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Abstract

In this work, we are interested in the numerical simulation of a high-speed hot jet impinging on a free liquid surface at rest by
means of diffuse interface models. We first consider the case of a low-temperature subsonic jet; a 4-equation model is used
on a 2D axi-symmetric set-up. Turbulence is accounted for by solving the Reynolds averaged equations and using a k − ω
turbulence model. Numerical results are evaluated by comparing the depth of the cavity formed in the liquid surface to the
predicted values using theoretical models from the literature. We then consider the case of a high-temperature jet. We start by
showing the limits of the previous model as it relies on a thermal equilibrium assumption between the liquid and gas phases
which is no longer valid. A 5-equation model that does not rely on this assumption is presented. Both models are compared
numerically on a simplified set-up.

Introduction

The objective of the present study is to investigate the numerical simulation of a supersonic hot jet impinging on a free liquid
surface initially at rest. This type of two-phase flow is of particular interest in defence applications but also to several industries
such as the steel industry where supersonic jets are used in the oxidation process.

Several methods allow the numerical simulation of two-phase flows, such as the Volume of Fluid or the Level-Set method
which allow for accurate capturing of the interface motion (Mirjalili et al. 2017). The flows we are interested in are quite
challenging as they contain a wide range of scales (both in time and space) and complex physics (wide range of Mach numbers,
strong temperature gradients, evaporation, water splashing, . . . ). Since a Direct Numerical Simulation at industrial scale is
out of reach, predictive reduced-order models are required. We focus on diffuse interface models which have been chosen for
their robustness and flexibility with respect to the flow topology. Several diffuse interface models exist in the literature, one
of the most complete ones is a 7-equation model* (Baer and Nunziato 1986) which allows the two phases to be locally out of
mechanical and thermal equilibrium. It is often practical to assume that some quantities will remain at equilibrium during the
flow, thus reducing the number of variables and leading to a hierarchy of models. Within the development of the CEDRE code
at ONERA, the most advanced model in terms of development is a 4-equation model† (Le Touze 2015) which assumes local
equilibrium between the pressures, velocities and temperatures. A 5-equation model (Cordesse 2020) which does not assume
local thermal equilibrium between phases is also under development. Since these models do not allow to compute the finest
flow features, they can be enriched through the modelling of sub-scale quantities, see for instance Cordesse (2020); Di Battista
(2021) but also the current works of A. Loison at CMAP (Loison et al. 2023a,b).

Working towards our goal which is the numerical simulation of a high-temperature, supersonic gas jet impinging on a resting
free water surface, in this paper we first consider the case of a subsonic jet. We start by studying the low-temperature‡ case
which has been the subject of a great many studies over the years. Assuming a stationary cavity and neglecting viscosity as well
as surface tension, Banks and Chandrasekhara (1963) obtained a relationship between cavity depth and jet momentum. This
analytical model was compared to experimental measurements of cavity depths by means of photographs, it was shown that
the data is in good agreement with the theoretical predictions. Similar experiments were carried out by Cheslak et al. (1969)
using fast-setting cement in order to get more accurate measurements which also validated theoretical predictions. Rosler and
Stewart (1968) showed that low-velocity jets lead to stationary and axisymmetric cavities. As the jet velocity increases, the
cavity reaches a length to width ratio for which it becomes unstable and starts to oscillate. When the jet velocity is even further

*2 mass, 2 momentum, 2 energy conservation equation and 1 equation on the volume fraction.
†2 mass conservation equations, 1 momentum and 1 energy conservation equations.
‡by low-temperature we mean that the jet’s temperature is the same as the liquid’s and such that no phase change occurs.
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increased, air bubbles penetrate the liquid and splashing water droplets appear. A linear relation between surface tension and
the squares of the critical jet velocities governs the transition between these different dynamics. Molloy (1970) identified three
cavity regimes: dimpling, splashing and penetrating. The case we are ultimately interested in corresponds to the penetrating
regime, the results presented in this paper however correspond to the dimpling regime.

In order to obtain predictive numerical simulations, the jet’s velocity profile must be computed accurately. As ultimately,
we aim at considering high jet Mach numbers Mjet, compressibility effects must be taken into account into our model. This
is not the case when considering small jet Mach numbers for which incompressible models can be used and have shown good
results (Nguyen and Evans 2006; Adib et al. 2018). However, as the liquid has an extremely low compressibility and is initially
at rest, we are subject to the well-known issue of compressible solvers failing in the low-Mach regime. Using a low-Mach
correction, we numerically show the 4-equation model’s capability to retrieve the correct dynamics of the cavity in the low-
velocity and low-temperature jet regime as the results are compared to theoretical predictions. Next we show that the local
thermal equilibrium imposed by this 4-equation model limits its capabilities to treat the case of a high-temperature jet, thus
justifying the development of a 5-equation model which does not rely on such an assumption. We assess the capabilities of the
new model on a simplified set-up.

The outline of this paper is the following. Section 1 is devoted to the results obtained for the simplified case of a cold subsonic
jet using a 4-equation model. First, the model and the numerical methods used are presented, the low-Mach correction used is
described and its effects on the numerical stability of the computations are shown. Next the numerical set-up and the obtained
results are presented and compared to theoretical predictions. Section 2 concerns the case of a hot jet, we start by showing that
the thermal equilibrium assumption on which the 4-equation model relies is no longer viable, and then consider a 5-equation
model for which the two phases are allowed to be locally out of thermal equilibrium. The model and its numerical methods are
presented and we propose a comparison to the previous model on a simplified set-up.

