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A B S T R A C T

A Hamiltonian two-field gyrofluid model is used to investigate the dynamics of an electron-ion collisionless
plasma subject to a strong ambient magnetic field, within a spectral range extending from the magnetohy-
drodynamic (MHD) scales to the electron skin depth. This model isolates Alfvén, Kinetic Alfvén and Inertial
Kinetic Alfvén waves that play a central role in space plasmas, and extends standard reduced fluid models to
broader ranges of the plasma parameters. Recent numerical results are reviewed, including (i) the reconnection-
mediated MHD turbulence developing from the collision of counter-propagating Alfvén wave packets, (ii) the
specific features of the cascade dynamics in strongly imbalanced turbulence, including a possible link between
the existence of a spectral transition range and the presence of co-propagating wave interactions at sub-ion
scales, for which new simulations are reported, (iii) the influence of the ion-to-electron temperature ratio
in two-dimensional collisionless magnetic reconnection. The role of electron finite Larmor radius corrections
is pointed out and the extension of the present model to a four-field gyrofluid model is discussed. Such an
extended model accurately describes electron finite Larmor radius effects at small or moderate values of the
electron beta parameter, and also retains the coupling to slow magnetosonic waves.
1. Introduction

The description of turbulence and reconnection in collisionless plas-
mas, both in space environments such as the solar wind or planetary
magnetospheres and in fusion devices, is challenging, especially when
a wide range of scales is to be retained, or when parametric studies are
to be performed. In such regimes, the huge computational resources
required by fully kinetic simulations are indeed at the limit, and
often beyond, the capabilities of today’s computers. This in particular
motivated recent developments of cross-scale methods linking large-
scale fluid and small-scale kinetic descriptions [1,2]. Alternatively, in
fusion devices, and some astrophysical plasmas where the magnetic
fluctuations are small with respect to the ambient field and typical
frequencies well below the ion gyrofrequency, an efficient tool is
provided by gyrofluid models which, unlike usual fluid approaches,
take into account some important kinetic effects. Due to their ability
to capture the relevant physics at a reasonable computational cost,
gyrofluid models and their fluid-scale reduction (namely, reduced-MHD
or, in brief, RMHD) have been increasingly employed during the past
decade in numerical simulations aimed at investigating the properties
of Alfvénic turbulence in space plasmas, in various ranges of scales,
from the fluid ones to the kinetic ones [e.g., 3–11].

The aim of this paper is to present a short review of recent re-
sults, together with some new developments obtained by simulations

∗ Corresponding author.
E-mail address: thierry.passot@oca.eu (T. Passot).

based on a two-field Hamiltonian gyrofluid model, introduced in [12].
This model retains ion finite Larmor radius (FLR) corrections, paral-
lel magnetic field fluctuations and electron inertia, in the regime of
small 𝛽𝑒 (where 𝛽𝑒 indicates the ratio between equilibrium electron
kinetic pressure and guide-field magnetic pressure), and arbitrary ion-
to-electron temperature ratio. The model provides, within a unique
system of equations, a description of the quasi-perpendicular dynamics
of Alfvén waves (AWs), kinetic-Alfvén waves (KAWs), as well as of
inertial kinetic-Alfvén waves (IKAWs). The latter waves were detected
by the Magnetospheric Multiscale Mission (MMS) in a region of the
Earth’s magnetosheath where 𝛽𝑒 is small [8]. Moreover, this model is
suitable for studying collisionless reconnection at the electron scale, as
observed in the Earth’s turbulent magnetosheath [13].

The paper is organized as follows. After describing the two-field
model in Section 2, we highlight in Section 3 the development of a
reconnection-mediated regime in the three-dimensional RMHD turbu-
lence that develops from collisions of counter-propagating Alfvén-wave
packets, at small to moderate levels of the nonlinearity parameter. In
Section 4, we discuss Alfvenic turbulent cascades that develop from
the MHD to the sub-ion scales, when there is a strong imbalance
between the energies of the co- and counter-propagating waves (such
as observed by the Parker Solar Probe (PSP) close to the Sun [14]).
vailable online 16 May 2024
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In this regime, a so-called ‘‘helicity barrier’’ [9] emerges between the
MHD and the kinetic scales, which provides a mechanism for the
development of the transition range in the magnetic-field spectrum
across the ion scales. Such a transition was first reported from Cluster
observations in the solar wind (see e.g [15,16]) and more recently from
PSP data [17,18]. The origin of the transition zone at 1 AU observed by
Cluster is not completely clear. It is possibly associated with ion Landau
damping [15] and appears to be sensitive to the power of fluctuations
within the inertial range [19]. Differently, the PSP observations made
in the inner heliosphere indicate that the slope becomes steeper for
increasing normalized cross helicity (a quantity that measures the im-
balance between outward and inward propagating fluctuations) [20],
in line with the gyrofluid simulations reported in [21]. We also show
that, in regimes of weak nonlinearities, where the parallel dissipation
remains negligible, the effect of co-propagating wave interactions is
to induce a steeper magnetic spectrum in this range. In Section 5, we
discuss, as a function of the ratio of ion to electron temperatures, the
development of turbulence that results from secondary instabilities in
the nonlinear phase of two-dimensional (2D) collisionless reconnection.
It turns out that the nature of this turbulence, which transfers energy to
sub-electron scales, and leads to the generation of small-scale vortices,
is affected by the presence of electron FLR corrections. This effect
is studied in more detail in Section 6 in the framework of homoge-
neous two-dimensional turbulence. We conclude by presenting a new
Hamiltonian four-field model that provides an accurate description of
the sub-electronic scales and is not limited to small values of 𝛽𝑒. It
lso includes the coupling to slow-magnetosonic waves and can thus
escribe the decay instability at the MHD scales. Section 7 summarizes
hese findings and provides a brief discussion of forthcoming devel-
pments amenable to gyrofluid descriptions. A new derivation of the
wo-field model from the four-field gyrofluid model, is presented in the
ppendix.

. A two-field Hamiltonian gyrofluid model

.1. Formulation and main properties of the model

Gyrofluid models, which are derived from a gyrokinetic model,
nvolve the gyrokinetic scaling (see e.g. Howes et al. [22]) and thus
rescribe an anisotropic dynamics with transverse scales much smaller
han the parallel ones and frequencies small compared to the ion
yrofrequency. Fast magnetosonic waves are thus averaged out.

