tana and any array access instruction y := x[e] where e is
not a bound expression, the abstraction for array access is given by

AssignTana(y := x[e])(t, a) = (t′, a′)

where a′ = AssignA(y := x[e])(a)

and t′ = RemTanL
{l,v}

(⊔TanL

t′′∈d

t′′

)
and d =

⊔SL

i∈I

AssignSL(y := v)
(
CondSL(l = e ∧ 0 ≤ e)(di)

)
and I =

{
i ∈ {1, . . . , n} | ∃e1 ∈ bi−1,∃e2 ∈ bi,CanSat

TanL(t, e1 ≤ e < e2)
}

and
(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
= a(x)

We will explain the different lines of this definition from bottom to top. When
performing the assignment y := x[e], the variable y receives the value that is stored
in array x, at the array index that expression e evaluates to. Hence, to know any
information on the new value of variable y, we look at what information we had for
the array stored in variable x. In other words, we look at what segmentation was
stored for variable x inside the array component a of the abstract value (t, a). Let(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
be this segmentation a(x), as stated by the last line of

the definition. In this segmentation, the segments that might talk about array index e
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are the segments i such that e might be delimited by boundsets bi−1 and bi. In other
words, the segments i such that there exists two expressions, e1 ∈ bi−1 and e2 ∈ bi
such that, given the knowledge we have so far in abstract value t, it is possible that
e1 ≤ e < e2. The set of these segment indices is called I, as stated in the second-to-last
line of the definition. We then use this set I to extract from the segment summaries
the information we want: the result of assigning to variable y the content of the array —
as represented by the special variable v — when the array index is e, as represented by
the condition l = e. Abstract union is used to merge the result for the different segment
summaries that might be involved, yielding abstract value d. Then, the conversion step
takes place: d is an element of the structural lifting. We take the abstract union of its
disjuncts to obtain a single element of the TanL domain. Then we remove the special
variables l and v, and we get t′, that we use as new TanL component in the Tana
domain. As explained earlier at page 45, if y is a numeric variable then the boundsets
of all the segmentations need to be updated, and if y has a product type or a sum
type, then the segment summaries of segmentations are updated. This is done by the
AssignA operator.

6.7 Soundness Theorem For the Array Domain
We now state the main soundness theorem for our abstract domain for arrays, and give
a sketch of its proof.
Theorem 7 (Soundness of the Diorana domain). The operators and transfer functions
of the Diorana domain are sound :

• ⊑Diorana is a pre-order.
• γDiorana is monotonic with respect to the pre-order.
• The abstract union ⊔Diorana, and abstract intersection ⊓Diorana are sound over-

approximations of their concrete counter-parts.
• Widening ▽Diorana computes upper-bounds and enforces convergence.
• The transfer functions for assignment AssignDiorana and conditions CondDiorana

are sound.

Proof sketch. For pre-order, concretisation, abstract union, abstract intersection and
widening, the soundness of the Diorana domain is deduced from the one of the Seg
domain. Indeed, from Seg to A the proofs are transported element-wise, from A to
Tana the standard arguments of non-reduced products apply, and for the disjunctive
layer of Dana and the relational lifting layer of Diorana, the arguments are the same
than for RAND.

The fact that ⊑Seg is a pre-order is the object of Lemma 5. The fact that γSeg is
monotonic with respect to segmentation inclusion is the object of Lemma 6. For abstract
union and abstract intersection of segmentations, the soundness is a combination of
the fact that unification yields less precise abstract values, and the fact that segment-
wise operations are sound (Lemma 10). For example, for union, if s1 and s2 are two
segmentations, and s′1 and s′2 are the result of their unification, then we have

s1 ⊑Seg s′1 s2 ⊑Seg s′2
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Which implies, by the monotonicity of γSeg with respect to ⊑Seg, that

γSeg(s1) ⊑Seg γSeg(s′1) γSeg(s2) ⊑Seg γSeg(s′2)

Then, by the soundness of segment-wise operations

γSeg(s′1) ∪ γSeg(s′2) ⊆ γSeg(s′1 ⊔seg s′2)

Hence,
γSeg(s1) ∪ γSeg(s2) ⊆ γSeg(s′1 ⊔seg s′2)

Since s1 ⊔Seg s2 is defined as s′1 ⊔seg s′2, this proves the soundness of ⊔Seg.
For the convergence of widening, the process of unification can only remove, not

add, bound expressions; and there is only a finite number to begin with. Hence, from
a certain index, the results of unification always yield segmentations with the same
boundsets, and we can rely on the convergence of segment-wise widening.

For the transfer functions for assignment and conditions, we proceed in the same
way than CCL.

6.8 Result of Analysis on The Motivating Example
Appendix § B details the execution of our analysis on the find_max_priority from
Fig. 8. This analysis was executed by hand, as it is not yet implemented. The result of
this analysis is the abstract value of Fig. 9. This input-output summary of function
find_max_priority distinguishes two cases:

• either the input queue is empty (|q| = 0) and the result is built using constructor
NoMax;

• or the input queue is not empty (|q| ≥ 1), the result is built using constructor
SomeMax and the TCB that is returned as a result (via the constructor SomeMax)
has a priority that is greater than the priority of any of the TCBs in the input
queue.

In the second case, the relation between the output and the contents of the input array
(namely that the priority of the output is greater than the priorities of any of the array
values) was captured thanks to the fact that we allow our segment summaries to refer
to program variables (here the variable containing the future output), in addition to
referring to the array’s index and value.

This input-output summary is not exact: it does not state that, when the result is
a TCB wrapped in constructor SomeMax, this TCB belongs to the input queue.

6.9 Conclusive Remarks on Array Analysis
We have described in this section an abstract domain that allows us to compute input-
output summaries of functions that may manipulate arrays that contain values from
algebraic types. For this purpose, we have built on the segmentation approach of
CCL [12]. Unlike CCL, we allow arrays to contain values from algebraic types, we
allow segment summaries to refer to arbitrary program variables, and we have changed
the definition of segmentation pre-order, so that it makes the concretisation function
monotonic.
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One limitation of our approach is that we only allow arrays in top-level program
variables: we do not allow arrays nested inside values of algebraic types nor inside other
arrays. Additionally, we have not yet implemented our abstract domain for arrays.

7 Implementation, Experimental Results and
Complexity

We have implemented the analysis of section § 5 in approximately 5000 lines of OCaml.
Our prototype computes input-output summaries for non-recursive monomorphic
fist-order functions manipulating non-recursive algebraic data types. However, this
implementation does not support arrays. The source code of our implementation
together with instructions on how to add new test cases and run the existing tests
cases is packaged and published as a virtual machine artefact [13]. Similarly to our
formal development, our analyser is parametrised by an abstract domain for integers.
A command-line option allows to choose among the numeric domains of intervals,
octagons or polyhedra, provided by Apron [11].

We have tested our analyser on a total of 43 programs (summarised on Table 1).
The “extended variables” column of Table 1 gives, for each test file, the maximum
number of extended variables in the summaries computed for each function in the
file. This number is usually higher than what a user might see when looking at the
results ([13]) because when printing the results the analyser uses a concise version of
the summary, where some redundant extended variables are elided (for example, the
cc domain is prefix-closed, but not all prefixes are shown in the concise version). Our
test cases comprise some complex examples: some sorting algorithms, the do_ticks
function from section § 2.3, and 6 functions inspired from the abstract specification of
the seL4 micro-kernel [30]. We now review the results that our analyser computed for
these examples, using polyhedra as numeric domain.

Sorting integer arrays
To circumvent the absence of support for arrays in our prototype, we modelled arrays
of fixed length using tuples, and we defined get and set functions. With this encoding,
we wrote two sorting algorithms for arrays of integers, for arrays of size 5. For one of
the sorting algorithms (selection sort), our analyser was able to infer that the result is
sorted. For the second sorting algorithm (bubble sort), our analyser was not able to
infer that the result is sorted. It was however able to infer a weaker property: that the
sum of the elements before and after the sort remains unchanged. In both cases our
analyser does not manage to infer that the multi-set of elements before and after the
sort remains unchanged. Our abstract domains cannot express such properties. Some
domains have been designed to express properties over multi-sets, like the domain
introduced by Cezara Drăgoi during her PhD [42].

The do_ticks function
The do_ticks function (section §2.3) is inspired from a process scheduler from operating
system code. As reported in section § 5.1, the analysis result for do_ticks captures all
the properties we expected.
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seL4-inspired functions
We have extracted from the abstract specification of the seL4 formally verified micro-
kernel [30] several functions, that work both on ADTs and on scalar values, and
translated them in our while language. Specifically, those functions are related to
either thread management, capability management or scheduling (decode_set_priority,
check_prio, mask_cap, validate_vm_rights, cap_rights_update, timer_tick). Our anal-
yser infers exact abstractions for all of them, except for timer_tick. This program is
slightly different from do_ticks: when a thread’s time budget is over, this budget is
reset to its original value, and the thread is then re-scheduled, which might select a
new current thread. The case constraints of our abstract domain cannot distinguish
whether the current thread remains the same or not, so a join of those two cases is
performed. This results in some expected information loss on the thread’s time.

For the mask_cap program, we experimented with two encodings of bitmasks, using
either integers or ADTs to represent booleans. The integer-based encoding produced a
function summary that is compact—only 4 cases—but hard to understand for a human
being, whereas the summary produced with the ADT-based encoding is large — it
involves 324 cases in the disjunction — but each one of its cases is easy to understand.
An improvement that could be imagined is to have a built-in boolean type that is
internally encoded as an integer during the analysis — so that the result is concise —
then translated back in terms of truth value and logic formulas — so that it is easy to
interpret by a human reading the results.

We consider that the precision we obtained on the seL4 examples is satisfying. Still,
the last example illustrates a limitation of our approach. Indeed the function summaries
can significantly grow when the analysed program pattern matches on many distinct
variables. Abstract domains that leverage BDDs have been successfully used to reduce
analysis costs by sharing common results [43–46], and could also help in our situation.

Complexity of our analysis
Each domain that constitutes RAND, with the exception of the disjunctive completion
layer, features operators and transfer functions whose complexity is polynomial in
program parameters, e.g., the number of variables, or the maximum depth of the defined
types. For the disjunctive completion, however, the complexity is polynomial in the
number of possible cases, which can itself be exponential in program parameters. The
number of cases is asymptotically bounded by cxf

p

, where x is the number of variables
in the program, c is the maximum number of different constructors per sum type, f is
the maximum number of fields in any product type and p is the maximum depth of the
types being defined. While it is possible to write a program that reaches this bound,
we have not found any program, even in seL4, that makes the number of cases explode.

The asymptotic bound for the number of cases can be reached for programs in which
all the variables hold a complete f -ary tree of depth p, with all the leaves belonging to
a sum type having c possible constructors.