1 Simulation of a low-temperature impinging jet

1.1 Presentation of a 4-equation model

The 4-equation model (Le Touze 2015) assumes that locally both phases share the same temperature, velocity and pressure. Its
vector of conservative variables writes Q = (ρYj,k, ρu, ρE)

⊺ with ρ, u and E representing the mixture’s density, velocity and
specific total energy respectively. The specific internal energy is denoted e := E − 1

2u
2. Variables Yj,k correspond to the mass

fractions of the different species with respect to the mixture, here k ∈ {g, ℓ} refers to either the gaseous or liquid phase while
j ∈ J1, nkK is used for indexing the species within phase k. The total mass fractions of each phase are given by Yk =

∑
j Yj,k

and sum up to one. In conservative form, the system writes

∂tQ+∇ · (fc + fd + fσ) = S, (1)

with fc the convective flux tensor which corresponds to the standard compressible multi-species Euler fluxes. Tensors fd and
fσ respectively represent diffusive fluxes (possibly including RANS or LES turbulent diffusion) and surface tension fluxes
using the Continuum Surface Stress flux expression, while S represents source terms here only gravity.

Thermodynamic closure is obtained by computing the mixture pressure and temperature. Provided that the equations of
state eEOS

k (p, T ) and vEOS
k (p, T ), expressing the internal energy and specific volume of each pure phase are given, the mixture

pressure and temperature are p, T such that{
ρYge

EOS
g (p, T ) + ρYℓe

EOS
ℓ (p, T ) = ρe,

︸ ︷︷ ︸
= αg

ρYgv
EOS
g (p, T ) + ︸ ︷︷ ︸

= αℓ

ρYℓv
EOS
ℓ (p, T ) = 1.

(2)

As indicated by the under-brackets, this also allows to compute the volume fraction αk := Yk
ρ
ρk

of each phase. In our case,
we consider a mixture of perfect gases (air and nitrogen), denoting yj,k the mass fraction of the jth species with respect to its
phase, we have

vEOS
g =

RT

p

ng∑
j=1

yj,g
Wj

, eEOS
g =

ng∑
j=1

cv,j,gyj,gT, (3)

with Wj and cv,j,g the molar mass and specific heat capacity at constant volume of the jth species respectively and R the
universal gas constant.

The liquid phase is considered pure ie composed by only water. Described by a compressible liquid law obtained through the
linearisation of the specific volume near a pressure-temperature reference point (p0, T0), its equation of state writes

vEOS
ℓ = v0,ℓ

1 + α0,ℓ(T − T0)

1 + β0,ℓ(p− p0)
. (4)

Here v0,ℓ is the liquid’s specific volume while α0,ℓ and β0,ℓ are its thermal expansion and isothermal compressibility coefficients
all taken at the reference point. Knowing the expression of the specific heat T 7→ cv,ℓ(T ) for the liquid as well as the specific
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internal energy e0,ℓ of the reference state, the expression of eEOS
ℓ (p, T ) can be derived from (4) using classical thermodynamic

relations. For our application, we have chosen p0 = 101325 Pa, T0 = 298.15 K and v0,ℓ = 10−3 m3/kg. Using α0,ℓ =
2.5 ·10−4 1/K and β0,ℓ = 5.0 ·10−10 1/Pa, as well as cmol

p = 75.3 J/(Kmol) and W0,ℓ = 1.8 ·10−2 kg/mol, yields the sound
velocity cwater = 1420 m/s at reference conditions. Since the liquid’s equation of state is obtained through a linearisation at a
reference point, its physical validity is restricted and not suited for strong temperature gradients. The development of a robust
equation of state valid over a wider range of temperatures will be included in future works.

1.2 Numerical discretization of the governing equations

As our end-goal is to simulate a system with complex physics containing stiff source terms modelling exchanges between phases
and relaxation terms with small parameters, we aim for a robust method compatible with general meshes. This is why we have
opted for the method of lines, which allows the use of different time integrators, each adapted to specific parts of the system
through the use of operator splitting techniques. This will be useful once stiff source terms are included. Space discretization is
achieved through a finite-volume method with a multislope MUSCL reconstruction (Le Touze 2015) using the Van Leer limiter.
Interface fluxes are computed with a HLLC-type Riemann solver (Toro et al. 1994). The resulting ODE, which we write

d

dt
Q = F(Q), (5)

is then solved numerically using a linearly implicit Euler method such that

Qn+1 = Qn +∆t [Id−∆tDF (Qn)]
−1 F (Qn) . (6)

This method is obtained by linearising the nonlinear system given by the implicit Euler method. This strategy can be applied
to any diagonally implicit Runge-Kutta method and the resulting methods are referred to as Rosenbrock methods (Hairer and
Wanner 1996). The resulting linear system is solved using the GMRES method.

Other time integrators have also been tested such as a 2nd-order linearly-implicit Runge-Kutta method or explicit methods
such as the Strong Stability Preserving (SSP) Runge-Kutta methods. For an extensive review of the SSP methods, we refer to the
book of Gottlieb et al. (2011). We simply recall that these methods are obtained by a series of convex combinations of explicit
Euler steps such that if under a suitable time-step restriction, the explicit Euler step satisfies a stability condition for a given
norm (semi-norm or scalar convex function such as total variation), then the explicit SSP scheme will also satisfy a stability
property under a similar time-step restriction, as will all intermediate stages. For some Runge-Kutta schemes (in particular
those with negative coefficients), spurious oscillations in the intermediate stages can cause great difficulties, for instance when
negative densities appear, this is thus avoided by SSP schemes. An interesting strategy is the use of an increased number of
stages in order to allow for higher time-steps (Ruuth et al. 2002). For instance the explicit 2nd-order SSP Runge-Kutta scheme
with m stages has the following Butcher table

0 0 . . . . . . . . . 0

1

m− 1

1

m− 1
0 . . . . . . 0

2

m− 1

1

m− 1

1

m− 1
0 . . . 0

...
...