The two-field reduced gyrofluid model considered in this paper
as derived in [12] as a restriction of the model of Brizard [23].
n alternative derivation is presented in the Appendix. The model

solates the Alfvén wave dynamics and describes small perturbations
f a homogeneous equilibrium state characterized by a density 𝑛0,
sotropic ion and electron temperatures 𝑇0𝑖 and 𝑇0𝑒, and subject to a
trong ambient magnetic field of amplitude 𝐵0 along the 𝑧-direction.
he main plasma characteristic spatial scales (inertial lengths 𝑑𝑟 =
𝐴∕𝛺𝑟 and Larmor radii 𝜌𝑟 = 𝑣𝑡ℎ 𝑟∕𝛺𝑟) for the ions (𝑟 = 𝑖) and electrons

(𝑟 = 𝑒), are defined in the form

𝑑𝑖 =

√

2
𝛽𝑒

𝜌𝑠, 𝑑𝑒 =

√

2
𝛽𝑒

𝛿𝜌𝑠, 𝜌𝑖 =
√

2𝜏𝜌𝑠, 𝜌𝑒 =
√

2𝛿𝜌𝑠, (1)

where 𝛽𝑒 = 8𝜋𝑛0𝑇0𝑒∕𝐵2
0 , 𝜏 = 𝑇0𝑖∕𝑇0𝑒, 𝛿2 = 𝑚𝑒∕𝑚𝑖 is the electron to

on mass ratio, 𝑣𝑡ℎ 𝑟 = (2𝑇𝑟∕𝑚𝑟)1∕2 are the particle thermal velocities,
nd 𝑣𝐴 = 𝐵0∕(4𝜋𝑛0𝑚𝑖)1∕2 = 𝑐𝑠

√

2∕𝛽𝑒 is the Alfvén speed. We normalize
engths by the sonic Larmor radius 𝜌𝑠 = 𝑐𝑠∕𝛺𝑖, where 𝑐𝑠 =

√

𝑇0𝑒∕𝑚𝑖 is
the so-called ion-sound speed, time by the inverse ion gyrofrequency
𝛺𝑖 = 𝑒𝐵0∕(𝑚𝑖𝑐), the parallel magnetic fluctuations 𝐵𝑧 by 𝐵0, the
electron gyrocenter density 𝑁𝑒 by 𝑛0, the electric potential 𝜑 by 𝑇𝑒∕𝑒
and the parallel magnetic potential 𝐴∥ by 𝐵0𝜌𝑠. The equations for 𝑁𝑒
and 𝐴∥ then read

𝜕𝑡𝑁𝑒 + [𝜑,𝑁𝑒] − [𝐵𝑧, 𝑁𝑒] +
2 ∇∥𝛥⟂𝐴∥ = 0 (2)
2

𝛽𝑒 p
𝜕𝑡

(

1 − 2𝛿2
𝛽𝑒

𝛥⟂

)

𝐴∥ −
[

𝜑, 2𝛿
2

𝛽𝑒
𝛥⟂𝐴∥

]

+
[

𝐵𝑧,
2𝛿2
𝛽𝑒

𝛥⟂𝐴∥

]

+ ∇∥(𝜑 −𝑁𝑒 − 𝐵𝑧) = 0, (3)

ith 𝐵𝑧 and 𝜑 given by

2
𝛽𝑒

+ (1 + 2𝜏)(𝛤0 − 𝛤1)
)

𝐵𝑧 =
(

1 −
𝛤0 − 1

𝜏
− 𝛤0 + 𝛤1

)

𝜑 (4)

𝑁𝑒 =
(

𝛤0 − 1
𝜏

+ 𝛿2𝛥⟂

)

𝜑 − (1 − 𝛤0 + 𝛤1)𝐵𝑧. (5)

qs. (2) and (3) correspond to the continuity equation for the electron
yrocenter density fluctuations 𝑁𝑒 and to Ohm’s law, respectively.
he relations (4) and (5), on the other hand, express the perpendic-
lar component of Ampère’s law and the quasi-neutrality condition,
espectively.

The operator 𝛥⟂ = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 denotes the Laplacian in the plane
ransverse to the ambient field and [𝑓, 𝑔] = 𝜕𝑥𝑓𝜕𝑦𝑔 − 𝜕𝑦𝑓𝜕𝑥𝑔 is the

canonical bracket of two scalar functions 𝑓 and 𝑔. The (non-local)
operator 𝛤𝑛 is associated with the Fourier multiplier 𝛤𝑛(𝜏𝑘2⟂), defined
y 𝛤𝑛(𝑥) = 𝐼𝑛(𝑥)𝑒−𝑥 where 𝐼𝑛 is the modified Bessel function of first
ype of order n. For a scalar function 𝑓 , the parallel gradient operator
∥ is defined by ∇∥𝑓 = −[𝐴∥, 𝑓 ] +

𝜕𝑓
𝜕𝑧 .

Writing 𝐵𝑧 = 𝑀1𝜑, and 𝑁𝑒 = −𝑀2𝜑, 𝐵𝑧 and 𝜑 can be expressed in
terms of 𝑁𝑒. In the previous sentence we indicated with 𝑀1 and 𝑀2 two
operators, (with 𝑀2, in particular, invertible) the expression of which
can be found explicitly in Fourier space from Eqs. (4) and (5).

Quasineutrality relates the ion and electron particle number densi-
ties 𝑛𝑖 and 𝑛𝑒 by 𝑛𝑖 = 𝑛𝑒 = 𝑁𝑒 + 𝐵𝑧, the latter equality being only valid
in the absence of electron inertia and FLR contributions.

In addition to ion FLR corrections and parallel magnetic fluctua-
tions, the model retains electron inertia as well as an electron FLR
contribution which becomes relevant when the ion-electron tempera-
ture ratio 𝜏 is comparable to or larger than the inverse electron beta
1∕𝛽𝑒. Furthermore, this model possesses a noncanonical Hamiltonian
tructure. It covers a spectral range extending from the MHD scales
large compared to 𝑑𝑖) to scales comparable to 𝑑𝑒 but nevertheless large

compared to the electron Larmor radius 𝜌𝑒 (in order to prevent the full
FLR electron corrections to be relevant). The latter condition requires
that 𝜌𝑒∕𝑑𝑒 = 𝛽1∕2𝑒 be small enough, a regime where Landau damping can
efficiently homogenize electron temperatures along the magnetic field
lines. The present model thus assumes isothermal electrons, which is a
good approximation when neglecting dissipation phenomena [24,25].
Several important kinetic effects depending on 𝛽𝑖 are excluded in this
model, such as ion Landau damping and ion cyclotron resonance.
Assuming a large enough scale anisotropy (𝑘∥∕𝑘⟂ ≪ 1) ion cyclotron
resonance can only take place at very small sub-ion scales, as shown
in [26]. On the other hand, Landau damping, whose efficiency would
depend on 𝛽𝑖, is simply neglected by this model, as it is the case
or most fluid models. Therefore, as long as Landau damping can be
eglected on the time scales of interest, our equations do not need
urther assumption on 𝛽𝑖.

Eqs. (2)–(3) preserve two quadratic invariants, namely the energy

= 1
2 ∫

( 2
𝛽𝑒

|∇⟂𝐴∥|
2 + 4𝛿2

𝛽2𝑒
|𝛥⟂𝐴∥|

2 −𝑁𝑒(𝜑 −𝑁𝑒 − 𝐵𝑧)
)

𝑑3𝑥, (6)

nd the generalized cross helicity (GCH)

= −∫ 𝑁𝑒

(

1 − 2𝛿2
𝛽𝑒

𝛥⟂

)

𝐴∥𝑑
3𝑥. (7)

t large scales,  reduces, up to a sign, to the MHD cross helicity, while
t small scales, it identifies (up to electron-inertia corrections) with the
arallel contribution to the magnetic helicity.
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Table 1
Summary of the relevant scaling relations for balanced MHD turbulence from Section 3.1. The last column highlights the
possibility of a given cascade to undergo a transition to either critical balance (CB) and/or tearing-mediated turbulence (TMT).