For our analysis to actually consider all those possible cases, the program would
also have to perform pattern-matching on the different leaves, probably using pattern-
matching inside a loop or a function call.
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Table 1: Test cases used for experimental evaluation. We use the * symbol for
families of similar tests, whose names start identically. The columns indicate the
number of lines of code in the test’s source code, the maximum number of
variables per function in the source code, the execution time of the analysis, the
maximum number of cases per function summary and the maximum number of
extended variables in the verbose version of each function summary. Analysis
times are given in milliseconds, with the exception of longer durations, that are given
in seconds and printed with a bold face. Measures were performed on an Intel®
Core™ i7 @2.30GHz× 16. The accompanying artefact [13] includes instructions to
reproduce the results.

Name Lines of
code Variables Execution

Time Cases Extended
Variables

Hand-crafted tests:
do_ticks 48 3 166 ms 3 19

nondeterministic_
bubble_sort 167 10 2.1 s 5 19

selection_sort 137 11 28.9 s 25 24

Inspired from SeL4:
decode_set_priority 45 6 10 ms 2 10
mask_cap_boolean 266 16 7.4 s 324 112

mask_cap_int 284 16 1.5 s 4 47
timer_tick_scheduling 179 8 41.2 s 81 52

Simple tests:
assert* 22 2 1 ms 1 4

call_inside_loop_* 24 3 15 ms 1 3
drift 26 2 24 ms 2 6

exchange 6 3 2 ms 1 6
facto* 20 2 8 ms 1 4

false_type_collision 19 3 3 ms 1 3
fibonacci 24 3 51 ms 1 7
gauss* 16 2 15 ms 1 7

ghost_equality 11 3 < 1 ms 1 6
hidden_incompat 12 4 2 ms 0 0

id 8 2 < 1 ms 1 4
if 9 2 2 ms 1 4

incompat 9 2 < 1 ms 0 0
indirect_swap 19 1 3 ms 2 6

long_id 20 1 5 ms 2 6
modulo 32 4 33 ms 2 7

multiplication_larger 5 6 2 ms 1 6
or_constructor 7 1 < 1 ms 0 0

plus_* 18 1 < 1 ms 1 4
record_assignment* 25 2 2 ms 1 11

reduction 10 2 3 ms 1 10
struct_exchange 11 3 < 1 ms 1 6

swap 14 1 < 1 ms 2 6
test_loop 3 1 3 ms 1 2
two_by_two 11 1 3 ms 1 2
while_true 1 0 < 1 ms 0 0

widening_convergence 34 5 49 ms 1 8
xor 39 4 8 ms 3 9
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There are two different scenarios that render our analysis costly: either when the
number of different cases is high—in which case our disjunctive completion can be the
bottleneck—or when many numeric extended variables are considered—in which case
the underlying numeric domain can be the bottleneck. A solution for the first scenario
could be to adopt a different merging strategy, so that more cases are merged, at the
risk of losing precision. In the second scenario, the generic aspect of our domain allows
to choose between numeric domains with different precision versus cost trade-offs. In
addition, techniques based on partitioning the set of variables could also be leveraged.

8 Related Work
In seminal work on the static analysis of recursive procedures, Cousot and Cousot [47]
define a collecting semantics for an imperative language with recursive procedures
and no global state. This semantics computes the set of output states—now deemed
standard—for almost all the instructions of their language. There are two exceptions:
Procedure calls and while loops. In these two cases only, the semantics computes a
set of states that involve the input variables and the output variables, i.e., a relation
between inputs and outputs. We presume that procedures and loops are treated in a
similar manner because the authors wanted to highlight that loops could be given the
semantics of ordinary recursive functions.

The idea of exploiting an input-output relational semantics also appears in Kozen’s
work on the verification of while programs [48]. In this work, a semantics of relations is
employed for every instruction of the language. Kozen introduced Kleene Algebra with
Tests—an extension of relation algebra [49] with co-reflexive relations named tests—
that serves as a foundation for the semantics of imperative programs, their verification,
and as an effective formal tool for proving the correctness of program transformations.

A number of static analyses for approximating the input-output relation of a
program have been proposed. Cousot and Cousot [29] used abstract interpretation for
designing modular and relational analyses, and argue that compositionality can improve
the scalability of analysers. Compositional Recurrence Analysis (CRA), by Farzan and
Kincaid [21], is a compositional static analysis that infers numeric relations between the
inputs and the outputs of programs. CRA first builds a regular expression to describe
the set of program paths, that is then interpreted as an input-output relation in a
compositional way, in a second stage. Their approach is context insensitive, and is similar
to the relational semantics of Definition 18. Whereas we follow the standard iteration-
based analysis of loops, they use a special operator to compute the reflexive transitive
closure of a relation, that is specialised on linear recurrence equations. Interestingly,
they discuss in their benchmarks a variation of their analysis, named CRA+OCT, that
“uses an intra-procedural octagon analysis to gain some contextual information, but
which is otherwise compositional”, and that leads to more precise results than pure
CRA. Although no precise definition is given for CRA+OCT, we believe that it follows
our relational collecting semantics of Definition 19, again with the exception of the
treatment of loops. As we have also observed, exploiting the information available at
loop entries is crucial to obtain sufficiently precise results. ICRA — by Kincaid, Breck,
Bouroujeni and Reps [22] — is an inter-procedural extension of CRA, where function
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summaries are computed once and for all, independently of their calling contexts—an
approach we have followed too in section § 5.3. In contrast to CRA and ICRA, our
analysis can deal with programs that are not purely numeric, and that can handle
algebraic data types. We have not found any detailed description of how the function
summaries of CRA and ICRA are instantiated. We are therefore not able to compare the
way we instantiate function summaries (section § 5.3) with CRA or ICRA. In contrast
to CRA and ICRA, our analysis does not yet support recursively defined functions.

The same approach of computing context-insensitive function summaries was
followed in the context of correlation analysis, by Andreescu et al. [10]. This analysis
infers binary equalities between the parts of structured inputs and outputs of programs,
using the correlation abstract domain. We improve on that work because we can also
express numeric relations between parts of structured values, and n-ary equalities. Our
domain differs significantly from the correlation domain, in the sense that correlations
are recursively defined so that parts of abstract values relate parts of structured values,
whereas our domain is not a recursive structure, and instead exploits extended variables
to relate the parts of structured values that are accessible through projection paths.

A preliminary version of our abstract numerical domains over extended variables
was used to define an analysis which was not input-output relational [15]. This analysis
inferred approximations of the final states, as opposed to the relations between input
and output states that the current paper is dealing with. Moreover, our previous
work did not include the domain for structural equalities, and was thus unable to
express concisely n-ary equality relations between parts of structured values. Finally,
no implementation and experimental evaluation was provided. Our implementation
effort helped identify several precision issues in our previous approach, that motivated
the addition of the structural equality domain (section § 3.5) and of the relational
lifting (section § 4.2).

Several relational analyses were developed for the inter-procedural analysis of
numeric programs [24, 50–52], and in the context of inter-procedural shape analysis
[53–55]. They all feature a form of function summary, that helps reduce the analysis
cost of large programs, by enabling modular analyses. A domain that supports both
shape abstraction and numeric constraints was developed by Chang and Rival [56]. It
is defined in a modular fashion, based on the cofibered abstract domain of Venet [57].
As in our construction, theirs also features a disjunctive completion, but leaves open
the question of how to keep the number of disjuncts under control.

In the context of the static analysis of languages with algebraic data types, tech-
niques based on tree automata [3] have been developed. Tree automata are well suited
to represent regular sets of trees, and several works propose to extend their expressive
power further. Lattice tree automata by Genet et al. [7, 58] augment tree automata
with elements of an arbitrary abstract domain at their leaves, and allow to express
non-relational integer constraints on the leaves of trees. More recently, Journault et
al. [8, 9] use a combination of tree automata and of a relational domain whose keys
are regular expressions to express relational constraints between the numeric leaves of
trees. They use regular expressions to denote sets of access paths within those trees,
and thus to support structures of unbounded heights.
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Valnet, Monat and Miné [59] have developed another abstract domain to analyse
languages with algebraic data types. Their approach is based on using symbolic
variables to summarise the different values that a field of a structured value might
take at different depths of recursion; and indicating the list of constructors that are
possible for recursive cases. Compared to our approach, they have the advantage of
handling recursive algebraic data types. When it comes to which relations can be
captured between the different fields of structured values or the precision of input-
output summaries for functions, it is difficult to compare their approach to ours, since
these aspects are not yet part of their implementation.

As a particular case of algebraic values, the analysis of programs with optional
numerical values was handled by Liu and Rival [60], by associating to optional variables
two avatars, that respectively model lower- and upper-constraints on that variable.
When the avatars of some variable x induce a contradictory constraint, this denotes
that x is in the None case. It is unclear how this approach generalises to deeply nested
algebraic values.

Controlling the number of disjuncts in a disjunctive completion is admittedly
difficult, as a cost vs precision balance must be found. Since we deal with finite types
only, our number of disjuncts is bounded by the product of the sizes of types used in a
program. Other works have used silhouettes (Li et al. [61]) —abstractions of the shapes
of the abstract values— to control disjunctions. Following Kim, Rival and Ryu [62], our
disjunctions, that are guided by paths in values, can be understood as a form of control
sensitivity. It is worth noticing that our disjuncts do not form a partition since some
disjuncts may overlap—a degree of freedom that is advocated by [62]. Based on our
present work, we will investigate whether we can re-cast our disjuncts as conjunctions
of implications, which could both improve precision and lead to a more parsimonious
representations of abstract values.

Our Rand and Diorana domains could be seen as being both a covering in the sense
of Rival and Mauborgne [63] and a disjunctive completion. A covering because our
different cases allow to group and distinguish possible executions by some properties
of the input states, by specifying extended variables that must be well-defined. Some
overlapping between our cases is possible, hence it is a covering and not a partitioning. A
disjunctive completion because our cases also group and distinguish possible executions
according to properties of the output states. However, we prefer to see our domains as
a disjunction over input-output relations, instead of seeing them as both a covering
and a disjunctive completion.

When it comes to the automatic analysis of programs that manipulate arrays (in
particular to deduce properties on the contents of arrays) several approaches have been
explored. Some works look at the problem from a logics perspective. The approach
of Bradley, Manna and Sipma [33] consists in restricting to a particular fragment
of array theory and translating it to quantifier-free formulas on the theories of un-
interpreted functions and Presburger arithmetic. Other approaches use Büchi counter
automata as models (Habermehl, Iosif and Vojnar [35]), or combine Counter-Example
Guided Abstraction Refinement with the deduction of Craig Interpolants from proofs
of unreachability of certain program paths (Jhala and McMillan [34]).
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In order to combine the work that we have already done on abstract interpretation
for algebraic types with the analysis of arrays, we examined existing approaches that
use abstract interpretation to analyse array contents. Two extremes are array smashing—
used by Blanchet et al. [31]—that uses a single abstract value for each array, and array
expansion [31], that uses a different abstract value for each array slot in each array.
Array smashing is very scalable, but not very precise. Array expansion is very precise,
but at a cost for scalability. Moreover, array expansion is only feasible when the sizes
of the arrays that are analysed are statically known.