...
. . . . . .

...

1
1

m− 1

1

m− 1
. . .

1

m− 1
0

1

m

1

m
. . . . . .

1

m

m ≥ 2, (7)

which in the case m = 2 reduces to the classical Heun method while allowing the use of time steps corresponding to larger
CFL numbers when m > 2. A low storage algorithm for the implementation of these methods is given in Ketcheson (2008).

Since we want to reach a steady state solution, implicit methods allowing for higher CFL numbers have been favoured.
For the cases presented in this paper, the use of a 1st-order time integrator has proved sufficient as the numerical errors are
dominated by those of the space discretization. This is because in the cold subsonic jet case, the interface dynamics are
relatively slow while the stability constraints lead to very small time-steps even when using an implicit method (recall that no
preconditioning techniques to artificially reduce the water sound velocity have been used). However 2nd-order space accuracy
did prove necessary to reduce the non-physical spreading of the interface which was caused by excessive numerical dissipation
and which dampens the dynamics.

1.3 Behaviour of compressible models in the low-Mach limit

The Mach number M := u
c , ratio between the velocity u and sound speed c determines the importance of compressibility ef-

fects. As the Mach number tends to zero, the compressible equations tend to the incompressible ones. However, at the discrete
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level it is well-known that the classical finite volume schemes for the compressible equations become very stiff at low-Mach
numbers and thus these schemes suffer from a loss of accuracy and fail to capture the incompressible regime unless an ex-
tremely refined discretization is used. Before presenting the low-Mach correction we applied to the aforementioned scheme and
showing its effects on the computation, we briefly recall why the classical finite volume schemes for the compressible Euler
equations break down in the low-Mach regime.

When the compressible Euler equations are written in non-dimensional form using a convective time-scaling — that is to say
that t̂ = x̂/û rather than t̂ = x̂/̂c which would represent an acoustic time scaling (with •̂ denoting reference quantities) — the
momentum equation becomes

∂ρu

∂t
+∇ · (ρu⊗ u) +

1

M2
∇p = 0, (8)

with ρ, u, p the non-dimensional density, velocity and pressure fields and M the reference Mach number. In the low-
Mach regime ie M ≪ 1, looking for the solution as a formal power series of the Mach number ie X =

∑
n≥0 XnM

n for
X ∈ {ρ, u, p} yields that the zero-th order terms solve the incompressible Euler equations and that pressure fluctuations are
of 2nd order (∼ M2). However, as shown by Guillard and Viozat (1999), using a Roe scheme on a 2D cartesian grid, the
numerical solution exhibits pressure fluctuations of order 1 (∼ M ) which pollute the numerical solution. Through a Hodge-
Helmholtz decomposition (ie writing the velocity field as the sum of an incompressible flow and a potential flow), Dellacherie
(2010) linked the low-Mach inaccuracies to the behaviour of the scheme for the linear wave equation, and in particular to the
numerical diffusion of the scheme using a first-order modified equation analysis. The analysis shows that accuracy at low-Mach
numbers can be retrieved by a modification of the numerical viscosity in the momentum equation and several such fixes exist in
the literature (Rieper 2011; Dellacherie 2010). Although, these results are mainly derived for the two-dimensional Euler equa-
tions without body forces, numerical tests show that they still shed some light on the more general case that we consider, that
of an axi-symmetric turbulent multiphase system (similar to the multi-species Navier-Stokes equations) on unstructured meshes.

In order to describe our low-Mach correction, we recall that the HLLC-type Riemann solver provides approximate solutions
to the Riemann problem between states QL and QR through a succession of four constant states QL, Q⋆

L, Q⋆
R, QR separated

by three waves with speeds SL ≤ SM ≤ SR. Intermediate states are computed using Rankine-Hugoniot relations and as-
suming that the middle wave (SM ) is a contact discontinuity so that it preserves the associated Riemann invariants. Denoting
σL, σM , σR ∈ {−1, 0, +1} the signs of the wave speeds SL, SM , SR and FL, F

⋆
L, F

⋆
R, FR the physical fluxes associated to

the Riemann states, the HLLC numerical flux writes

FHLLC =
FL + FR

2
− σR + σL

2

FR − FL

2
+

σR − σL

2

D

2
, (9)

where D is the subsonic upwinding (D = 0 in the supersonic case) which writes

D = (F ⋆
L − FL) + (F ⋆

R − FR)− σM (F ⋆
R − F ⋆

L) =
[
DρY Dρu DρE

]⊺
. (10)

Its component Dρu contains the numerical diffusion on the momentum equation that causes the loss of accuracy in the low-
Mach regime. Our low-Mach strategy follows standard approaches available in the literature in that it consists in reducing the
numerical diffusion of the pressure terms in the momentum equation, the corrected flux is obtained by adding a supplementary
term Dsup to the numerical flux which writes

Dsup = (1− β) [ρ⋆LSL(un,L − SM )− ρ⋆RSR(SM − un,R)]

 0
n
SM

 .

In the expression above β is a function that depends on the local Mach number and the role of which is to correctly tune the
correction term such that the scheme remains applicable at higher Mach numbers. Several choices of β functions exist and lead
to different low-Mach schemes proposed in the literature. In addition to the local Mach numbers, the expression proposed and
validated numerically by D. SCHERRER at ONERA also depends on the local pressure jumps, its expression is

β = min

[
1,ML +MR +

|pL − pR|
ρLc2L + ρRc2R + ε

+ 10−2

]
, ε = 10−10, (11)

with cL and cR denoting the sound velocities corresponding to states QL and QR.