Nonlinear Dynamic Fluctuation Reduced Transition to
parameter alignment anisotropy spectrum CB/TMT
𝜒𝑘⟂ sin 𝜃𝑘⟂ 𝑘∥(𝑘⟂) 𝐸(𝑘⟂)

Critical balance, no alignment (‘‘GS95’’ [27])
𝜒𝑘⟂ ∼ 1 — ∝ 𝑘2∕3⟂ ∝ 𝑘−5∕3⟂ —/no

Critical balance, with alignment (‘‘B06’’ [28])
𝜒𝑘⟂ ∼ 1 ∝ 𝑘−1∕4⟂ ∝ 𝑘1∕2⟂ ∝ 𝑘−3∕2⟂ —/yes

Tearing-mediated turbulence (‘‘TMT’’ [29–31])
𝜒𝑘⟂ ∼ 1 ∝ 𝑘4∕5⟂ ∝ 𝑘6∕5⟂ ∝ 𝑘−11∕5⟂ —/—

Weak cascade, no alignment (‘‘W0’’ [32,33])
𝜒𝑘⟂ ∝ 𝑘1∕2⟂ < 1 — ≈ cst. ∝ 𝑘−2⟂ yes/no

Weak cascade, with alignment (‘‘WI’’ [34])
𝜒𝑘⟂ ∝ 𝑘1∕4⟂ < 1 ∝ 𝑘−1∕2⟂ ≈ cst. ∝ 𝑘−3∕2⟂ yes/yes

Asymptotically weak cascade, with alignment (‘‘WII’’ [34])
𝜒𝑘⟂ ≈ cst. ≪ 1 ∝ 𝑘−1⟂ ≈ cst. ∝ 𝑘−1⟂ no/yes
2.2. A few limiting regimes

Eqs. (2)–(3) reduce to classical systems in various limits (see [35]
for more details).

• RMHD & Hall-RMHD (𝜏𝑘2⟂ ≪ 1, 𝜏 ≪ 1, 𝛽𝑒 ≪ 1, 𝛿 = 0)
In this limit, the gyro-fluid equations reduce to the equations for
dispersive Alfvén waves, i.e. the reduced-MHD regime with the
Hall effect. This is a two-field reduction of the HRMHD model
of Schekochihin et al. [36] when neglecting the parallel ion ve-
locity 𝑢𝑖 and assuming that 𝐵𝑧 is prescribed by the instantaneous
potential 𝜑. When considering even larger scales (i.e., much larger
than the ion-inertial length 𝑑𝑖), the system further reduces to the
two-field RMHD, which remains valid when 𝛽𝑒 ∼ 1.

• Schep et al. model (𝜏𝑘2⟂ ≪ 1, 𝜏 ≪ 1, 𝛽𝑒 ≪ 1, 𝛿 ≠ 0)
With the same conditions on 𝛽𝑒, 𝜏 and 𝜏𝑘2 as for the HRMHD
regime, but allowing for 𝛿 ≠ 0, one easily recovers a two-field,
cold-ion version of the model of Schep et al. [37], which was
extensively used for studying collisionless reconnection (see, for
instance [38,39]).

• Isothermal KREHM limit (𝜏𝑘2⟂ ∼ 1, 𝜏 ∼ 1, 𝛽𝑒 ∼ 𝛿2, 𝛿 ≠ 0)
In this case, our gyrofluid equations recover the isothermal elec-
tron limit of the kinetic-reduced electron heating model (KREHM)
derived in Zocco and Schekochihin [40].

• Electron-RMHD (𝜏𝑘2⟂ ≫ 1, 𝜏 ∼ 1, 𝛽𝑒 ≪ 1, 𝛿 = 0)
In this case, the model reproduces the so-called electron-reduced-
MHD (ERMHD) regime for KAWs [36].

• Inertial-KAW regime (𝜏𝑘2⟂ ≫ 1, 𝜏 ≫ 1, 𝛽𝑖 ∼ 1, 𝛿 ≠ 0)
Interestingly, when 𝜏 ≫ 1, together with 𝜏𝑘2⟂ ≫ 1, 𝛽𝑒 ≲ 1 and
𝛿 ≠ 0, the limit of inertial kinetic Alfvén waves (IKAWs) [8,41] is
recovered. The system reads

𝜕𝑡

(

1 − 2𝛿2
𝛽𝑒

𝛥⟂

)

𝐴∥ −
[

𝜑, 2𝛿
2

𝛽𝑒
𝛥⟂𝐴∥

]

+ ∇∥𝜑 = 0 (8)

𝜕𝑡

(

1 + 2
𝛽𝑖

− 2𝛿2
𝛽𝑒

𝛥⟂

)

𝜑 −
[

𝜑, 2𝛿
2

𝛽𝑒
𝛥⟂𝜑

]

− 4
𝛽2𝑒

∇∥𝛥⟂𝐴∥ = 0, (9)

where 𝛽𝑖 = 𝜏𝛽𝑒 refers to the ion beta parameter. In Eq. (9), the
term 𝜕𝑡

(

2𝛿2
𝛽𝑒

𝛥⟂𝜑
)

, which in this regime arises at the dominant
order, originates from the 𝛿2𝛥⟂𝜑 contribution in Eq. (5), which is
a lower-order electron FLR correction and can be neglected when
𝜏 ≃ 1, but has to be kept when 𝜏 ≫ 1 because, in this limit,
its magnitude becomes comparable to that of the other terms.
Note however that in the latter case, the retained electron FLR
correction also leads to subdominant terms in Eq. (3).
3

2.3. Alternative normalization of the model equations

The model (2)–(5) is formulated in [42] with a normalization based
on the Alfvén time, thus different with respect to the original Ref. [12].
This helped in the comparison with several studies present in the
literature, concerning in particular a two-field reduction of the model
of Schep et al. [37]. Therefore, we find it appropriate to also present
the gyrofluid model with this alternative normalization, which will also
be adopted in Section 5 and in Appendix. In this framework, the model
(2)–(5) reads
𝜕𝑁𝑒
𝜕𝑡

+ [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑁𝑒] + ∇∥𝛥⟂𝐴∥ = 0, (10)
𝜕
𝜕𝑡
(1 − 𝑑2𝑒𝛥⟂)𝐴∥ − [𝜑, 𝑑2𝑒𝛥⟂𝐴∥] + 𝜌2𝑠 [𝐵𝑧, 𝑑

2
𝑒𝛥⟂𝐴∥]

+ ∇∥(𝜑 − 𝜌2𝑠𝑁𝑒 − 𝜌2𝑠𝐵𝑧) = 0, (11)
(

2
𝛽𝑒

+ (1 + 2𝜏)(𝛤0 − 𝛤1)
)

𝐵𝑧 =
(

1 −
𝛤0 − 1

𝜏
− 𝛤0 + 𝛤1

)

𝜑
𝜌2𝑠

, (12)

𝑁𝑒 =
(

𝛤0 − 1
𝜏

+
𝛽𝑒
2
𝑑2𝑒𝛥⟂

)