A compromise between array smashing and array expansion consists in separating
array slots into groups, called segments, and associate an abstract value to each segment.
This approach was first treated by Gopan, Reps and Sagiv [32]. In order to choose
the way of cutting arrays into segments, they first determine n partition functions
(given either by heuristics or by the user), and then they consider a disjunction of
up to 3n different ways to partition arrays. This can be very costly. A later work by
Halbwachs and Péron [36], inspired by [32], uses a conjunction of implications instead
of a disjunction: possible indices are partitioned by a family of predicates (ϕp)p∈P , and
for each predicate ϕp, a predicate on arrays’ contents ψp must hold. Unlike [32], [36]
allows for segments to be empty, in which case the corresponding implication vacuously
holds. A salient point of [36] is the ability to express relations between segments of
different arrays. Cousot, Cousot and Logozzo [12] improve on the scalability of [32] and
[36], by intertwining the determination of which segments to consider with the analysis
of the segments’ contents. We have presented this approach in section § 6, as it forms
the basis for extending our abstract domain for algebraic values with arrays. Later work
by Fulara [38] presents a more general framework that encompasses dictionaries, in
addition to arrays. Liu and Rival [39] have looked at non-contiguous arrays partitions,
for the programs where the array slots that share similar properties are not adjacent.
This can be the case, for example, when arrays are used to implement dictionaries. Li
et al. [40] have looked at array segments specially tailored for induction loops.

Other work by Dietsch et al. [41] has looked at the way different arrays relate to
each other, without abstracting the contents of each array. Their approach works on
predicates that express the equality of arrays, except for the indices that satisfy some
(automatically established) predicates.

9 Conclusion and Future Work
In the context of programs that combine arithmetic operations, algebraic data types
and functional arrays, we have shown how to construct an abstract domain that extends
any abstract domain for numeric relations into an abstract domain for relations between
numeric, algebraic and array values.

For ADTs, the main idea is to consider extended variables—i.e., a variable prefixed
by an access path—as the entities that are related in the numeric abstract domain.
To reduce the size of abstract values, we add a domain that keeps track of equalities
between non-numeric values. The domains are combined using a reduced product that
propagates equalities. Additional expressiveness and precision is obtained using an
adaptation of disjunctive completion for handling the different, incompatible cases that
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an algebraic value can exhibit. This abstract domain is called RAND—the Relational
Algebraic Numeric Domain.

We have given a formal justification to the folklore result of static analysis that “an
intra-procedural analysis can be made (input-output) relational by duplicating variables”,
by effectively turning an analysis that relates different parts of a state into an analysis
that computes a relation between input and output. One key observation is that the
input-output relational analyser and the non input-output relational one share the same
structure: only a few transfer functions need to be redefined. The second observation is
that any relational domain can easily be used to express relations between different
stores: the necessary transfer functions can be redefined once and for all, in a generic
manner.

We have evaluated the feasibility of our abstract domain construction by designing
and implementing [13] a static analyser for a while language with algebraic data
types and function calls that exploits the relational feature of RAND to infer function
summaries. Summaries express the input-output behaviours of functions, and enable a
modular inter-procedural analysis of programs: every function is analysed exactly once.

Finally, we have shown how to extend RAND to handle functional arrays. To
support this extension, we designed Diorana: the Domain for Input-Output Relations
on Algebraic types, Numbers and Arrays. This domain is based on the notion of array
segmentation [12], and enables the analysis of programs that manipulate arrays whose
cells may contain values of algebraic data types.

An obvious next challenge to address is to handle recursive algebraic data types. To
that end, we will need to adapt our language of paths, e.g., by using regular languages,
or by extending techniques based on tree automata [8]. Another direction of research
is to analyse recursive programs, which will require the computation of a fixpoint at
the level of function summaries for groups of mutually defined functions.

The support of polymorphism seems mostly orthogonal to the work that we have
done so far for algebraic data types and arrays. In the context of parametric polymor-
phism, our projections paths would not be able to look inside the values whose type is
a type parameter. Indeed, knowing which paths make sense for a given type requires to
know the type’s definition. However, the domain of structural equalities would prove
useful, since tracking equalities between two extended variables does not require to
know their precise type.

In order to handle higher-order functions, an interesting direction of research would
be to investigate how our work combines with the stable relations framework from
Montagu and Jensen [64].

The overall practical purpose of our domain construction is to apply our analyser
to help the verification of programs, by mixing automatic techniques based on abstract
interpretation with standard deductive verification tools, such as Why3 [65]. Previous
work on correlation analysis [10] has demonstrated that a large number of proof
obligations could be discharged automatically in such a way, thereby alleviating the
manual effort in the verification of large programs. The combination of algebraic data
types and (functional) arrays paves the way for applying such automatic techniques
to assist formal development projects of safety-critical software such as the formally
verified operating system seL4 [30].
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Appendices

A Abstract Operators and Transfer Functions for
Array Analysis

A.1 Operators of the Abstract Domains
In this appendix, we give technical details on the operators of the segmentation domain
(appendix §A.1.1), the array domain (appendix §A.1.2), the Tana product domain
(appendix §A.1.3) and Dana disjunctive completion (appendix §A.1.4).

A.1.1 Segmentations

Inclusion test
We provide a detailed proof of reflexivity and transitivity of the inclusion test between
segmentations.

Proof of Lemma 5 (⊑Seg is a pre-order). In order to prove that the relation ⊑Seg is a
pre-order, we need to prove that it is both reflexive and transitive.

Reflexivity.
Let s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
be a segmentation. The goal here is to prove

that s ⊑Seg s. For that, we take the identity function over {0, . . . , n} as the function
ϕ that will allow us to check the conditions of Definition 34. The “first and last
indexes” condition holds because ϕ(0) = 0 and ϕ(n) = n. The “boundset inclusion”
condition holds because for any index i ∈ {0, . . . , n}, we have bi ⊆ bi. The “segment
summaries” condition holds because, for any index i ∈ {1, . . . , n}, the integer set
{ϕ(i− 1) + 1, . . . , ϕ(i)} is the singleton {i}, and by reflexivity of ⊑SL we have di ⊑SL di.
The “emptiness markers” condition holds because, for any i ∈ {1, . . . , n}, the conjunction∧ϕ(i)

j=ϕ(i−1)+1mj is mi and we have indeed mi ⇒ mi.

Transitivity.
We consider three segmentations s1 =

(
l, v, b10, (d

1
j , b

1
j ,m

1
j )j∈{1,...,n}

)
, s2 =(

l, v, b20, (d
2
k, b

2
k,m

2
k)k∈{1,...,m}

)
and s3 =

(
l, v, b30, (d

3
i , b

3
i ,m

3
i )i∈{1,...,p}

)
such that

s1 ⊑Seg s2 and s2 ⊑Seg s3. We want to prove that s1 ⊑Seg s3. By hypothe-
sis, we know that there exists two functions ϕ2→1 : {0, . . . ,m} → {0, . . . , n} and
ϕ3→2 : {0, . . . , p} → {0, . . . ,m} that satisfy the conditions of Definition 34. We now
prove that s1 ⊑Seg s2 by taking ϕ = ϕ2→1 ◦ ϕ3→2 and by verifying the four conditions
of Definition 34.

Condition 1: first and last indices.
We need to prove that ϕ(0) = 0 and ϕ(p) = n. By the “first and last indices” condition
of s1 ⊑Seg s2, we have both ϕ2→1(0) = 0 and ϕ2→1(m) = n. Additionally, by the “first
and last indices” condition of s2 ⊑Seg s3, we have both ϕ3→2(0) = 0 and ϕ3→2(p) = m.
Hence ϕ(0) = ϕ2→1(ϕ3→2(0)) = ϕ2→1(0) = 0 and ϕ(p) = ϕ2→1(ϕ3→2(p)) = ϕ2→1(m) =
n.
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Condition 2: boundset inclusion.
We want to prove that for any index i ∈ {0, . . . , p} we have b3i ⊆ b1ϕ(i). Let i ∈ {0, . . . , p}.
By the “boundset inclusion” condition of s3 ⊑Seg s2 applied at index i, we know that
b3i ⊆ b2ϕ3→2(i). Besides, by the “boundset inclusion” condition of s2 ⊑Seg s1 applied
at index ϕ3→2(i), we have b2ϕ3→2(i) ⊆ b1ϕ2→1(ϕ3→2(i)). By the definition of ϕ, we have
b1ϕ2→1(ϕ3→2(i)) = b1ϕ(i); hence b3i ⊆ b2ϕ3→2(i) ⊆ b1ϕ(i).

Condition 3: segment summaries.
The goal here is to prove that for any index i ∈ {1, . . . , p} and any index j such
that ϕ(i − 1) < j ≤ ϕ(i), we have d1j ⊑SL d3i . Let i ∈ {1, . . . , p} be an index of the
segmentation s3 and j with ϕ(i− 1) < j ≤ ϕ(i) be one of the corresponding indices of
the segmentation s1 (if no such j exists, the property that we are trying to prove is
vacuously true). Let’s consider the sequence of integer intervals({

ϕ2→1(k − 1) + 1, . . . , ϕ2→1(k)
})

ϕ3→2(i−1)<k≤ϕ3→2(i)

These integer intervals are contiguous. Their left-most bound is

ϕ2→1
(
ϕ3→2(i− 1) + 1− 1

)
+ 1 = ϕ(i− 1) + 1

while their right-most bound is ϕ(i). Hence, this sequence of integer intervals forms
a partition of the integer interval {ϕ(i− 1) + 1, . . . , ϕ(i)}. Therefore, since index j
belongs to that integer interval, we know that there exists an index k such that
ϕ3→2(i − 1) < k ≤ ϕ3→2(i) and ϕ2→1(k − 1) < j ≤ ϕ2→1(k). Then, by the “segment
summaries” property of s1 ⊑Seg s2 applied to index k, we have d1j ⊑SL d2k. Similarly, by
the “segment summaries” property of s2 ⊑Seg s3 applied at index i, we have d2k ⊑SL d3i .
Therefore, using the transitivity of ⊑SL, we deduce d1j ⊑SL d3i .