We now show the effect of the low-Mach correction on our computations : Figure 1 shows the case of a gas jet impinging
a liquid surface, more details on the numerical set-up that we consider are given in the next section. The top row of the figure
shows the results with the unmodified HLLC flux while the bottom row corresponds to results with the low-Mach correction.
Without any low-Mach treatment strong chequerboard pressure oscillations appear when the acoustic wave from the jet reaches
the liquid. When advancing further in time these pressure oscillations see their amplitude grow until reaching negative values
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thus crashing the computation. With the low-Mach fix, the pressure fluctuations are controlled and the computation remains
stable. We would like to stress that our observations concerning the low-Mach issue differ from those that can be made for
Godunov-like schemes applied to the single-phase Euler system. Indeed, for the latter case, it is the strategy which consists
in reducing the numerical dissipation in the momentum equation to allow the scheme to recover its accuracy in the low-Mach
limit which triggers chequerboard modes when too much numerical viscosity has been removed (Dellacherie 2009). In our
case, chequerboard modes appear for the Godunov-like scheme and it is the low-Mach correction which helps removing them,
although we observed that small pressure oscillations may still appear sometimes.

Figure 1: Instantaneous density (left), Mach (middle) and pressure (right) profiles at t = 3 · 10−2 s for a mass inflow ṁ =
1.92 · 10−2 kg/s obtained with the HLLC scheme without any low-Mach correction (top) and with the presented
low-Mach fix (bottom) — all other numerical parameters were kept identical. Density scale is in kg/m3, pressure
scale is in Pa while X and Y are scaled in m.

1.4 Numerical set-up

In order to test the capabilities of our model to successfully compute the interface dynamics, we aim at numerically verifying
the results presented in Banks and Chandrasekhara (1963) ie a relationship between the impinging jet momentum and the depth
of the indentation it causes in a liquid interface. We consider the two-dimensional axi-symmetric case, a sketch of the geometry
considered is shown in Figure 2 while Table 1 lists the values of the various geometric quantities. The domain is meshed with
approximately 55 · 103 cells and using a time-step of ∆t = 2.5 · 10−6 s the simulation is carried over a duration of 4 seconds.
The initial condition is that of a horizontal liquid-gas interface located at y = 0, the flow field is at rest at hydrostatic pressure.
Turbulence in two-phase media is a complex phenomenon which is not the topic of the present study. In order to account for
the jet’s turbulence the k − ω model with Sarkar’s correction has been used, details and discussions on the turbulence model
are given in the Appendix. Eventually, the surface tension fluxes are not taken into account and will remain so throughout the
present study. Surface tension will be included in future works since it has an impact on both large scale dynamics as well
as small scale atomization and break-up. Rosler and Stewart (1968) exhibited the influence of the critical jet momentum as a
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bifurcation parameter dependent on surface tension effects. Above a critical value of this parameter, the cavity becomes unstable
and the dynamics of the interface experiences an important change. Also, as the jet momentum increases, the interface’s lip will
lead to progressive interface atomization and creation of a spray of droplets, a process influenced by surface tension. However,
the coupling between interface dynamics, surface tension and turbulence is far from being fully understood in terms of modeling
and simulation and thus has not been included in the present study even if it is a work in progress.

Figure 2: Sketch (not at scale) of a gas jet impinging on a liquid pool : geometrical set-up and notations.

symbol value (cm) description symbol value (cm) description
n0 — Cavity depth ti 0.3 Injector wall thickness

RN = dN/2 0.7 Nozzle radius li 10 Injector wall length
H 23 Nozzle elevation h 15 Container wall height
Dw 91 Water depth Rc = dc/2 38 Container radius

Table 1: Definitions and values of the parameters defining the geometry of the considered set-up.

1.5 Numerical results and discussions

Computations have been done by imposing different mass inflows at the inlet boundary while keeping all other parameters
(including mesh and time step) constant. Mass inflow values as well as jet velocities and cavity depths are given in Table 2. Jet
Reynolds number ranges from 1.8 · 104 to 1.1 · 105. Four seconds of physical time have been simulated and results have been
averaged over the last second, Figure 3 shows the obtained density and Mach number profiles for a mass inflow ṁ = 1.92 ·10−2

kg/s ie for run 6.
Theoretical values of cavity depths are those obtained using the model of Banks and Chandrasekhara (1963). To relate the

cavity depth to jet momentum, they propose a stagnation-pressure analysis which relies on the expression of the center-line
velocity Vc of a free jet. After a potential core region — whose length is proportional to the nozzle’s diameter dN — the
center-line velocity decreases with the distance to the nozzle H − y because of turbulent spreading. For an incompressible
axi-symmetric turbulent jet, one has

Vc(y)

Vjet
= K

dN
H − y

, (12)

with K being an empirical constant. A table in Banks and Chandrasekhara (1963) summarizes some previous works of the
literature where K was obtained experimentally. Typical values lie in between 5 and 8. In our case, fitting (12) (with an offset)
for 5 ≤ (H − y)/dN ≤ 15 in order to account for the potential core and the displaced liquid regions yields the value of K = 6.58.
In non-dimensional variables, the profiles corresponding to the highest jet Reynolds’ numbers (runs 4 to 6) almost perfectly
collapse as shown on Figure 4.
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Figure 3: Zoom on the area of interest of the density (kg/m3) and Mach number profiles for ṁ = 1.92 · 10−2 kg/s (run 6),
profiles are time averaged between t = 3 s et and t = 4 s.

Figure 4: Plot of the center-line jet velocity profiles against the distance to the injector exit z. Colored curves correspond to the
different runs while the dashed curve corresponds to the fit y = K/x − c for K = 6.58 and offset c = 0.33.