𝜑
𝜌2𝑠

− (1 − 𝛤0 + 𝛤1)𝐵𝑧, (13)

and the normalization is given by

𝑡 =
𝑣𝐴
𝐿

𝑡, 𝑥 = �̂�
𝐿
, 𝑦 =

�̂�
𝐿
, 𝑧 = �̂�

𝐿
,

𝑑𝑒 =
𝑑𝑒
𝐿
, 𝜌𝑠 =

�̂�𝑠
𝐿
, (14)

𝑁𝑒 =
𝐿
𝑑𝑖

�̂�𝑒
𝑛0

, 𝜑 = 𝑐
𝑣𝐴

�̂�
𝐿𝐵0

, 𝐴∥ =
�̂�∥

𝐿𝐵0
, 𝐵𝑧 =

𝐿
𝑑𝑖

�̂�𝑧
𝐵0

,

where the hats denote dimensional quantities and 𝐿 is a character-
istic length of variation in the perpendicular plane. With this nor-
malization, the operator 𝛤𝑛 is associated with the Fourier symbol
𝐼𝑛(𝜏𝜌2𝑠𝑘

2
⟂) exp(−𝜏𝜌

2
𝑠𝑘

2
⟂).

The gyrokinetic/gyrofluid ordering involves a small parameter 𝜀 =
𝐿∕𝐿∥, where 𝐿∥ is the characteristic length scale along the guide field.
This parameter, which also measures the typical field amplitudes and
frequencies, can be scaled out in the final gyrofluid equations, making
all quantities of order unity. This choice is made in the following
sections.

All the numerical simulations of the two-field model (written in one
or the other previously-mentioned non-dimensional form) presented in
the following Sections are performed using a Fourier pseudo-spectral
method on a periodic domain, with aliasing suppressed by spectral
truncation at two-third of the maximal wavenumber (except when a
spectral filtering is employed), and time stepping done by means of a
third-order Runge–Kutta scheme.
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3. Reconnection-mediated turbulence in the RMHD regime with-
out imbalance: the weakly nonlinear scenario

In this Section, we first give an overview of the ideas underlying
the theory of the turbulent cascade at large (MHD) scales, from the
concept of a critically balanced cascade to a regime mediated by
reconnection processes (‘‘tearing instability’’). Then, we highlight some
recent numerical evidences of such a regime, with a focus on a work
employing the gyrofluid model (2)–(5).

3.1. Alfvénic turbulence at fluid scales without imbalance: from critical
balance to the tearing-mediated regime, through dynamic alignment

In the presence of a background mean magnetic field 𝑩0, the
cascade of Alfvénic fluctuations is naturally anisotropic with respect
to its direction already at ‘‘large’’ (i.e., MHD) scales. In this range of
scales, the typical wave-vector component of the fluctuations parallel
to the local mean field (which involves scales significantly larger than
those associated with the considered wave vector) tend to be much
smaller than the perpendicular one, i.e., 𝑘∥ ≪ 𝑘⟂ (for the purpose of
this subsection, we use the physical variables). If critical balance (CB)
between the linear and nonlinear timescales of the fluctuations can be
assumed, Goldreich and Sridhar [27] originally predicted a perpendic-
ular power spectrum ∝ 𝑘−5∕3⟂ and a wave-vector anisotropy 𝑘∥ ∝ 𝑘2∕3⟂ ,
corresponding to a spectrum ∝ 𝑘−2∥ in the field-parallel direction. Still
within such CB scenario, Boldyrev [28] suggested that turbulent fluc-
tuations would undergo scale-dependent alignment/anti-alignment in
the field-perpendicular plane due to the continuous shearing produced
by the interaction of counter-propagating AW packets; this process has
been known as ‘‘dynamic alignment’’, and is such that the angle 𝜃𝑘⟂
between magnetic and kinetic turbulent fluctuations at wavenumber 𝑘⟂
exhibits a scaling sin 𝜃𝑘⟂ ∝ 𝑘−1∕4⟂ (see also Ref. [43] for an analogous
effect at sub-𝑑𝑒 scales). The consequence of this effect is to produce
3D-anisotropic turbulent eddies and a cascade whose spectrum scales
as 𝑘−3∕2⟂ , where the spectral anisotropy now follows a 𝑘∥ ∝ 𝑘1∕2⟂ relation
(here 𝑘⟂ is the wave vector associated to the shortest length-scale 𝜆 of
these three-dimensional eddies, and is perpendicular to both the direc-
tion of the mean magnetic field and of magnetic-field fluctuations); the
parallel spectrum in this case still scales as 𝑘−2∥ .

The 3D nature of the eddies when dynamic alignment occurs has
fundamental implications for the development of current sheets and
magnetic reconnection. In fact, it has been known for a long time that
the formation of current sheets (CSs) is another fundamental aspect
of the turbulent cascade in plasmas [e.g., 44–48]. In most cases, the
CSs that are formed in this way are tearing-unstable, i.e., they are
disrupted by magnetic reconnection [e.g., 49–51]. These reconnection
processes are so ubiquitous in turbulence that have been suggested to
possibly mediate the energy transfer at both MHD [e.g., 29–31,52,53]
and kinetic [e.g., 54–57] scales. When this transfer at MHD scales
is mediated by reconnection, the resulting turbulence is said to be
in the ‘‘tearing-mediated’’ regime, and it is characterized by a steep
𝑘−11∕5⟂ spectrum. This regime naturally emerges in a critically balanced
cascade only when dynamic alignment occurs, and it develops starting
from a transition scale 𝜆∗ ∼ (𝑘∗⟂)

−1 when the following conditions
are satisfied: (i) the 3D-anisotropic turbulent eddies set up a tearing-
unstable configuration in the plane perpendicular to the mean magnetic
field, and (ii) this configuration evolves slowly enough to allow the
tearing instability to grow and disrupt it (namely, when 𝛾 t𝜆𝜏nl,𝜆 ≳ 1,
where 𝛾 t𝜆 is the tearing-instability growth rate at perpendicular scale
𝜆 and 𝜏nl,𝜆 is the eddy turnover time at the same scale). The latter
condition depends upon the plasma properties (e.g., resistivity), while
the former is a direct consequence of the scale-dependent alignment
of turbulent fluctuations (a process that needs to occur only up to a
scale where tearing instability grows sufficiently fast to mediate the
transfer; below such scale, reconnection will anyway tend to disrupt
4

such alignment, at least locally). t
Finally, let us take a step back and consider the case in which
critical balance is not initially satisfied at the injection scales. When the
injection regime is such that the large-scale nonlinear parameter, which
measures the ratio between the Alfvén time 𝜏A,0 ∼ (𝑘∥,0 𝑣A,0)−1 and the
nonlinear timescale 𝜏nl,0 ∼ (𝑘⟂,0 𝛿𝑏⟂,0)−1 at injection scales (measuring
magnetic-field fluctuations in Alfvénic units 𝛿𝑏⟂ = 𝛿𝐵⟂∕