Condition 4: emptiness markers.
We want to prove that for any index i ∈ {1, . . . , p} the following implication holds : ϕ(i)∧

j=ϕ(i−1)+1

m1
j

⇒ m3
i

Let i ∈ {1, . . . , p}. Given the partition that we exhibited for the previous condition,
we know that:  ϕ(i)∧

j=ϕ(i−1)+1

m1
j

 =

ϕ3→2(i)∧
k=ϕ3→2(i−1)+1

 ϕ2→1(k)∧
j=ϕ2→1(k−1)+1

m1
j
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using the “emptiness markers” condition of s1 ⊑Seg s2 for all the indices k such that
ϕ3→2(i− 1) < k ≤ ϕ3→2(i), we know that for every one of those indices k we have ϕ2→1(k)∧

j=ϕ2→1(k−1)+1

m1
j

⇒ m2
k

Additionally, using the “emptiness markers” condition of s2 ⊑Seg s3 at index i, we know
that  ϕ3→2(i)∧

k=ϕ3→2(i−1)+1

m2
k

⇒ m3
i

Hence,  ϕ(i)∧
j=ϕ(i−1)+1

m1
j

⇒

 ϕ3→2(i)∧
k=ϕ3→2(i−1)+1

m2
k

⇒ m3
i

Unification of segmentations
In order to more easily define the two operations used during unification (boundset
splitting and bound expression removal), we are going to introduce two notations on
sequences: sequence slicing and sequence concatenation. If σ is a sequence, then σ[i : j]
is the sequence that contains the elements of σ between indices i and j. If σ1 and σ2
are two sequences, then σ1 · σ2 is the concatenation of σ1 and σ2.
Definition 37 (Boundset splitting). For any segmentation s = (l, v, b0, σ), with a
sequence of segments σ = (di, bi,mi)i∈{1,...,n}, any segmentation index i0 ∈ {0, . . . , n},
any two non-empty boundsets b1 and b2 that form a partition of bi0 , and any segment
summary d0 the splitting of s at index i0 on boundsets b1 and b2 with summary d0 is
the segmentation defined by

Split(s, i0, b
1, b2, d0) =


(l, v, b1, (d0, b

2, tt) · σ) if i0 = 0

(l, v, b0, σ[1 : i0 − 1] · σ′ · σ[i0 + 1 : n])

where σ′ = (di0 , b
1,mi0) · (d0, b2, tt)

if i0 ̸= 0

Splitting a boundset amounts to relaxing an equality constraint, which explains
why the result is less precise.
Lemma 8 (Boundset splitting yields a value less precise than the initial one). For any
segmentation s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
, any segmentation index i0 ∈ {0, . . . , n},

any two non-empty boundsets b1 and b2 that form a partition of bi0 , and any segment
summary d0 such that d0 ⊑SL di0 , we have

s ⊑Seg Split(s, i0, b
1, b2, d0)

When defining the removal of bound expressions from a segmentation, we proceed
in two steps, by first defining how to remove them at a particular index, and then
defining the same operation for all indices at once.
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Definition 38 (Bound expression removal). For any segmentation s = (l, v, b0, σ),
with a sequence of segments σ = (di, bi,mi)i∈{1,...,n}, any set of bound expressions b
and any segmentation index i0 ∈ {0, . . . , n}, the removal of bound expressions b from
segmentation s at index i0 is given by

RemBexpAtIndex(b, s, i0) =
(l, v, b0 \ b, σ) if i0 = 0

(l, v, b0, σ[1 : i0 − 1] · (di0 , bi0 \ b,mi0) · σ[i0 + 1 : n]) if bi0 \ b ̸= ∅
(l, v, b0, σ[1 : i0 − 1] · (di0 ⊔S di0+1, bi0+1,mi0 ∧mi0+1) · σ[i0 + 2 : n]) if bi0 \ b = ∅

Then, the removal of bound expressions b from segmentation s is given by

RemoveBexp(b, s) = RemBexpAtIndex (b, . . .RemBexpAtIndex(b, s, 0) . . . , n)

In order to keep well-formed segmentations, we do not allow removing the constant
0 from b0, nor the length variable from bn. This ensures that the cases where bi0 \ b = ∅
with i0 = 0 or i0 = n are not possible. Removing bound expressions amounts to
relaxing equality and inequality constraints. Which is why the result is less precise.
Lemma 9 (Bound expression elimination yields a value less precise than the initial
one). For any segmentation s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
and any set of bound

expressions b,
s ⊑Seg RemoveBexp(b, s)

Here, segment-wise operations on unified segmentations are written with an over-
line:
Definition 39 (Segment-wise operations). For any two unified segmentations
s1 =

(
l, v, b0, (d

1
i , bi,m

1
i )i∈{1,...,n}

)
and s2 =

(
l, v, b0, (d

2
i , bi,m

2
i )i∈{1,...,n}

)
union,

intersection and widening are defined as follows:

s1 ⊔seg s2 =
(
l, v, b0,

(
d1i ⊔S d2i , bi,m

1
i ∨m2

i

)
i∈{1,...,n}

)
s1 ⊓seg s2 =

(
l, v, b0,

(
d1i ⊓S d2i , bi,m

1
i ∧m2

i

)
i∈{1,...,n}

)
s1 ▽seg s2 =

(
l, v, b0,

(
d1i ▽

S d2i , bi,m
1
i ∨m2

i

)
i∈{1,...,n}

)
Lemma 10 (Soundness of segment-wise operations). The segment-wise operations are
sound on unified segmentations:

• If s1 and s2 are two unified segmentations, then

γSeg(s1) ∪ γSeg(s2) ⊆ γSeg(s1 ⊔seg s2)

• If s1 and s2 are two unified segmentations, then

γSeg(s1) ∩ γSeg(s2) ⊆ γSeg(s1 ⊓seg s2)
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• The widening ▽seg computes upper-bounds on unified segmentations. If s1 and s2
are two unified segmentations, then

s1 ⊑Seg s1 ▽seg s2 s2 ⊑Seg s1 ▽seg s2

• Widening enforces convergence in finite time. If (si)i∈N is a sequence of unified
segmentations, then the sequence (s′i)i∈N defined by s′0 = s0 and, for all n ∈ N,
s′n+1 = s′n▽idisj sn+1, then there exists an index n0 ∈ N such that, for any n ≥ n0,
we have s′n = s′n0

.

Proof that segment-wise union is sound on unified segmentations. Let s1 =(
l, v, b10, (d

1
i , b

1
i ,m

1
i )i∈{1,...,n}

)
and s2 =

(
l, v, b20, (d

2
i , b

2
i ,m

2
i )i∈{1,...,n}

)
be two unified

segmentations. Let (ρ, t) ∈ γSeg(s1) ∪ γSeg(s2) be an environment-array pair in the
concretisation of either s1 or s2. The definition of s1 ⊔seg s2 being symmetric on s1

and s2, we can assume without loss of generality that (ρ, t) ∈ γSeg(s1). The goal is to
prove that (ρ, t) ∈ γSeg(s1 ⊔seg s2). In order to prove that, we need to check the five
conditions of Definition 32. Since the boundsets of s1 ⊔seg s2 are exactly the same
ones of s1, the “Equalities in each boundset”, “Inequalities between boundsets” and
“Array size” conditions stem directly from (ρ, t) ∈ γSeg(s1). The conditions that are left
to verify are “Strict inequalities for non-empty segments” (which involves emptiness
markers) and “Segment summaries” (which involves segment summaries). We write
s′ = (l, v, b0, (d

′
i, bi,m

′
i)i∈{1,...,n}) for the segmentation s1 ⊔seg s2.

Strict inequalities for non-empty segments. Let i ∈ {1, . . . , n} be an index of
segmentation s′. For this condition, we get to assume that m′

i is false, and we need to
show that Jbi−1K

exp
ρ < JbiK

exp
ρ . By definition, we have m′

i = m1
i ∨m2

i . Hence, since m′
i

is false, we know that m1
i and m2

i are both false. By using the “Strict inequalities for
non-empty segments” property from (ρ, t) ∈ γSeg(s1) we have the desired inequality:
Jbi−1K

exp
ρ < JbiK

exp
ρ .

Segment summaries. Let i ∈ {1, . . . , n} be a segment index and j be an array
index for that segment (that is, such that Jbi−1K

exp
ρ ≤ j < JbiK

exp
ρ ). The goal here

is to prove that the environment ρ extended with value j for variable l and value
t[j] for variable v, belongs to the concretisation of d′i = d1i ⊔S d2i . In other words,
the goal is to prove ρ[l 7→ j][v 7→ t[j]] ∈ γS(d′i). Using the “Segment summaries”
condition from (ρ, t) ∈ γSeg(s1), we have ρ[l 7→ j][v 7→ t[j]] ∈ γSeg(d1i ). Then, using
the soundness of ⊔S, we have that γS(d1i ) ∪ γS(d2i ) ⊆ γS(d1i ⊔S d2i ); hence in particular
ρ[l 7→ j][v 7→ t[j]] ∈ γS(d1i ⊔S d2i ) = γS(d′i).

The proofs for intersection and widening use similar arguments.
For intersection, union and widening, we use the same unification algorithm as [12].

We refer the reader to section 11.4 of [12] for details.

A.1.2 Array environments

For a typing context Γ, we recall that Arr(Γ) is the set of variables that have an array
type.

The domain for abstracting arrays is defined by associating a segmentation to each
variable that has an array type.
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Definition 40 (Abstract array environments). For any numeric domain N, we define
a domain for arrays, written A(N). For any typing context Γ, the elements a ∈
A(N)(Γ) =

∏
x∈Arr(Γ) Seg (N)(Γ)(x) of the domain for arrays are called abstract array

environments, and they associate, to every variable x ∈ Arr(Γ) with an array type, a
segmentation a(x) ∈ Seg (N)(Γ)(x).
Definition 41 (Concretisation for abstract array environments). The concretisation
for abstract array environments γA is defined by:

γA(a) =
{
ρ | ∀x ∈ Arr(Γ), (ρ, ρ(x)) ∈ γSeg(a(x))

}
All operations on abstract array environments (pre-order, intersection, union and

widening) are performed element-wise.
Definition 42 (Operators on abstract array environments). For two abstract array
environments a1 and a2 on the same typing context Γ, we define the relation ⊑A and
the operators ⊓A, ⊔A and ▽A as follows:

a1 ⊑A a2 iff ∀x ∈ Arr(Γ), a1(x) ⊑Seg a2(x)
a1 ⊓A a2 =

[
x 7→ a1(x) ⊓Seg a2(x)

]
a1 ⊔A a2 =

[
x 7→ a1(x) ⊔Seg a2(x)

]
a1 ▽A a2 =

[
x 7→ a1(x) ▽Seg a2(x)

]
Since they share the same typing context Γ, the two abstract array environments

a1 and a2 always have the same domain: Arr(Γ). When defining functions, we use the
notation

f = [x 7→ . . . ]

to mean
∀x ∈ dom(f), f(x) = . . .