Cavity depths have been measured using the center-line (x = 0) volume fractions : the interface is assumed to be located
at height y such that α(y) = 0.5 but since for diffuse interface models the interface is spread out, we considered a margin
y ∈ [ymin, ymax] ensuring α(y) ∈ [0.05, 0.95] (bounds on α were chosen arbitrarily and no other uncertainty analyses such as
numerical error estimation or mesh convergence study have been done). The results are plotted against the jet velocity in Figure
5 and listed in Table 2. The error bars on the graph correspond to the margin on the interface location (ymin and ymin). We
notice that the numerical cavity depths are systematically less deeper than those predicted with a relative error about 25% for
the deepest cavities. Using a VOF method and a Piecewise Linear Interface Capture method to reconstruct the interface, Adib
et al. (2018) obtained a 14% relative error on cavity depths when comparing their numerical results to their own experimental
data, in our case no interface reconstruction techniques are used as we rely on a diffuse interface model. There are several
explanations for the observed differences between the numerical results and theoretical predictions : first the mesh we have
used might not be sufficiently fine (our mesh has 55 · 103 cells and could be refined more). Second the turbulence model we
used is valid in single-phase regions but near the interface it might not be accurate, this could have a major impact as it are the
velocity and pressure profiles near the interface that determine the cavity’s shape. Finally, the theoretical model does not take
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into account viscous effects and thus cavity depths might be slightly over-estimated. Moreover, despite these differences, we
do however observe the correct trend for the cavity depth increase with respect to the jet velocity.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6
ṁtotal (10−3kg/s) 3.08 6.16 9.24 12.32 15.39 19.24

Vjet (m/s) 20.4 39.9 58.9 77.5 95.8 118.2
n0 (mm) 4.70 9.21 19.12 30.93 42.64 58.36
nfit
0 (mm) 3.76 13.26 26.01 40.48 55.51 74.36

relative error (%) 25.28 30.57 26.07 23.59 23.18 21.52

Table 2: Injection conditions and results for the cavity depth obtained for different jet velocities and comparison to the theoret-
ical predictions for K = 5.52.

Figure 5: Results for the cavity depth as a function of jet velocity and comparison to theoretical predictions. Values K = 5.13
(red) and K = 7.91 (green) are the lowest and highest listed values in Banks and Chandrasekhara (1963), while
K = 6.58 (black) is the value used to fit our numerical velocity profiles.

Before moving on to the following section, which concerns the case of a high-temperature jet, we conclude this section by
mentioning that computations in a supersonic jet and oscillating cavity configuration have also been done at ONERA. In this
case, the low-Mach issues had a lesser impact on the dynamics than in our case. However, a comparison to experimental data
provided by the Direction Générale de l’Armement (French defense procurement and technology agency) showed that the use
of the low-Mach correction allowed for better agreement with the data for cavity oscillation amplitude and frequency (Dupays
et al. 2021).

2 Extension to the case of a high-temperature jet

2.1 Results with the 4-equation model

We now test our 4-equation model on the case of a hot jet by raising its temperature to Tjet = 2000 K while keeping the mass
inflow constant (thus raising the inflow velocity and jet Mach number). For this case, the 2nd-order SSP RK method (7) has
been used with m = 21 stages (as it proved to be more robust than the linearly implict Euler method). The results are shown
in Figure 6, we observe that the jet’s temperature rapidly decreases once it exits the nozzle. This is due to the important water
mass fraction propagation throughout the computational domain, indeed for such a mass fraction imbalance, the thermal equi-
librium assumption of the 4-equation model is equivalent to the liquid’s temperature being imposed as the mixture temperature.
We stress that this is entirely coherent with the thermodynamics of the model as the numerical scheme is conservative with
respect to the total energy of the system. It should be noted that this mass fraction propagation already happened in the previ-
ous cases but since both phases had the same temperature, it had no effect on the thermodynamics as opposed to the present case.
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Figure 6: Results for the hot jet case at t = 0.33 s.

The reasons for this important mass fraction propagation is because of the strong density ratio between the two phases and the
diffuse interface modelling approach. Indeed, since Yℓ = 1− 1/

(
1 +

αℓ

αg

ρℓ

ρg

)
with ρℓ/ρg ≳ 103, in order to guarantee Yℓ ≪ ε, we

must keep αℓ/αg ∼ αℓ ≪ 10−3ε. However, as the interface is spread out over what are considered as mixture cells by the model,
small amounts of water volume fraction are carried away by the recirculation of the jet. This is amplified in the case of water
splashing which occurs at high jet velocities but also by the numerical diffusion on the interface. Figure 7 shows the onset of
this effect. Although not used in this paper, techniques such as compressive limitation in the MUSCL reconstruction are being
studied and might help counterbalance this effect (Le Touze and Rutard 2022). We conclude this paragraph by pointing out that
the specific configuration we use in this contribution, with symmetry and recirculations, is challenging in terms of predicting
the proper liquid mass fraction transport and dynamics within the diffuse interface framework. It is especially significative in
the turbulent case and RANS approach, where the turbulent mass fluxes near the interface have a strong influence on the global
dynamics. A 5-equation model that does not rely on the thermal equilibrium assumption and for which each phase has its own
temperature being less sensitive to this issue, the development of such a model is the topic of the rest of this paper.