√

4𝜋𝜚0, with 𝜚0
indicating the equilibrium mass density), is significantly smaller than
unity (i.e., 𝜒0 ∼ (𝑘⟂,0∕𝑘∥,0)(𝛿𝑏⟂,0∕𝑣A,0) = (𝑘⟂,0∕𝑘∥,0)(𝛿𝐵⟂,0∕𝐵0) < 1),
then the Alfvénic cascade develops in the so-called ‘‘weak regime’’. In
this regime, the turbulent transfer does not develop a parallel cascade
(i.e., 𝑘∥ ∼ 𝑘∥,0 ∼ const.), and only proceeds through perpendicular
scales, developing a perpendicular cascade with a 𝑘−2⟂ spectrum [32,
33]. However, due to its own fluctuations’ scaling, an initially weak
cascade cannot proceed to arbitrary small scales, as the scale-dependent
nonlinear parameter increases with decreasing scale as 𝜒𝑘⟂ ∝ 𝑘1∕2⟂ . As
a result, there is a scale 𝜆⟂,CB ∼ 𝑘−1⟂,CB ∝ (𝛿𝐵⟂,0∕𝐵0)2 at which the non-
linear parameter becomes of order unity, 𝜒𝑘⟂,CB ∼ 1, and the cascade
transitions to the critically balanced regime described above. In this
weak-cascade scenario, however, dynamic alignment of fluctuations
has not been included in the picture. In Cerri et al. [34] this assumption
has been relaxed, and two different regimes with new scaling have been
proposed in a scenario where weakly-nonlinear turbulence can undergo
a scale-dependent alignment, namely a moderately weak, dynamically
aligned cascade with a 𝑘−3∕2⟂ spectrum and an asymptotically weak
regime (𝜒0 ≪ 1) in which dynamic alignment produces a 𝑘−1⟂ spectrum.
Some interesting consequences of this new scenario is that: (i) dynamic
alignment in the weak regime allows for a transition to the standard
tearing-mediated cascade at scales much larger that the one predicted
by a critically balanced case, and (ii) in the 𝜒0 ≪ 1 regime, the
cascade would never reach critical balance due to its own scaling,
so only the standard tearing-mediated regime can eventually emerge
and allow for a transition to strong turbulence. These scalings and the
alignment of fluctuations at weak nonlinearities were indeed shown to
occur by means of high-resolution numerical simulations employing
the gyro-fluid model of Section 2 in the RMHD regime (see next
Section 3.2).

All the above-mentioned cascades and the associated relevant scal-
ing relations have been summarized in Table 1 for convenience.

3.2. Tearing-mediated range in Alfvénic turbulence from simulations

A steeper tearing-mediated range at fluid scales (i.e., well above any
plasma micro-scale) was clearly shown to emerge from a larger-scale
turbulent cascade via 2D simulations [58]. Only very recently, the ex-
istence of such tearing-mediated regime was proven to exist also in fully
3D simulations by Cerri et al. [34] and, simultaneously, by Dong et al.
[59]. However, the two works adopted different approaches in different
regimes. In Dong et al. [59], a MHD model with broad-band injection of
critically balanced fluctuations was employed; this approach required
a really huge numerical resolution in order to meaningfully separate
the reconnection scale 𝜆∗ from the actual dissipation scales and obtain
a −11∕5 spectrum over a modest range of 𝑘⟂ (roughly a factor ∼ 3; see
their Fig. 2).

In Cerri et al. [34], the problem was addressed from the point
of view of the building blocks of the Alfvénic cascade, i.e., counter-
propagating Alfvén-wave (AW) packets, and within the Hamiltonian
two-field gyro-fluid model presented in Section 2. This type of ap-
proach based on ‘‘AW collisions’’ has been previously employed to
study specific features of plasma turbulence (see, e.g., Refs. [60–62],
and references therein). Our simulations were performed in a regime1

1 We mention that these simulations are performed at purely MHD scales
i.e., they do not explicitly resolve any kinetic scale). In this case, the gyrofluid
odel equations are formally equivalent to the RMHD equations. Therefore,

he condition 𝛽 ≪ 1 can be relaxed at these scales.
𝑒
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Fig. 1. Parallel current density 𝐽𝑧 (left) and perpendicular magnetic field 𝐵⟂ (right) in the 𝑥𝑦-plane at 𝑧 = 𝐿𝑧∕2, during the turbulent state, for different nonlinearity regimes:
𝜒0 ≃ 1 (top row), 𝜒0 ≃ 0.5 (middle row), and 𝜒0 ≃ 0.1 (bottom row). On all the coordinate axes, the length unit is specified for the sake of clarity.
𝛽i = 𝛽e = 1 typical of solar-wind plasma, and a simulation box of size
𝐿⟂ = 𝐿𝑧 ≈ 2.1 × 103 (we remind the reader that here we use gyrofluid
rescaled variables so that in physical units �̃�𝑧 ≫ �̃�⟂) was discretized
with 6723 uniformly distributed grid points, corresponding to a (fully
dealiased) wavenumber range 0.003 ≲ 𝑘 ≲ 0.67 (see Cerri et al. [34]
5

⟂

for additional details on the numerical setup). In these simulations, due
to successive collisions of these oppositely traveling packets, a quasi-
steady turbulent state was reached with different fluctuation properties
depending on the large-scale nonlinearity parameter 𝜒0 (Fig. 1). By
changing the strength of the nonlinear interaction between the AWs,
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Fig. 2. Energy spectra of 𝐵⟂ fluctuations versus 𝑘⟂𝜌s arising from collisions of Alfvén-wave packets at different large-scale nonlinearities 𝜒0 (see legend). Spectra are averaged
over the quasi-steady turbulent state, and relevant power laws are shown as a reference.
the authors were indeed able to show that dynamic alignment can occur
even at weak nonlinearities. Moreover, this scale-dependent alignment
combined with a longer lifetime of the turbulent eddies at lower 𝜒0
facilitates the transition to a tearing-mediated regime. In fact, while
at 𝜒0 ∼ 1 a spectrum 𝐸𝐵⟂

∝ 𝑘−3∕2⟂ clearly emerges (Fig. 2), as well
as an associated fluctuations’ alignment angle that scales as sin 𝜃𝑘⟂ ∝
−1∕4
⟂ (see Fig. 4 of Cerri et al. [34]), the transition to reconnection-
ediated turbulence is not achieved, being out of reach within the

mployed resolution. On the other hand, a tearing-mediated regime
ith a spectrum 𝐸𝐵⟂

∝ 𝑘−11∕5⟂ was clearly observed at 𝜒0 < 1
(Fig. 2; see Fig. 4 in Cerri et al. [34] and associated discussion for
the corresponding scale-dependent alignment – and mis-alignment – in
these regimes), and therefore such regime transition within a weakly
nonlinear, dynamically aligned cascade, occurs at even larger scales
than those predicted within a critically balanced cascade. Notably, the
spectra obtained within these weakly nonlinear regimes exhibited a
−11∕5 range over roughly a decade even at moderately high resolution.