Lemma 11 (Soundness of the array domain). The operations on the array domain
are sound:

• ⊑A is a pre-order.
• The concretisation γA is monotonic with respect to the pre-order ⊑A.
• Abstract union and abstract intersection are sound over-approximations of their

concrete counter-parts.
• Widening computes upper bounds and enforces convergence.

A.1.3 The Tana Product Domain

As explained in Fig. 10, we take a product domain of TanL (N) and A(N). We call this
product domain Tana (N), for Tuple for Algebraic types, Numbers and Arrays. We do
not define a reduction operator for this product domain. When not explicitly defined
in this appendix, operators of the product domain are defined component-wise.

A.1.4 Disjunctive completion

In this appendix, we give the detailed definitions for the Dana domain, which is
obtained from the Tana domain by taking a disjunctive completion where cases that

69



have equivalent constructor constraints are merged together using abstract union. This
construction follows the exact same structure than the construction that allows to go
from Tan to S (section § 3.6.2).

Abstract inclusion is given by a Hoare order:

O1 ⊑Dana O2 iff ∀o ∈ O1,∃o′ ∈ O2, o ⊑Tana o′

Abstract intersection for the disjunctive completion is given by:

O1 ⊓Dana O2 = CollapseDana

({
o1 ⊓Tana o2 | o1 ∈ O1 ∧ o2 ∈ O2∧

o1 ⊓Tana o2 ̸= ⊥Tana

})
We take a disjunction because for certain programs we want to be able to extract

information for different cases, in which incompatible constructor names are involved.
However, when two abstract values are equivalent with respect to the constructors
that they mention, they should be merged, to limit the size of the disjunction. We
use the same definition of constructor constraints equivalence as in previous appendix
(Definition 16); but this time we extend it for the quadruplets of the Tana domain:

(c1, e1, p1, a1)≡Tana
E (c2, e2, p2, a2) iff c1 ≡ c2

This notion of equivalence allows us to define an operator that collapses together
equivalent quadruplets in an element of Dana = P(Tana).
Definition 43. We define an operator CollapseDana that takes a set of elements of Tana
and merges together (by taking the abstract union), the elements that are equivalent
with respect to ≡Tana

E . Formally,

CollapseDana(O) =

{⊔Tana

o∈o

o | o ∈ O/≡Tana
E

}

We use this collapse operator to provide an abstract union for the Dana domain:

O1 ⊔Dana O2 = CollapseDana(O1 ∪ O2)

A widening for the Dana domain is given by

O1 ▽Dana O2 =
{o1 ▽Tana o2 | o1 ∈ O1 ∧ o2 ∈ O2 ∧ o1 ≡Tana

E o2}
∪{o2 ∈ O2 | ∄o1 ∈ O1, o1 ≡Tana

E o2} ∪ {o1 ∈ O1 | ∄o2 ∈ O2, o1 ≡Tana
E o2}

A.2 Analysing arrays: transfer functions
In this appendix, we give the transfer functions for Conditions (appendix §A.2.1) and
Assignments (appendix §A.2.2) for the domain of segmentations Seg and the domains
built on top of it.
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A.2.1 Abstraction for conditions

When analysing a condition (whether it comes from a while loop guard or an assertion),
there are up to three things that change in segmentations:

• The segment summaries are modified to integrate the new condition. Here, to keep
definitions simple, nothing happens if a segment summary becomes ⊥S. We could
however, when a segment summary becomes ⊥S, have a more precise treatment by
looking at the emptiness marker of the segment. If a segment that is not allowed
to be empty has a ⊥S summary, then the whole segmentation can be turned into
⊥Seg. If a segment that is allowed to be empty has a ⊥S, then the segment is
indeed empty in the concrete, and it can be removed, by merging the boundsets
to its left and right.

• Two boundsets may be merged, if the condition implies that they are equal. If
this contradicts the (lack of) emptiness markers between the two boundsets, then
the whole segmentation becomes ⊥Seg.

• An emptiness marker may become false, if the condition implies that the associated
segment is necessarily non-empty.

We are going to formalize each one of those effects separately, before defining
abstraction of conditions for segmentations as a whole.
Definition 44 (Abstraction of conditions for segmentation summaries). For any
condition c, any array variable x and any segmentation s for variable x given by
s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
∈ Seg(N)(Γ)(x), we define

CondSum(c)(s) =

(
l, v, b0,

(
CondSL(c)(di), bi,mi

)
i∈{1,...,n}

)
Before describing the effect of conditions on boundsets, we define what it means to

merge two boundsets together.
Definition 45 (Boundset Fusion). For any segmentation s = (l, v, b0, σ), with a
sequence of segments σ = (di, bi,mi)i∈{1,...,n}; and any two segment indices i1 ∈
{1, . . . , n} and i2 ∈ {1, . . . , n} such that i1 ≤ i2, the fusion of all boundsets between
indices i1 and i2 of s is the segmentation defined by

FuseBoundSets(i1, i2, s) =
⊥Seg if ∃j, i1 < j ≤ i2,mj = ff(
l, v,

⋃
i1≤j≤i2

bj , σ[i2 + 1 : n]
)

if i1 = 0 and
∀j, i1 < j ≤ i2 ⇒ mj = tt

(l, v, b0, σ[1 : i1−1] ·
(
di1 ,

⋃
i1≤j≤i2

bj ,mi1

)
· σ[i2+1:n]) otherwise

Merging boundsets assumes that they are equal in the concrete. If any of the
emptiness markers between the boundsets being merged is false, this is a contradiction
and yields the bottom segmentation.

In the following definitions, we assume that conditions do not include conjunctions
or disjunctions. Conjunctions and disjunctions are treated generically, by using abstract
intersection (resp. abstract union) on the result of analysing the sub-formulas separately.
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Similarly, we assume that the conditions has been pre-treated by applying De Morgan’s
laws to eliminate negation as much as possible.
Definition 46 (Abstraction of conditions for segmentation boundsets). For any
segmentation s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
and any condition c, we define

CondBsets(c)(s) =

FuseBoundSets(i1, i2, s) if ∃i1 ∈ {0, . . . , n} ,∃i2 ∈ {0, . . . , n} ,
∃e1 ∈ bi1 ,∃e2 ∈ bi2 ,

c = (e1 = e2) ∨ (i1 ≤ i2 ∧ c = (e1 ≥ e2))

⊥Seg if ∃i1 ∈ {0, . . . , n} ,∃i2 ∈ {0, . . . , n} ,
∃e1 ∈ bi1 ,∃e2 ∈ bi2 ,

i1 ≤ i2 ∧ c = (e1 > e2)

s otherwise

Definition 47 (Abstraction of conditions for emptiness markers). For any condition c
and any segmentation s = (l, v, b0, σ) with a segment sequence σ = (di, bi,mi)i∈{1,...,n},
we define

CondMark(c)(s) =
(l, v, b0, σ[1 : i1 − 1] · (di1 , bi1 , ff) · σ[i1 + 1;n]) if ∃i1 ∈ {1, . . . , n} ,

∃e1 ∈ bi1−1,∃e2 ∈ bi1 ,

c = (e1 < e2)

s otherwise

These three auxiliary definitions allow us to define the abstraction of conditions for
segmentations
Definition 48 (Abstraction of conditions for segmentation). For any condition c and
any segmentation s, we define the abstraction of condition c for segmentation s by

CondSeg(c)(s) = (CondSum(c) ◦ CondMark(c) ◦ CondBsets(c)) (s)

The order of composition does not affect the final result. It can, however, impact
the execution time. We have chosen this order since CondBsets can reduce the number
of segments, and both CondMark and CondSum do a traversal of all segments.

This definition is lifted to the A, Tana, Dana and Diorana domains in the standard
way. That is, respectively, element-wise, component-wise, disjunct-wise before collapsing
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and by priming the condition:

CondA(c)(a) =
[
x 7→ CondSeg(c)(a(x))

]
CondTana(c)(t, a) =

(
CondTanL(c)(t),CondA(c)(a)

)
CondDana(c)(O) = CollapseDana

({
CondTana(c)(o) | o ∈ O

})
CondDiorana(c)(r) = CondDana(c′)(r)

A.2.2 Abstraction for assignments

Abstraction for an assignment y := e behaves differently according to whether a variable
of array type is involved (either because y is of array type or because a variable in e
has an array type) or not.

Abstraction for non-array assignments
Here we look at the assignments of the form y := e where y is not an array variable
and no variable appearing in e is an array variable. This means that e is not an array
access expression.

We start by formalizing variable replacement inside a bound expression.
Definition 49 (Variable replacement for bound expressions, boundsets and segmenta-
tions). For any variable y and any two bound expressions e1 and e2, the replacement
of variable y by bound expression e1 inside bound expression e2 is given by

ReplaceE(y, e1, e2) =


x+ (k1 + k2) if e1 = x+ k1 and e2 = y + k2

k1 + k2 if e1 = k1 and e2 = y + k2

e2 otherwise

This definition is first extended to boundsets. For any boundset b, we define

ReplaceB(y, e1, b) =
{
ReplaceE(y, e1, e2) | e2 ∈ b

}
Then, the definition is extended to segmentations in a point-wise manner. Formally,
for any segmentation s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
, we define

ReplaceSeg(y, e1, s) =
(
l, v,ReplaceB(y, e1, b0),

(
di,Replace

B(y, e1, bi),mi

)
i∈{1,...,n}

)
Definition 50 (Conditional addition of a bound expression to a boundset). For any
variable y, any bound expression e and any boundset b, we define the addition of y to b
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conditionally to the presence of e as being the boundset

AddBexpB(y, e, b) =

{
b ∪ {y} if e ∈ b

b otherwise

We extend this definition to segmentations in a point-wise manner. Formally, for any
segmentation s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
we define

AddBexpSeg(y, e, s) =
(
l, v,AddBexpB(y, e, b0), (di,AddBexpB(y, e, bi),mi)i∈{1,...,n}

)
This allows us to formalize the effect of assignment on the boundsets of an entire

segmentation.
Definition 51 (Abstraction of non-array assignments for segmentation boundsets).
For any segmentation s and any non-array assignment y := e, we define

AssignBsets(y := e)(s) ={
ReplaceSeg(y, y − k, s) if ∃k ∈ K, e = y + k

AddBexpSeg (y, e,RemoveBexp ({y + k | k ∈ K}, s)) otherwise

For summaries, assignment is propagated to each segment.
Definition 52 (Abstraction of non-array assignments for segmentation summaries).
For any segmentation s =

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
and any non-array assignment

y := e, we define

AssignSum(y := e)(s) =
(
l, v, b0,

(
AssignS(y := e)(di), bi,mi

))
The two previous definitions allow us to define what happens to all segmentations

when analysing a non-array assignment.
Definition 53 (Abstraction of non-array assignments for segmentations). For any
segmentation s and any non-array assignment y := e the abstraction of assignment
y := e for segmentation s is given by

AssignSeg(y := e)(s) = (AssignSum(y := e) ◦AssignBsets(y := e)) (s)

When analysing assignments where no variable has an array type (that is, y is not
an array variable, and none of the variables appearing in e are either), the transfer
function AssignSeg can be lifted to the A, Tana, Dana and Diorana domains in the
standard way. That is, respectively, element-wise, component-wise, disjunct-wise before
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collapsing and by priming all the variables:

AssignA(y := e)(a) =
[
x 7→ AssignSeg(y := e)(a(x))

]
AssignTana(y := e)(t, a) =

(
AssignTanL(c)(t),AssignA(y := e)(a)

)
AssignDana(y := e)(O) = CollapseDana

({
AssignTana(y := e)(o) | o ∈ O

})
AssignDiorana(c)(r) = AssignDana(y′ := e′)(r)

Remember that this kind of assignments can change the segmentations inside the array
domain. Indeed, the segment summaries change, and (if y is a numeric variable) the
boundsets might also change (Definition 51).