2.2 Presentation of the 5-equation model and its numerical method

In order to take into account the thermal non-equilibrium that may exist between the two phases, we consider a 5-equation
model in which each phase has its own temperature. The model, derived by Kapila et al. (2001), is obtained by considering the
7-equation model of Baer and Nunziato (1986) in the limit of instantaneous velocity and pressure relaxations. Its state vector is
Q(5) = (αkρkyj,k, ρu, ρE, αg)

⊺ and obeys the PDE

∂tQ
(5) +∇ ·

(
f (5)
c + f

(5)
d + f (5)σ

)
+K(5)∇ · u(5) = S(5) + S

(5)
∆T . (13)

Here K(5) represents the non-conservative convective fluxes, other notations are similar to those used for the 4-equation model,
f
(5)
c denotes the conservative convective fluxes

f (5)
c = Q(5) ⊗ u+ [0, 0, pId, 0, 0]

⊺
, K(5) =

[
0, 0, 0, 0,

αgρℓc
2
ℓ

αℓρgc2g + αgρℓc2ℓ

]⊺
, (14)

while f
(5)
d and f

(5)
σ correspond to the diffusive and surface tension fluxes (we recall that in the present study, surface tension

effects are neglected). Source terms such as body forces are represented by S(5) while the new term S
(5)
∆T represents the interface

fluxes associated to the thermal non-equilibrium between the two phases such as heat transfer and evaporation. Provided that
the equation of state of each phase is given, the equilibrium pressure is determined by solving

Yge
EOS
g (p, ρg) + Yℓe

EOS
ℓ (p, ρℓ) = e. (15)
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Figure 7: Zoom on the area of interest of the instantaneous water mass fraction Yℓ profile at time t = 6 · 10−3 s. Thin white
lines represent velocity streamlines while grey-scale contour levels represent water volume fractions at αℓ = 0.5
(black), αℓ = 0.1 (grey) and αℓ = 0.01 (silver).

This model however is quite challenging from a numerical point of view. The non-conservative term in the volume fraction
equation does not allow to define jump conditions for shocks and the positivity of the volume fraction is not always guaranteed
by the usual schemes. An interesting numerical strategy is the use of relaxation schemes by considering an out-of-pressure-
equilibrium-6-equation model for which the solutions converge to the ones of the 5-equation model in the case of an instanta-
neous pressure relaxation. First introduced by Saurel et al. (2009), this strategy has been revisited by several authors (Pelanti
and Shyue 2014; Schmidmayer et al. 2017). The 6-equation model we consider here is the one derived in the PhD of P. Cordesse
(2020), the full model contains sub-scale geometric quantities. When neglecting sub-scale quantities, the variables reduce to
Q(6) = (αkρkyj,k, ρu, αkρkek, αg)

⊺ and are solutions of

∂tQ
(6) +∇ ·

(
f (6)
c + f

(6)
d + f (6)σ

)
+K(6)

c ∇ · u(6) +K
(6)
d : ∇u(6) = S(6) + S

(6)
∆T +

R
(
Q(6)

)
ε

. (16)

The conservative and non-conservative convective fluxes are given by

f (6)
c = Q(6) ⊗ u+ [0, 0, pId, 0, 0]

⊺
, K(6)

c = [0, 0, 0, αgpg, αℓpℓ, αg]
⊺
. (17)

The mixture pressure in the momentum flux is given by p = αgpg +αℓpℓ. Once again f
(6)
d , f (6)

σ and S(6) denote the diffusive,
capillary fluxes and body forces while S

(6)
∆T represent thermal disequilibrium terms. Because the energy equations are on the

internal energies, non-conservative diffusive term appear and are represented by the third-order tensor K
(6)
d , details on the

diffusive fluxes can be found in Schmidmayer et al. (2016). The relaxation term which pushes the system towards pressure
equilibrium writes

R
(
Q(6)

)
= [0, 0, 0, p(pℓ − pg), p(pg − pℓ), (pg − pℓ)]

⊺
. (18)

Because for this model each phase has its own pressure and temperature, their thermodynamics closures are independent and
given by

pk = pEOS
k (ρk, ek), Tk = TEOS

k (ρk, ek), ek = eEOS
k (pk, Tk). (19)

Since one has limε→0 Q
(6)
ε = Q(5), the 6-equation model is used to design a numerical scheme for the 5-equation model.

The scheme is based on two building blocks : Starting from Q(5),n we do a convection step where the unknowns are updated
according to the 6-equation model without any relaxation terms using the HLLC flux, then Q(5),n+1 is obtained through a
projection step by means of an instantaneous relaxation to restore the pressure equilibrium and determine the corresponding
volume fraction.

Because in the 6-equation model we solve the internal energy equation for each phase, the numerical discretization might
not be fully conservative with respect to the total energy of the mixture. To overcome this problem, one can use a formulation
of the 6-equation model based on the total energies of each phase which allows the design of numerical schemes which are
conservative for the total energy of the mixture, see for instance Pelanti and Shyue (2014). Another approach, and the one we
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follow, is the one presented in Saurel et al. (2009), and which consists in adding the total energy equation to the system (17).
This equation is of course redundant for smooth solutions in the continuous case but is used after the relaxation step to ensure
the strict conservation of the total energy. Using superscript (1) to denote quantities obtained after the relaxation step and (0)
to denote quantities unaffected by the relaxation, the procedure consists in finding p(2) such that

∑
k=g,ℓ

(αkρk)
(0)

eEOS
k

(
p(2), ρ

(1)
k

)
=

(
ρE − 1

2
ρu2

)(0)

. (20)

We draw the reader’s attention to the fact that although both systems are hyperbolic with simple eigenvalues λ = u · n ± c
and non-simple eigenvalues λ = u · n, they do not share the same mixture sound velocity since

(
ρc2
)(5)

= ρc2equilibrium =

(
αg

ρgc2g
+

αℓ

ρℓc2ℓ

)−1

,
(
ρc2
)(6)

= ρc2frozen = αgρgc
2
g + αℓρℓc

2
ℓ . (21)

Moreover, although the numerical strategy yields a scheme for the 5-equation model, the convection step uses the 6-equation
model and therefore CFL conditions are based on cfrozen instead of cequilibrium (also referred to as Wood’s velocity cwood).
Notice that for the same mixture conditions (identical α, ρg and ρℓ), we always have cfrozen ≥ cequilibrium. This stems from
the so-called sub-characteristic condition — eigenvalues of the system to be solved must lie in between those of the relaxation
system — which is a requirement for the stability of the method (Liu 1987; Jin and Xin 1995).