4. Direct KAW cascade with imbalance: the ion-scale transition
range

Alfvén wave (AW) turbulence, that plays an important role in mag-
netized collisionless plasmas such as the solar wind (see Bruno and Car-
bone [63,64]), is often imbalanced in the sense that the energies + =
∫ +∞
0 𝑑𝑘⟂ ∫ +∞

−∞ 𝐸+(𝑘⟂, 𝑘∥)𝑑𝑘∥ and − = ∫ +∞
0 𝑑𝑘⟂ ∫ +∞

−∞ 𝐸−(𝑘⟂, 𝑘∥)𝑑𝑘∥ car-
ried by the waves propagating in the forward and backward directions
relatively to the ambient field are unequal [65–67]. Their ratio 𝐼
s referred to as the ‘‘imbalance parameter’’ (or, for short, ‘‘imbal-
nce’’). Here, 𝐸−(𝑘⟂, 𝑘∥) and 𝐸+(𝑘⟂, 𝑘∥) are the energy spectra of the

corresponding waves. The perpendicular and parallel one-dimensional
spectra are defined as 𝐸±

⟂ (𝑘⟂) = ∫ +∞
−∞ 𝐸±(𝑘⟂, 𝑘∥)𝑑𝑘∥ and 𝐸±

∥ (𝑘∥) =
∫ +∞
0 𝐸±(𝑘⟂, 𝑘∥)𝑑𝑘⟂, respectively.

4.1. Helicity barrier and transition zone: strongly versus moderately non-
linear regimes

While energy is expected to always cascade to small scales, in
imbalanced turbulence, the GCH dynamics is the result of conflicting
constraints. In fact, at ‘‘large’’ (fluid) scales, the GCH corresponds, up
to a sign, to the usual MHD cross helicity and is expected to develop
a direct cascade. At ‘‘small’’ (kinetic) scales, on the other hand, the
GCH identifies with magnetic helicity, and is instead subject to an
6

inverse cascade [68]. What emerges from these constraints is thus a
picture where the GCH displays a ‘‘helicity barrier’’ effect [9], where
the 𝑘⟂-flux of GCH cascading from large MHD scales would not be
able to cascade below the ion scales, thus getting ‘‘halted’’ before such
scales—and then part of this flux may have to be somehow ‘‘redirected’’
towards the small parallel scales.

Simulations of imbalanced turbulence that use an asymptotic form
of the two-field gyrofluid model assuming a sufficiently small value of
𝛽𝑒 (but nevertheless larger than 𝛿2 in order for electron inertia to be
negligible), were performed by Meyrand et al. [9]. In these simulations,
turbulence is driven at MHD scales by a negative damping with non-
zero cross helicity. Such type of forcing leads to a regime of large
imbalance and large nonlinearity parameter that actually breaks the
asymptotics underlying the derivation of gyrofluid models. In these
simulations, the helicity barrier leads to a strong depletion of the
energy flux towards the small perpendicular scales, with a significant
energy transfer in the parallel direction, spectrally localized at the ion
perpendicular scale. Energy accumulates at large scales and imbalance
increases until saturation occurs through strong parallel dissipation.
The level of this saturated imbalance depends on the parallel viscosity,
thus making it non-universal. The non-universality associated to a
dissipation that depends upon large-scale properties and the fact that
‘‘imbalance produced by large-scale injection of GCH at a prescribed rate
is enhanced by wave dispersion’’ were pointed out by Passot and Sulem
[35] and Miloshevich et al. [69]. This dynamics results in a local
steepening of the transverse energy and magnetic spectra at a transition
between the MHD and the sub-ion scales, thus qualitatively producing
a transition range.

In the above simulations, dissipation results only from hyper-
diffusivity terms supplemented in each of the dynamical equations of
the model. In a kinetic simulation by Squire et al. [70], performed
with 𝛽𝑖 = 𝛽𝑒 = 0.3, dissipation is seen to originate from ion-cyclotron
resonance (in combination with 4th-order hyper-resistivity, at even
smaller scales). The magnetic spectrum again displays an ion transition
zone, with polarity change, characteristic of a situation where Alfvén
waves trigger the formation of the ion-cyclotron waves, as observed in
the solar wind [71].

Differently, in the numerical simulations of the two-field gyrofluid
model (taken in the limit of vanishing electron inertia) presented in Pas-
sot et al. [21], the driving is ensured by freezing the amplitude of the
modes whose transverse wavenumber stands in the first spectral shell
and the parallel one corresponds to 𝑘𝑧(𝐿∕2𝜋) = ±1 [72], a procedure
that permits simulations with high imbalance and a nonlinearity param-

eter that remains moderate, as required by the gyrofluid asymptotics.
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Fig. 3. Left: Energy spectra of 𝐵⟂ fluctuations versus 𝑘⟂𝜌s, averaged over the time intervals [8000,14000] 𝛺−1
𝑖 (red) and [14000,20000] 𝛺−1

𝑖 (blue) (inset: same spectra, compensated
by 𝑘3.3⟂ ). Right: perpendicular energy and cross-helicity fluxes, averaged over the time interval [14000,20000] 𝛺−1

𝑖 , and normalized to their respective maximal averaged values.
Fig. 4. In the conditions of Fig. 3, instantaneous energy (left) and GCH (right) fluxes when positive (blue) or their opposite when negative (green) in the time interval [14000,20000]
𝛺−1

𝑖 , together with the fluxes averaged over this interval (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
In this setting, differently from the simulations by Meyrand et al. [9],
the injection rates of energy and GCH are not prescribed (being nev-
ertheless approximately constant when the system reaches a stationary
regime, at 𝑡 ≈ 8000𝛺−1

𝑖 ). They in fact just compensate the amount of
energy and GCH transferred by the turbulence, from the frozen modes
to smaller scales.

Fig. 3 (left) displays the energy spectrum of the transverse magnetic
field for a simulation performed with 𝛽𝑒 = 2 and 𝜏 = 1. The imbalance
is 𝐼 = 10 and the nonlinearity parameter reached in the stationary
regime is 𝜒 = 0.60. A main observation is that, in this setting also, the
transverse energy spectrum of the dominant wave, and consequently,
that of the transverse magnetic fluctuations displays a steep transition
zone (characterized by a spectral exponent close to −3.3) between the
Kolmogorov MHD range and the sub-ion range where the spectrum is
consistent with the phenomenological prediction 𝑘−8∕3⟂ of (balanced)
KAW turbulence [73]. Furthermore, the spectrum in the transition zone
becomes steeper when the imbalance is increased [21], consistent with
Solar Probe observations [20]. Interestingly, as seen in Fig. 3 (right)
the time-averaged energy flux remains essentially constant in all the
spectral range (with a decrease by no more than 1%), while it was
reported to decay in Meyrand et al. [9] simulations at large 𝜒 . The
helicity barrier is, in contrast, conspicuous on the GCH flux which
displays a clear decay of about 17% in the transition zone and beyond.
It is also of interest to display the time fluctuations of the energy
and GCH fluxes. Fig. 4 shows that the fluxes can be negative in some
spectral zones, especially at large scales, but also at the dissipative
scales for GCH, due to an imperfect pinning of the 𝐸+ and 𝐸− spectra.
The magnitudes of the fluxes undergo large variations, which are more
important for GCH at the end of the transition zone and beyond.
7

4.2. Phenomenological modeling

In Passot et al. [21], a phenomenological nonlinear diffusion model
is derived, based on a previous work of Voitenko and De Keyser [74].
In this model, the existence of a transition zone is related to the
development of nonlinear interactions between co-propagating waves,
which are absent in the MHD range, but become possible at sub-ion
scales because of the dispersive character of KAWs. This model thus
provides an alternative mechanism for the formation of a transition
zone between the MHD range and the sub-ion scales, in regimes where
the nonlinear parameter is too small for ion-cyclotron waves to be
efficiently excited. It thus seems to be relevant in the simulations
presented in [21], which display a transition zone that persists when
the parallel dissipation is set to zero. In the following, we briefly review
the main elements underlying such mechanism.