Abstraction for Array Creation
Here, we look at the assignments of the form y := new_array(τalg, e1, e2); where y is
necessarily an array variable.
Definition 54 (Transfer Function for Array Creation [Complete Version]). For any
algebraic type τalg ∈ AlgTypes, for any variable y of type Array(τalg), for any numeric
expression e1, any expression e2 of type τalg and any abstract value (t, a) ∈ Tana, the
transfer function for array creation is defined by

AssignTana
(
y := new_array(τalg, e1, e2)

)
(t, a) ={

⊥Tana if SatisfiesTanL(t, e1 < 0)(
CondTanL(e1 ≥ 0)(t′), a′[y 7→ s′]

)
otherwise

where t′ =
{
CondTanL(|y| = 0)(t) if SatisfiesTanL(t, e1 ≤ 0)

CondTanL(|y| = e1)(t) otherwise
and a′ = AssignA(|y| := e1)(a)

and s′ =

 {0; |y|} if SatisfiesTanL(t, e1 ≤ 0)
{0} d {|y|} if SatisfiesTanL(t, e1 > 0)
{0} d {|y|}? otherwise

and d =
{
CondTanL(0 ≤ l < e1 ∧ v = e2)

(
AddTanL{l,v} (t)

)}
As stated after Definition 35, we distinguish four cases:

• The case where e1 is known to be negative (that is SatisfiesTanL(t, e1 < 0)) and the
result is ⊥Tana, since any code after this array creation assignment is unreachable.

• The case where e1 is known to be non-positive (that is SatisfiesTanL(t, e1 ≤ 0)),
in which case the new array is known to have size 0, which corresponds with to
a segmentation with no segments and a single boundset that contains both zero
and the length of the array : {0; |y|}.

• The case where e1 is known to be positive (that is SatisfiesTanL(t, e1 > 0)). In this
case, the emptiness marker of the segmentation is false (as indicated by the absence
of a question mark), because we know for certain that the array is not empty.

• All the other cases, where we have no particular prior knowledge on e1, and the
result is as described in Definition 35.
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Abstraction for array update
In order to define the transfer functions for array update and array access, we start
by describing, for a segmentation, the creation of a new segment at a given bound
expression. We will use this when the index used to access or update an array is a
bound expression.
Definition 55 (Insert a segment at a bound expression). Given a segmentation
s = (l, v, b0, σ), with segment sequence σ = (di, bi,mi)i∈{1,...,n}, a bound expression
e ∈ E(Γ), a segment summary d ∈ S and an abstract value o ∈ Tana, the insertion of
segment d at bound expression e in segmentation s, given information o is given by

InsertSeg(d, e, s, o) = (l, v, b′0, σ[1 : i1 − 1] · σ′ · σ[i2 + 1 : n])
where i1 = max

{
i ∈ {0, . . . , n} | ∃e1 ∈ bi,Satisfies

Tana(o, e1 ≤ e)
}

and i2 = min
{
i ∈ {0, . . . , n} | ∃e2 ∈ bi,Satisfies

Tana(o, e < e2)
}

and σ′ =

{
σ1 · σe · σ2 if i1 = 0

(di1 , b
′
i1
,mi1) · σ1 · σe · σ2 otherwise

and b′i1 =

{
bi1 ∪ {e} if ∃e1 ∈ bi1 ,Satisfies

Tana(o, e1 = e)

bi1 otherwise

and b′0 =

{
b′i1 if i1 = 0

b0 otherwise

and σ1 =

{
ε if ∃e1 ∈ bi1 ,Satisfies

Tana(o, e1 = e)

(d′, {e},mL) otherwise
and σe = (d, be, ff)

and be =

{
bi2 ∪ {e+ 1} if ∃e2 ∈ bi2 ,Satisfies

Tana(o, e2 = e+ 1)

{e+ 1} otherwise

and σ2 =

{
ε if ∃e2 ∈ bi2 ,Satisfies

Tana(o, e2 = e+ 1)

(d′, bi2 ,mR) otherwise
and mL = ∃e1 ∈ bi1 ,CanSat

Tana(o, e1 = e)
and mR = ∃e2 ∈ bi2 ,CanSat

Tana(o, e2 = e+ 1)

and d′ =
⊔SL

i1<i≤i2

di

Note that for arbitrary abstract values o, the segment indices i1 and i2 of Defini-
tion 55 might not exist. However, we will always use InsertSeg in contexts where b0
contains 0, bn contains some length variable |x| and o contains the information that
0 ≤ e < |x|, which guarantees the existence of i1 and i2.

For array updates, we distinguish two cases, like [12], depending on whether the
expression used as index can be put in the form of a bound expression or not.
Definition 56 (Array update at a bound expression). For any abstract value (t, a), and
any bound expression e1 ∈ E(Γ), the transfer function for the array update instruction
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y := x[e1 → e2] is given by

AssignTana(y := x[e1 → e2])(t, a) = (t2, a3)

where (t2, a3) = AssignTana(|y| := |x|)(t1, a2)
and a2 = a1[y 7→ s′]
and s′ = InsertSeg(d, e1, a1(x), (t1, a1))

and d =
{
CondTanL(l = e1 ∧ v = e2)

(
AddTanL{l,v} (t1)

)}
and

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
= a1(x)

and (t1, a1) = CondTana(0 ≤ e1 < |x|)(t, a)

We are going to explain the formula of array update at a bound expression (Defini-
tion 56) from bottom to top. Since expression e1 is used as an index in the array x, it
must evaluate to an integer between the bounds of the array. Hence we can add the
constraint 0 ≤ e1 < |x| to the information we already have, which is done by the last
line: (t1, a1) = CondTana(0 ≤ e1 < |x|)(t, a). Then, we get the names for the special
index variable l and value variable v by looking at the current segmentation for x,
which is done in the second-to-last line:

(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
= a1(x). We use

these special variables l and v to build the segment summary for index e1 for the
new array: d =

{
CondTanL(l = e1 ∧ v = e2)

(
AddTanL{l,v} (t1)

)}
. This allows to define the

segmentation s′ for the new array, by inserting the segment summary d at index e1
(which is possible since e1 is a bound expression): s′ = InsertSeg(d, e1, a1(x), (t1, a1)).
The new array environment is obtained by associating this new segmentation s′ to
the variable y being assigned: a2 = a1[y 7→ s′]. The length of the array now stored
in y is the same as the array stored in x, and this must be taken into account both
inside numeric constraints but also in boundsets. This information is updated by
(t2, a3) = AssignTana(|y| := |x|)(t1, a2), which yields our final result.
Definition 57 (Array update at a non-bound expression). For any abstract value
(t, a), and any expression e1 that is not a bound expression, the transfer function for
the array update instruction y := x[e1 → e2] is given by

AssignTana(y := x[e1 → e2])(t, a) = (t2, a3)

where (t2, a3) = AssignTana(|y| := |x|)(t1, a2)
and a2 = a[y 7→ s′]
and s′ =

(
l, v, b0, (d

′
i, bi,mi)i∈{1,...,n}

)
and ∀i ∈ I, d′i = di ⊔SL

{
CondTanL(l = e1 ∧ v = e2)

(
AddTanL{l,v} (t1)

)}
and ∀i ∈ {1, . . . , n} \ I, d′i = di
and I =

{
i ∈ J1, nK | ∃(eL, eR) ∈ bi−1 × bi,CanSat

Tana((t1, a1), eL ≤ e1 < eR)
}

and
(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
= a1(x)

and (t1, a1) = CondTana(0 ≤ e1 < |x|)(t, a)

Definition 57 is very similar to Definition 56. The difference lies in the segment
summaries. Since e1 is not a bound expression, it is not possible to create a segment
of length exactly one to store in a precise way the information about the new value.
Instead, the set I identifies all possible segments that might be indexed by e1, and for
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these segments a union between the old value and the new value is taken. Said otherwise,
Definition 56 performs a strong update while Definition 57 performs a weak update.

Abstraction for array accesses
When analysing an array access instruction y := x[e], three different things happen:

• The segmentation for variable x is used to deduce information on the new value
of variable y.

• If e is a bound expression, a new segment is created inside the segmentation for x,
of size one, whose only possible index is e. For this new segment, we know that
its value is equal to the new value of y. Hence any information that we learn from
y going forward, also enriches the segmentation for x.

• If y appears in bound expressions inside the boundsets of segmentations, the
corresponding bound expressions are removed.

Let’s look at an example of array access. In this example, we will omit the disjunctive
completion, constructor constraints and structural equalities, to focus on the NPR and
array components. For example, if we analyse the assignment y := t[x] while already
having the abstract value(

{5 ≤ x; |t| = 10},
[t 7→ (l, v, {0} v ≤ 0 {5} v = l + 1 {7} v = 2× l {|t|})]

)
then, the abstract value after the assignment should be(

{5 ≤ x < 10; 6 ≤ y ≤ 18; |t| = 10},
[t 7→ (l, v, {0} v ≤ 0 {5} v = l + 1 {7} v = 2× l {|t|})]

)
where we have gained information both on variable x and on variable y. Indeed, x being
used as index tells us that x is smaller than |t|; while the information for y is obtained
from joining what would happen for two different segments: the segment between
indices 5 and 7 (5 included and 7 excluded) and the segment between indices 7 and |t| (7
included and |t| excluded). This results in joining the information {y = x+1; 5 ≤ x < 7}
with the information {y = 2×x; 7 ≤ x < 10} which results in {6 ≤ y ≤ 18; 5 ≤ x < 10}.