Considering relaxation systems for which instantaneous relaxation is achieved by means of a linear projection and for which
the equilibrium is parametrized by a Maxwellian, Bouchut (2004) showed that projecting the solution of an approximate Rie-
mann solver applied to two equilibrium states yields an approximate Riemann solver for the equilibrium (or relaxed) system. As
a consequence, when using a Godunov-like scheme in the convection step, the "convection + projection" scheme is equivalent
to a Godunov-like scheme for the relaxed system using this newly defined approximate Riemann solver.

Based on these considerations we assume that our numerical strategy for the 5-equation system can be interpreted as a single
explicit Euler step for a Godunov-like scheme with an implicitly defined Riemann solver. Higher order time integration can then
be achieved by means of a Runge-Kutta method. The resulting scheme is not a splitting scheme as instantaneous relaxations are
performed at each intermediate stage. This is a requirement to guarantee higher order accuracy since classical splitting schemes
(even higher order splittings) are subject to a loss of accuracy in the limit of an instantaneous relaxation (Jin 1995).

The development of this 5-equation model is still a work in progress, future works will include the modelling of sub-scale
geometric quantities such as the interfacial area density Σ or mean interface curvature. Access to such quantities will allow for
an accurate modelling of thermal source terms S∆t such as the heat flux between phases, which will be of the form hΣ(Tg−Tℓ)
with h the heat transfer coefficient, but also phase change modelling and surface tension effects.

We conclude this section by mentioning that since the convective part of the 6-equation model is discretized similarly to the
previous 4-equation model, the low-Mach correction has been easily adapted. We now move on to the next section where we
propose a numerical comparison between the considered models.

2.3 Comparison to the previous model on a simplified set-up

As the development of the proposed 5-equation model is a work still in progress, we now propose a numerical comparison
between the two models on a simplified set-up. Since the main objective of this part is to compare the thermodynamic behaviour
of the models, the simplified test case remains of interest even if it is no longer physically representative. The changes compared
to the previous set-up are :

• Single species for each phase, we consider a water-nitrogen system.

• No heat diffusion terms in the 5-equation model yet, to account for this they have also be set to zero in the 4-equation
model.

• No sub-scale quantities : although transport equations on sub-scale quantities have been derived (Cordesse 2020; Di Bat-
tista 2021), no source terms have been added yet as such they do not contribute to the flow.

• No heat exchange between phases source terms S∆T still need to be modelled and therefore for the 5-equation model
we have an infinitely slow temperature relaxation whereas the 4-equation model considers infinitely fast temperature
relaxations.

• No turbulence terms are included. This has a strong impact on the dynamics. In the absence of turbulent spreading, the
cavity will lose its parabolic shape and it changes velocity profile : whereas previously the recirculation induces a shear
flow along the interface, the recirculation will now redirect the flow in the vertical direction. This will change the way
liquid mass fraction is ripped of the interface and propagates through the domain.
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Again we use the 2nd-order SSP RK with m = 21 stages, the gas is injected at 1000 K and with a velocity of 20 m/s. The
results for the 4-equation model on this new set-up are shown in Figure 8, once again the model suffers from an important mass
fraction propagation which in turn leads to unphysical temperatures. For the 5-equation model, results are shown in Figure 9,
the temperature field that is shown corresponds to a mixture temperature Tmixture that is defined as follows

Tmixture =
Ygcp,gTg + Yℓcp,ℓTℓ

Ygcp,g + Yℓcp,ℓ
. (22)

Figure 8: Density, temperature and liquid mass fractions at t = 0.25 s (top row) and t = 0.5 s (bottom row) obtained with the
4-equation model.

We would like to stress that since no heat exchange terms are present, the jet naturally preserves its temperature, but since the
internal energies of each phase are now properly resolved, the mixture temperature is also preserved (despite the mass fraction
propagation). Figures 8 and 9 also show that the two models predict different cavities. This difference also originates from the
temperature equilibrium assumption : the instantaneous cooling of the jet in the 4-equation model leads to a higher density of
the jet and thus an excessively deep cavity. Not based on this thermal equilibrium assumption, the 5-equation model provides
the proper framework to model heat exchange between phases. If the heat exchange terms are not properly modelled, the mass
fraction propagation may lead to distorted temperature fields as for the 4-equation model. To avoid this our strategy consists in
the development of an equation on the interfacial area density Σ which will allow us to modulate the intensity of heat exchanges.
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Figure 9: Density, temperature and liquid mass fractions at t = 0.25 s (top row) and t = 0.5 s (bottom row) obtained with the
5-equation model.

Conclusion

In this work we investigated the numerical simulation of a gaseous jet impacting a liquid surface using diffuse interface models.
Because of the low compressibility of the liquid which is initially at rest, non-physical pressure oscillations appear and render
the computation unstable. The use of a scheme adapted to the low-Mach regime allows to recover the stability even though
we observed that small pressure oscillations may still appear (but remain bounded). Using a 4-equation model which assumes
local pressure, velocity and temperature equilibrium between both phases, simulations have been carried out for different jet
velocities. The depths of the cavities formed by the impinging jet have been compared to theoretical data.