We consider a KAW characterized by a wavevector 𝒌, undergoing
a triadic interaction with two other KAWs with wavevectors 𝒑 and 𝒒.
We are here concerned with the typical time scale of energy transfer,
a crucial ingredient in determining the spectral energy distribution.
It is possible to estimate this quantity within the classical turbulence
phenomenology whereby two KAWs with similar wavenumbers 𝑘 dis-
tort each other. As detailed in Passot et al. [12], neglecting the 𝐵𝑧
contribution (which is a priori valid for small 𝛽𝑒) and the 𝑧-derivative,
the two nonlinear terms of Eq. (3), ∇∥𝜑 and ∇∥𝑁𝑒, are associated with
two characteristic stretching frequencies. Assuming a strong turbulent
regime involving a critical balance between the characteristic time of
the (nonlinear) transverse dynamics and the temporal period of the
Alfvén waves at the corresponding scale, they are respectively given
by 𝛾𝑆𝑡1𝑘 ≃ (𝑘3⟂𝐵𝑘)∕(𝑀2𝑣𝑝ℎ) and 𝛾𝑆𝑡2𝑘 ≃ (𝑘3⟂𝐵𝑘)∕(𝑣𝑝ℎ). Here, the quantity
𝑣 (similar to a phase velocity) is defined as 𝑣 (𝒌) = |𝜔 ∕𝑘 |, where
𝑝ℎ 𝑝ℎ 𝒌 𝑧
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𝜔𝒌 is the linear frequency of a KAW of wavevector 𝒌 obtained from
the linearization of Eqs. (2)–(3). We have used the eigenmode relation
𝐴∥,𝑘 = ±(𝛽𝑒∕2)𝑣𝑝ℎ(𝑀2𝜑𝑘∕𝑘2⟂) between the parallel magnetic and the
electric potentials in the Fourier space (see Eq. (52) of Passot et al.
[12]), a relation that appears to be well verified numerically (with a
typical accuracy of the order of 10% outside the dissipation range). The
relevant nonlinear frequency is 𝛾𝑆𝑡𝑘 = max(𝛾𝑆𝑡1𝑘 , 𝛾𝑆𝑡2𝑘 ), whose wavenum-
ber dependence can be explicitly computed in the three spectral zones
defined as the large-scale range (denoted MHD, where 𝑘⟂ ≪ 𝑘𝑇 ), the
weakly dispersive range (denoted WD, where 𝑘⟂ ≲ 𝑘𝑇 ) and the strongly
dispersive range (denoted SD, where 𝑘⟂ ≫ 𝑘𝑇 ). Here 𝑘𝑇 refers to a
transition wavenumber which is associated with the largest of the ion
and sonic Larmor radii. While 𝑘𝑇 is only weakly sensitive to the level
of imbalance, the WD zone extends to larger scales when the imbalance
is increased. Using Table 1 of Passot and Sulem [35] to determine the
spectral dependence of 𝑀2 and 𝑣𝑝ℎ, we find that 𝛾𝑆𝑡 ≃ 𝑘⟂𝐵𝑘 in both
the MHD and WD ranges, while 𝛾𝑆𝑡 ≃ 𝑘2⟂𝐵𝑘 in the SD range. In this
phenomenological evaluation, however, the contributions from co- and
counter-propagating waves are not separated and imbalance between
the energy of forward and backward propagating waves is not taken
into account.

An alternative way of determining the nonlinear frequency is to
explicitly write in Fourier space the nonlinear equations for the res-
onant interaction of a triad with wavevectors 𝒌, 𝒑 and 𝒒. We shall
use an approach similar (but nevertheless slightly different2), to that
used by Voitenko and de Keyser [75]. The 3-wave resonance conditions
simply read 𝒌 = 𝒑+𝒒 and 𝜔𝒌 = 𝜔𝒑+𝜔𝒒 , where the frequencies are here
taken in the limit of vanishing electron inertia. The equations are given
in Appendix A of [68], together with the growth or decay rate for the
parametric instability of the 𝒌-wave (often called pump wave) when its
amplitude is finite while those of the 𝒑 or 𝒒 waves are much smaller. If
two waves (hereafter the 𝒌 and 𝒑-waves) are of similar finite amplitude,
while the 𝒒-wave is of smaller amplitude, one can still derive the same
equation for the characteristic nonlinear frequency which reads, after
correcting a typo in [68],

𝛾2(𝑘⟂) = 1
64

(𝒛 ⋅ (𝒑 × 𝒒))2

𝜉(𝑝⟂)𝜉(𝑞⟂)
1

𝑘2⟂𝑝
2
⟂𝑞

2
⟂

(

𝜎𝑘
𝜉(𝑞⟂)

−
𝜎𝑞

𝜉(𝑘⟂)

)( 𝜎𝑝
𝜉(𝑘⟂)

−
𝜎𝑘

𝜉(𝑝⟂)

)

×
(

𝜎𝑘𝑘
2
⟂𝜉(𝑘⟂) + 𝜎𝑝𝑝

2
⟂𝜉(𝑝⟂) + 𝜎𝑞𝑞

2
⟂𝜉(𝑞⟂)

)2
|𝑎𝜎𝑘𝒌 |

2, (15)

where 𝜉 = (2∕𝛽𝑒)1∕2∕𝑣𝑝ℎ, 𝜎𝑟 = ±1 according to the forward or backward
direction of propagation of the waves, and where the eigenmode vari-
able 𝑎𝜎𝑘𝒌 satisfies |𝑎𝜎𝑘𝒌 |

2 = (8∕𝛽𝑒)𝐵2
𝑘 [35]. Note that, after changing the

sign of 𝜎𝑘, the same growth rate is recovered by exchanging 𝑝⟂ and 𝑞⟂
and simultaneously changing 𝜎𝑝 and 𝜎𝑞 into their opposite, leaving the
relative direction of propagation of the waves unchanged. Without loss
of generality, in the following we can thus fix 𝜎𝑘 = +1.

Eq. (15) provides an interesting way to analyze the co-and counter-
propagating interactions, as required when there is a large energy
imbalance between the waves propagating in opposite directions. We
shall assume that the interactions are local, so that the three perpen-
dicular wavenumbers are comparable. Let us consider the cases where
the 𝒌 and 𝒑 waves are either co-propagating (𝜎𝑘 = 𝜎𝑝 = 1) or counter-
propagating (𝜎𝑘 = −𝜎𝑝 = 1). Their amplitude can be comparable or,
differently, the 𝒑 wave can have an amplitude much smaller than the 𝒌
wave. In both cases, the 𝒒 wave is chosen to have a small amplitude. In
the following, we specify the nonlinear frequency 𝛾𝑘 at the wavenumber
𝑘 in the two cases 𝜎𝑞 = ±1, for the various spectral ranges. Parallel or
antiparallel superscript arrows are used to characterize co-propagating
or counter-propagating interacting 𝒌 and 𝒑 waves.