We start by defining the removal of the bound expressions containing y. This is
similar to what is done for non-array assignments (Definition 51), but simpler, since
we only remove, without adding nor replacing.
Definition 58 (Abstraction of array access for segmentation boundsets). For any
segmentation s and any array access assignment y := x[e], we define

AssignBsets(y := x[e])(s) = RemoveBexp ({y + k | k ∈ K}, s)

We then define the effect of array access on abstract array environments: in addition
to the removal of y from the boundsets it appears to, the segmentation associated to x
is used to deduce information about y that will be added to the segment summaries of
the other segmentations.
Definition 59 (Abstraction of array access for abstract array environments). For
any abstract array environment a and any array access assignment y := x[e], the
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abstraction of array access y := x[e] for abstract array environment a is the abstract
array environment such that, for any array variable z,

AssignA(y := x[e])(a, t)(z) =(
l, v, bz0, (d

′z
i , b

z
i ,m

z
i )i∈{1,...,p}

)
where ∀i ∈ {1, . . . , p} , d′zi = de ⊓SL AddSL{y}

(
RemSL

{y}(d
z
i )
)

and de =

i2⊔SL

i=i1+1

AssignSL(y := v)
(
CondSL(l = e)(dxi )

)
and i1 = max

{
i ∈ {0, . . . , n} | ∃e1 ∈ bxi ,Satisfies

Tana((t, a), e1 ≤ e)
}

and i2 = min
{
i ∈ {0, . . . , n} | ∃e2 ∈ bxi ,Satisfies

Tana((t, a), e < e2)
}

and
(
l, v, bx0 , (d

x
i , b

x
i ,m

x
i )i∈{1,...,n}

)
= a(x)

and
(
l, v, bz0, (d

z
i , b

z
i ,m

z
i )i∈{1,...,p}

)
= AssignBsets(y := x[e])(a(z))

In the detailed example of appendix §B, the fact of creating a new segment at array
access proves very useful. Indeed, it allows, after assignment challenger = q[i], to
take into account inside the segmentation the assertions made on variable challenger,
like, for example, the assertion assert(res@SomeMax.prio >= challenger.prio) on the
third branch. The knowledge of how the array content relates to the value of variable
res is what allows to capture into the function summary the information that the
result has a priority higher to any of the TCBs in the queue.

Because of this creation of a new segment, array access definition is similar to the
one for array update. In particular, there are two cases according to whether the index
being accessed is a bound expression or not.
Definition 60 (Abstraction of array access at a bound expression). For any abstract
value (t, a) ∈ Tana and any array access instruction y := x[e] where e is a bound
expression, the abstraction for array access is given by

AssignTana(y := x[e])(t, a) = (t′, a′)

where a′ = AssignA(y := x[e])(a′′, t′)
and a′′ = a[y 7→ s′]
and s′ = InsertSeg(d, e, a(x), (t′, a))

and t′ = RemTanL
{l,v}

(⊔TanL

t′′∈d

t′′

)

and d =

i2⊔SL

i=i1+1

AssignSL(y := v)
(
CondSL(l = e ∧ 0 ≤ e < |x|)(di)

)
and i1 = max

{
i ∈ {0, . . . , n} | ∃e1 ∈ bi,Satisfies

Tana((t, a), e1 ≤ e)
}

and i2 = min
{
i ∈ {0, . . . , n} | ∃e2 ∈ bi,Satisfies

Tana((t, a), e < e2)
}

and
(
l, v, b0, (di, bi,mi)i∈{1,...,n}

)
= a(x)

The abstraction of array access at a non-bound expression is given in Definition 36,
Page 47, on the main text of the article.
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B Detailed example of analysis with arrays
In this appendix, we manually execute the analysis on the find_max_priority function
from Fig. 8. To alleviate notation, we use the following conventions in the description
that follows:

• If a set of abstract values in a disjunctive completion is a singleton, then we omit
the braces. For example, in a structural equalities component, we write q′ = q
instead of {q′ = q}.

• If a constraint can be deduced from other constraints already written, it can be
omitted. For example, if we have a structural equalities component q′ = q and
the NPR component can be described by the set of constraints {|q| > 0; |q′| > 0},
then one of the two constraints of the NPR component can be omitted, and we
write |q′| > 0.

• We may omit an entire component of a product domain when the component is
⊤, or when all its constraints can be deduced from other components.

• We use labels to better identify components of an abstract value: we use the label
cc for the constructor constraints component, seq for the structural equalities
component, NPR for the NPR component, A for the array component.

We start the analysis of the function with the identity relation between the primed
and un-primed versions of the arguments, together with the top segmentation for
arrays. The top segmentation for arrays implies that every array length is non-negative.
Hence, the initial abstract value is

r0 =

(
seq : q′ = q, NPR : |q′| ≥ 0
A : [q′ 7→ {0}⊤{|q′|}?]

)
After the first two assignments i = 0; res = NoMax {}, we get the abstract value

r1 =

(
cc : res′@NoMax, seq : q′ = q, NPR : {|q′| ≥ 0; i′ = 0}
A : [q′ 7→ {0; i′}⊤{|q′|}?]

)
We see that, in addition to gaining the constructor constraint res′@NoMax, the bound
expression i′ was added to the set of bound expressions that contained 0, since, after
the assignment, we have i′ = 0. The variable i′ is added by the first boundset thanks
to the AddBexpB function, that is used by the transfer function for assignments. This
is formalised in Definitions 42, 50, 51 and 53.

When analysing the loop, we use loop unrolling. Hence, the results of not executing
the loop at all, and executing it at least once, are computed separately, and then
joined afterwards. The result of not executing the loop at all is obtained by applying
the transfer function for condition i′ ≥ |q′| to the abstract value before the loop, and
produces the following abstract value:

r2 = CondDana(i′ ≥ |q′|)(r1) =(
cc : res′@NoMax, seq : q′ = q, NPR : i′ = 0 = |q′|
A : [q′ 7→ {0; i′; |q′|}]

)
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In the NPR component, the new condition i′ ≥ |q′| combined with the information
that we already had i′ ≤ |q′| allows to deduce i′ = |q′|. In the array component, in
the segmentation for q′, the two former boundsets {0; i′} and {|q′|} are merged by the
FuseBoundSets function. Indeed, there is no segment between i′ and |q′|, since i′ = |q′|.
This is formalized in Definitions 45, 46 and 48. We get for q′ a segmentation with only
one set of segment bounds and no segment summary; in other words, a segmentation
for the empty array.

To obtain the result of executing the loop at least once, we start by analysing one
execution of the loop body, then we look for a fixpoint with a Kleene iteration with
widening. When entering the loop the first time, we get

r3 = CondDana(i′ < |q′|)(r1) =(
cc : res′@NoMax, seq : q′ = q, NPR : {|q′| > 0; i′ = 0}
A : [q′ 7→ {0; i′}⊤{|q′|}]

)
The condition tells us that the segment between {0; i′} and {|q′|} is not empty, since
i′ < |q′|. Hence the question mark indicating that the segment can be empty disappears
from the array segmentation. This is formalized in Definition 47.

Then, analysing the assignment challenger = q[i] creates a new segment, between
bound expressions i and i+ 1, for the segmentation of q′.

r4 = AssignDana(challenger′ := q′[i′])(r3) = cc : res′@NoMax, seq : q′ = q, NPR : {|q′| > 0; i′ = 0}

A :

[
q′ 7→ {0; i′}

(
NPR :

{
l = i′ = 0;

v = challenger′

})
{i′ + 1}⊤{|q′|}?

]
The insertion of this segment of size 1 is performed by the InsertSeg function, and is
formalized in Definitions 55 and 60.

To analyse the branching, the tree branches are analysed separately, and then the
results are joined together. Here, for the first iteration of the loop, only the first branch
of the branching is reachable. Indeed, for the second and third branches, the assertions
introduce the path res’@SomeMax.prio, which is incompatible with the path res’@NoMax
already present. The analysis therefore infers that the second and third branches are
unreachable and produces ⊥Diorana. Hence, the result of the whole branching construct
for this first loop iteration is the result of analysing the first branch. The first assignment
of the first branch adds a structural equality to our abstract value:

r5 = AssignDana(case′ := res′@NoMax)(r4) =cc : res′@NoMax, seq :

{
q′ = q;
case′ = res′@NoMax

}
, NPR :

{
|q′| > 0;
i′ = 0

}
A :

[
q′ 7→ {0; i′}

(
NPR :

{
l = i′ = 0;

v = challenger′

})
{i′ + 1}⊤{|q′|}?

]


The second assignment of the first branch changes the constructor constraint on res’,
and allows us to gain some information for the array segment contained between the
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bounds i′ and i′ + 1:

r6 = AssignDana(res′ := SomeMax(challenger′))(r5) =
seq : {res′@SomeMax = challenger′; q′ = q}, NPR : {|q′| > 0; i′ = 0}

A :

q′ 7→ {0; i′}

NPR :

 l = i′ = 0;
v = challenger′

v = res′@SomeMax


 {i′ + 1}⊤{|q′|}?




After the branching, the next instruction is the assignment i := i + 1. This
assignment is invertible, in the sense that the value of variable i after the assignment
is an expression on the value of i before the assignment. The inverse of this assignment
is i := i− 1. The expression i− 1 in this inverse assignment can be used as a segment
bound. Hence we update the bound segments by replacing i′ with i′ − 1 (in addition to
updating the NPR components and the segment summaries). This is obtained thanks
to the function ReplaceSeg and formalized in Definitions 49 and 51. We get

r7 = AssignDana(i′ := i′ + 1)(r6) =
seq : {res′@SomeMax = challenger′; q′ = q}, NPR : {|q′| > 0; i′ = 1},

A :

q′ 7→ {0; i′ − 1}

NPR :

 l = i′ − 1 = 0;
v = challenger′

v = res′@SomeMax


 {i′}⊤{|q′|}?




This abstract value r7, that corresponds to the end of the first abstract execution of
the loop, will not only be used to compute the second abstract execution of the loop,
but also to take a widening with the result of that second execution.

The second abstract execution of the loop body starts with the loop condition

r8 = CondDana(i′ < q′)(r7) =
seq : {res′@SomeMax = challenger′; q′ = q}, NPR : {|q′| > 1; i′ = 1}

A :

q′ 7→ {0; i′ − 1}

NPR :

 l = i′ − 1 = 0;
v = challenger′

v = res′@SomeMax


 {i′}⊤{|q′|}




As before, the loop condition allows to stablish that the last segment of the segmentation
is not empty.

Then we have to analyse the assignment to variable challenger, and we obtain

r9 = AssignDana(challenger′ := q′[i′])(r8) =(
cc : res′@SomeMax, seq : q′ = q, NPR : {|q′| > 1; i′ = 1}
A :

[
q′ 7→ {0; i′ − 1} d91 {i′} d92 {i′ + 1}⊤{|q′|}?