Because of the complex flow pattern, the diffuse interface approach and the strong density jump between the phases, liquid
mass fraction propagates throughout the computational domain even where the volume fraction is negligible. Combined with
thermal equilibrium assumption of the 4-equation model, this leads to non-physical temperature profiles in the case of a hot
jet. The development of a 5-equation model for which the thermal equilibrium assumption is lifted allows to overcome the
thermodynamical problems related to this mass fraction propagation. Further works will include the development of the full
5-equation model for which sub-scale geometric quantities will be included to enrich the model, allow for a better description
of turbulent fluctuations near the interface and take into account the dispersed phase composed water droplets.
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Appendix

In order to take into account turbulent fluctuations in the momentum equation, we use the Boussinesq assumption by considering
that the Reynolds’ stress tensor Rij := −ρ̄ũ′′

i u
′′
j , writes

Rij = 2µtDij −
2

3
ρkδij , with D =

1

2
(∇u+∇u⊺)− 1

3
(∇ · u)Id. (23)

Here D is the traceless part of the strain tensor while k and µt are the turbulent kinetic energy (TKE) and turbulent viscosity
respectively. We have also used the standard notations •̄ to denote the ensemble average, •̃ to denote the Favre average, ie
density weighted average, and •′′ to designate a variable’s fluctuations with respect to its Favre average.

Following the SST k−ω model with Sarkar’s compressibility correction, we assume that the turbulent viscosity is a function
of k and the specific dissipation rate ω, such that

µt =
a1ρk

max(a1ω,ΩF2)
. (24)

Here Ω = |∇ × u| =
√
2Ω : Ω is the vorticity’s magnitude (Ω being the antisymmetric part of the velocity gradient), while

a1 = 0.31 and F2 is a blending function depending also on the distance to the wall yw and the dynamic viscosity µ. It writes

F2 = tanh
(
Γ2
2

)
with Γ2 = max

[
2
√
k

0.09ωyw
,
500µ

ρωy2w

]
. (25)

The system is closed by the following equations
ρ
Dk

Dt
= ∇ · [(µ+ σkµt)∇k] + (1− α1M

2
t )Pk − (1 + α2M

2
t )β

⋆ρkω − 1

Prt

gµt

ρ

∂ρ

∂T

∣∣∣∣
p

∂T

∂y

ρ
Dω

Dt
= ∇ · [(µ+ σωµt)∇ω] +

ργ

µt
Pk − βρω2 + 2ρ(1− F1)

σω,2

ω
∇k · ∇ω

(26)
for which the production term Pk writes

Pk = max [min (Πk, 20β
⋆ρkω) , 0] , with Πk = µtD : D − 2

3
ρk(∇ · u). (27)

In these equations, F1 is another blending function such that for X ∈ {σk, σω, β, γ}, we have X = F1X1 + (1− F1)X2 with

X1 : σk1 = 0.85, σω1 = 0.5, β1 = 0.0750, γ1 =
β1

β⋆
− σω1κ

2

√
β⋆

,

X2 : σk2 = 1.0, σω2 = 0.856, β2 = 0.0828, γ2 =
β2

β⋆
− σω2κ

2

√
β⋆

.

(28)

The von Kármán constant is κ = 0.41 while β⋆ = 0.09. The turbulent Prandtl number is Prt = 0.9 and appears in the last term
of the TKE equation which models the effects of natural convection. The blending function F1 is defined as follows

F1 = tanh
(
Γ4
1

)
, Γ1 = min

[
max

( √
k

0.09ωyw
,
500µ

ρωy2w

)
,

4ρσω,2

CDkωy2w

]
, CDkω = max

(
2ρ

σω,2

ω
∇k · ∇ω, 10−20

)
. (29)

Sarkar’s compressibility correction consists in modulating the amplitude of the production and dissipation terms in the TKE
equation based on a turbulent Mach number, the corresponding coefficients are

Mt =

√
2k

c
, α1 = 0.15, α2 = 0.30, (30)

with c denoting the local sound velocity.
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Turbulent fluctuations in the energy equation are taken into account by modelling the energy flux fluctuations −ρ̄ũ′′
i h

′′ using
a Fourier law such that

−ρ̄ũ′′
i h

′′ =
cpµt

Prt

∂T

∂xi
. (31)

Here cp is the mixture’s heat capacity while Prt is the turbulent Prandtl number which has already been introduced. Concerning

the mass equations, turbulent mixing due to the fluctuations −ρ̄ũ′′
i Yj,k is modelled using a Fick law based on a turbulent

Schmidt number Sct = 0.9 such that

−ρ̄ũ′′
i Yj,k =

µt

Sct

∂Yj,k

∂xi
. (32)

This model of turbulent mixing has been derived in a multi-species Navier-Stokes context, it takes into account the turbulent
mixing of different species within each phase. In a two-phase flow context, this term also causes a mixing of the two phases at
the interface, its validity to model this mixing between phases however is unclear. A complete description of turbulent mixing
would require a model to account for turbulent mixing of the phases at the interface based on a critical Weber number as is
proposed in Vallet et al. (2001) but is not included here. We also point out that for molecular mixing, our model relies on the
gradients of yj,k, the mass fraction of a species with respect to its own phase so that molecular diffusion does not lead to a
mixing of the different phases.

Turbulence models rely on the fine tuning of a great number of parameters which is done by comparison to DNS data or
experimental correlations obtained generally in the case of single-phase flows. Therefore, the turbulence models we use only
have a limited validity near the interface. In Adib et al. (2018), an extra term is added to the equation on ω to account for
turbulence damping near the interface and to counter for spurious eddy viscosity generated by strong velocity gradients at the
interface. In our case, no such corrections terms were added and the turbulence model was used as presented.
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