] )
where d91 =

(
NPR :

{
l = i′ − 1 = 0;

v = res′@SomeMax

})
and d92 =

(
NPR :

{
l = i′ = 1;

v = challenger

})
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As before, this assignment creates a new segment in the segmentation, between bounds
i′ and i′ + 1.

During this second abstract execution of the loop, the first branch of the branching is
unreachable and its analysis yields ⊥Diorana, while the other two branches are reachable.
The assertion on the second branch yields

r10 = CondDana(challenger′.prio > res′@SomeMax.prio)(r9) = cc : res′@SomeMax, seq : q′ = q,
NPR : {|q′| > 1; i′ = 1; challenger′.prio > res′@SomeMax.prio}
A :

[
q′ 7→ {0; i′ − 1} d101 {i′} d102 {i′ + 1}⊤{|q′|}?

]


where d101 =

(
NPR :

{
l = i′ − 1 = 0; v = res′@SomeMax

v.prio < challenger′.prio

})
and d102 =

(
NPR :

{
l = i′ = 1;

v = challenger′

})
We see that the fact that the segment summaries mention variables of the program other
than l and v (like res′ and challenger′ here) allows to capture interesting information
on the array contents. For example, here, the inequality v.prio < challenger′.prio inside
the first segment summary d101 , that will allow, as the analysis continues, to deduce that
the priorities of all TCBs in the array are less than or equal to the one of the final result.

Then, after the assignment of the second branch, we have

r11 = AssignDana(res′ := SomeMax(challenger′))(r10) = cc : res′@SomeMax, seq : {q′ = q; res′@SomeMax = challenger′},
NPR : {|q′| > 1; i′ = 1}
A :

[
q′ 7→ {0; i′ − 1} d111 {i′} d112 {i′ + 1}⊤{|q′|}?

]


where d111 =

(
NPR :

{
l = i′ − 1 = 0;

v.prio < res′@SomeMax.prio

})
and d112 =

(
NPR :

{
l = i′ = 1;

v = challenger′

})
If we compare the first segment summary in this abstract value r11 with the pre-
vious abstract value r10, we see that the previous equality v = res′@SomeMax
has disappeared, since the value of res′ has changed; but a new inequality
v.prio < res′@SomeMax.prio has been deduced from the previous inequality v.prio <
challenger′.prio.

For the third branch, the constraint res′@SomeMax.prio ≥ challenger′.prio is
captured by the NPR component of the Tana product. This is the only change with
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respect to the abstract value before the branching.

r12 = CondDana(res′@SomeMax.prio ≥ challenger′.prio)(r9) = cc : res′@SomeMax, seq : q′ = q,
NPR : {|q′| > 1; i′ = 1; res′@SomeMax.prio ≥ challenger′.prio}
A :

[
q′ 7→ {0; i′ − 1} d121 {i′} d122 {i′ + 1}⊤{|q′|}?

]


where d121 =

(
NPR :

{
l = i′ − 1 = 0;

v = res′@SomeMax

})
and d122 =

(
NPR :

{
l = i′ = 1;

v = challenger′

})
At the end of the branching, we get the union of the abstract value for the second

branch r11, and the abstract value for the third branch r12 (recall the first branch is
unreachable and its abstract value ⊥Diorana at this point).

r13 = r11 ⊔Diorana r12 = cc : res′@SomeMax, seq : q′ = q,
NPR : {|q′| > 1; i′ = 1; res′@SomeMax.prio ≥ challenger′.prio}
A :

[
q′ 7→ {0; i′ − 1} d131 {i′} d132 {i′ + 1}⊤{|q′|}?

]


where d131 =

(
NPR :

{
l = i′ − 1 = 0;

v.prio ≤ res′@SomeMax.prio

})
and d132 =

(
NPR :

{
l = i′ = 1;

v = challenger′

})
One interesting thing to note here, is the value of the first segment summary. Indeed, in
the second branch we have v.prio < res′@SomeMax.prio whereas in the third branch
we have both v = res′@SomeMax and res′@SomeMax.prio ≥ challenger′.prio, hence
the union of the two yields v.prio ≤ res′@SomeMax.prio. Intuitively, we go from the
two cases “A TCB with a higher priority has been found in the array, and stored in
variable res” and “The TCB stored in res is still the one with the highest priority
so far” to the invariant “Whatever the case, the priority of the TCB stored in res is
higher or equal to the ones in the array, between indices 0 included, and i excluded”.

The last instruction of the loop body is the increment of variable i. As before, this
updates the bound expressions used to delimit segments, in addition to update segment
summaries.

r14 = AssignDana(i′ := i′ + 1)(r13) = cc : res′@SomeMax, seq : q′ = q,
NPR : {|q′| > 1; i′ = 2; res′@SomeMax.prio ≥ challenger′.prio}
A :

[
q′ 7→ {0; i′ − 2} d141 {i′ − 1} d142 {i′}⊤{|q′|}?

]


where d141 =

(
NPR :

{
l = i′ − 2 = 0;

v.prio ≤ res′@SomeMax.prio

})
and d142 =

(
NPR :

{
l = i′ − 1 = 1;
v = challenger′

})
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The next step of the analysis is to take a widening between abstract value r7 that was
obtained at the end of the first execution of the loop, and abstract value r14, obtained
at the end of the second execution of the loop. In order to perform the widening, we
start by transforming the segmentations that appear in these two abstract values, so
that they have the same sets of bound expressions; this is called unification. In this
detailed example, when unifying segmentations for widening, we will only use bound
expression removal, and not boundset splitting (section § 6.5.1). Although less precise
in general, it will be precise enough for this example, and allows for faster convergence,
which is useful in hand-executed analyses. In this example, not using boundset splitting
forces the removal of bound expression i′ − 1, which means that the two first segments
of r14 are merged together, using abstract union. After unification we get

r′7 =


seq : {res′@SomeMax = challenger′; q′ = q}, NPR : {|q′| > 0; i′ = 1},

A :

q′ 7→ {0}

NPR :

 l = i′ − 1 = 0;
v = challenger′

v = res′@SomeMax


 {i′}⊤{|q′|}?




and

r′14 =
cc : res′@SomeMax, seq : q′ = q,
NPR : {|q′| > 1; i′ = 2; res′@SomeMax.prio ≥ challenger′.prio}

A :

[
q′ 7→ {0}

(
NPR :

{
i′ − 2 ≤ l ≤ i′ − 1; i′ = 2;

v.prio ≤ res′@SomeMax.prio

})
{i′}⊤{|q′|}?

]


We see that, as intended, the segmentations share the same sets of bound expressions
after unification: {0}, {i′} and {|q′|}. To go from r7 to r′7 the bound expression i′ − 1
was removed from the boundset {0; i′−1}. To go from r14 to r′14, the bound expressions
i′ − 2 and i′ − 1 were removed from their respective bound expressions, and the
two first segments were merged. Everything else remained unchanged. Both of these
transformations yield abstract values that are less precise than the initial ones. In
other words, r7 ⊑Diorana r′7 and r14 ⊑Diorana r′14. This is the reason why it is sound to
perform unification for widening.

After unification, widening is done segment-wise. The result of the widening is

r15 =


cc : res′@SomeMax, seq : q′ = q,
NPR : {|q′| > 0; i′ ≥ 1; res′@SomeMax.prio ≥ challenger′.prio}

A :

[
q′ 7→ {0}

(
NPR :

0 ≤ l ≤ i′ − 1; i′ ≥ 1;
v.prio ≤ res′@SomeMax.prio

)
{i′}⊤{|q′|}?

]


We see that during unification and widening, the distinction between the last slot of
the array to be treated (the one at i − 1) and the others before it has disappeared.
Instead we have a single segment for all the slots treated so far (between indices 0
included and i excluded), with the invariant that their TCB’s priority is smaller or
equal to the one in variable res.
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This is a fixpoint. We recall that in the context of loop unrolling, we computed
separately the abstract value for the executions where the loop is not taken at all (r2),
from the abstract value for all the executions that take the loop at least once. The
latter is obtained from fixpoint r15 by applying the negation of the loop condition:

r16 = CondDana(i′ ≥ |q′|)(r15) =
cc : res′@SomeMax, seq : q′ = q,
NPR : {|q′| = i′; i′ ≥ 1; res′@SomeMax.prio ≥ challenger′.prio}

A :

[
q′ 7→ {0}

(
NPR :

{
0 ≤ l ≤ i′ − 1; i′ ≥ 1;

v.prio ≤ res′@SomeMax.prio

})
{i′; |q′|}

]


Like before for r2, the condition i′ ≥ |q′| together with the information already present
i′ ≤ |q′| allows to deduce that i′ = |q′|, and hence allows to merge the two sets of
bound expressions {i′} and {|q′|}.

The abstract value after the loop, that accounts for the execution that do not take
the loop at all, and those that take it at least once, is

r17 = r2 ⊔Diorana r16 =

(
cc : res′@NoMax, seq : q′ = q, NPR : i′ = 0 = |q′|
A : [q′ 7→ {0; i′; |q′|}]

)
;

cc : res′@SomeMax, seq : q′ = q,
NPR : {|q′| = i′; i′ ≥ 1; res′@SomeMax.prio ≥ challenger′.prio}

A :

[
q′ 7→ {0}

(
NPR :

{
0 ≤ l ≤ i′ − 1; i′ ≥ 1;

v.prio ≤ res′@SomeMax.prio

})
{i′; |q′|}

]



Since the two abstract values r2 and r16 have incompatible constructor constraints
res′@NoMax and res′@SomeMax; they are both kept in the disjunction, as separate
cases.

The input-output summary for the function is then obtained by removing all the
variables except the input variable q and the output variable res′. The structural
equality q′ = q allows to transport all the information gathered on q′ to q. The summary
that we get for the find_max_priority function is

(
cc : res′@NoMax, NPR : |q| = 0, A : [q 7→ {0; |q|}]

)
;(

cc : res′@SomeMax, NPR : |q| ≥ 1,
A : [q 7→ {0} (NPR : l ≥ 0; v.prio ≤ res′@SomeMax.prio) {|q|}]

)


As stated in section § 6.8, this input-output summary distinguishes two cases:
• either the input queue is empty (|q| = 0) and the result is built using constructor
NoMax;

• or the input queue is not empty (|q| ≥ 1), the result is built using constructor
SomeMax and the TCB that is returned as a result (via the constructor SomeMax)
has a priority that is greater than the priority of any of the TCBs in the input
queue.
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As we stated before, this input-output summary is not exact: it does not state that,
when the result is a TCB wrapped in constructor SomeMax, this TCB belongs to the
input queue.
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