2 Instead of using the linear decay rate as in [75], which is only valid
hen two of the three waves have an asymptotically small amplitude, here we

stimate the nonlinear transfer rate for three-wave interaction in a situation
here two waves have finite amplitude.
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Table 2
Interaction rates for the interaction between co- or counter-propagating waves and for
the two possible choices of 𝜎𝑞 , in the three spectral ranges (MHD, weakly and strongly
dispersive). The last two lines provides the global nonlinear interaction rate 𝛾𝑁𝐿

𝑘 after
choosing the appropriate value of 𝜎𝑞 (see the discussion in the main text).

Type of interaction Rate MHD WD SD

Counter-propagating 𝛾↑↓𝑘
|

|

|𝜎𝑞=1
0 𝑘2⟂𝐵𝑘 𝑘2⟂𝐵𝑘

Counter-propagating 𝛾↑↓𝑘
|

|

|𝜎𝑞=−1
𝑘⟂𝐵𝑘 𝑘⟂𝐵𝑘 𝑘2⟂𝐵𝑘

Co-propagating 𝛾↑↑𝑘
|

|

|𝜎𝑞=1
0 𝑘3⟂𝐵𝑘 𝑘2⟂𝐵𝑘

Co-propagating 𝛾↑↑𝑘
|

|

|𝜎𝑞=−1
0 𝑘2⟂𝐵𝑘 𝑘2⟂𝐵𝑘

Counter-propagating 𝛾↑↓𝑁𝐿
𝑘 𝑘⟂𝐵𝑘 𝑘⟂𝐵𝑘 𝑘2⟂𝐵𝑘

Co-propagating 𝛾↑↑𝑁𝐿
𝑘 0 𝑘3⟂𝐵𝑘 𝑘2⟂𝐵𝑘

In the MHD range, the phase velocity 𝑣𝑝ℎ is constant and equal to
he Alfvén speed. When the waves 𝒌 and 𝒑 are counter-propagating,

then 𝜎𝑝∕𝜉(𝑘⟂) − 𝜎𝑘∕𝜉(𝑝⟂) is a constant different from zero. When 𝜎𝑞 =
1, 𝜎𝑘∕𝜉(𝑞⟂) − 𝜎𝑞∕𝜉(𝑘⟂) is zero and the interaction vanishes, while it
is non-zero, proportional to 𝑘⟂𝐵𝑘 when 𝜎𝑞 = −1, reproducing the
RMHD nonlinear frequency obtained above with the simple turbulence
phenomenology. Note that, for this choice of parameters (𝜎𝑝 = 𝜎𝑞 =
−1), there is no parametric decay instability in this range since 𝛾(𝑘) is
purely imaginary. When the waves are co-propagating, the interaction
rate is clearly zero for both 𝜎𝑞 = 1 and 𝜎𝑞 = −1.

In the WD range, the phase velocity 𝑣𝑝ℎ depends on the wavenum-
ber as 𝑣𝑝ℎ(𝑘⟂) ≃ (1 + 𝛼𝑘2⟂)

1∕2, where 𝛼 is a constant depending
on the plasma parameters. When the waves are counter-propagating,
𝜎𝑝∕𝜉(𝑘⟂) − 𝜎𝑘∕𝜉(𝑝⟂) is of order unity and when 𝜎𝑞 = 1, 𝜎𝑘∕𝜉(𝑞⟂) −
𝜎𝑞∕𝜉(𝑘⟂) = 𝑂(𝑘2⟂), while it is approximately constant when 𝜎𝑞 = −1,
resulting in interaction rates proportional to 𝑘2⟂𝐵𝑘 and 𝑘⟂𝐵𝑘 respec-
tively. For co-propagating waves, 𝜎𝑝∕𝜉(𝑘⟂)−𝜎𝑘∕𝜉(𝑝⟂) = 𝑂(𝑘2⟂) and when
𝜎𝑞 = 1, since we also have 𝜎𝑘∕𝜉(𝑞⟂)−𝜎𝑞∕𝜉(𝑘⟂) = 𝑂(𝑘2⟂), the interactions
rate scales like 𝑘3⟂𝐵𝑘, while for 𝜎𝑞 = −1, 𝜎𝑘∕𝜉(𝑞⟂) − 𝜎𝑞∕𝜉(𝑘⟂) is roughly
constant resulting in a rate proportional to 𝑘2⟂𝐵𝑘.

In the SD range, the phase velocity scales linearly with the perpen-
dicular wavevector, i.e., 𝑣𝑝ℎ(𝑘⟂) ≃ 𝑘⟂ ≫ 1. In this range, it is easy to
check that, in all the cases, the interaction rate varies like 𝑘2⟂𝐵𝑘.

These scalings have been verified numerically, considering the most
unstable triads specified in Voitenko [76] and using the parameters of
the simulation discussed below.

The present analysis is nevertheless incomplete as, for example, it
does not specify the values of the nonlinear frequency, nor the details
of the resonance conditions that could contribute to select among the
conditions 𝜎𝑝 = ±𝜎𝑞 . Some constraints are however to be prescribed in
order to reproduce classical results. For consistency with the turbulence
phenomenology, it appears that 𝜎𝑝 = 𝜎𝑞 is a better choice for the MHD
range as well as for the WD range for counter-propagating 𝒌 and 𝒑
waves. For co-propagating waves, most relevant for the present study,
the case 𝜎𝑝 = 𝜎𝑞 corresponds to a coupling of 3 co-propagating waves
which, in the strong-turbulence regime with a large imbalance, can be
the most efficient as they all have the largest amplitude.

The interaction rates for the various cases are summarized in Ta-
ble 2. The global nonlinear interaction rate, denoted 𝛾𝑁𝐿

𝑘 , is given in
the last two lines for the various spectral ranges and for the two relative
streaming directions.

Using the usual Kolmogorov phenomenology (and thus neglecting
possible intermittency corrections), it is now possible to predict the
magnetic spectra in the various ranges. We determine the perpendicular
magnetic spectrum by writing that the energy flux 𝜖 ≃ 𝛾𝑇 𝑟𝑘 𝛿𝑏2𝑘 is
constant. Here, the energy transfer frequency is given by 𝛾𝑇 𝑟𝑘 = 𝛾𝑁𝐿

𝑘
in the strong turbulence regime or by 𝛾𝑇 𝑟𝑘 = (𝛾𝑁𝐿

𝑘 )2∕𝛾𝐿𝑖𝑛, where 𝛾𝐿𝑖𝑛 =
𝑘𝑧𝑣𝑝ℎ, in the weak regime and 𝛾𝑁𝐿

𝑘 refers to one of the nonlinear

frequencies determined above.
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Table 3
Perpendicular magnetic spectra resulting from interactions between co- or counter-
propagating waves, in the various spectral ranges, both in the weak and strong
turbulence regimes.

Turbulence Type of MHD WD SD
strength interaction

Weak Counter-propagating 𝜖1∕2𝑘−2⟂ 𝜖1∕2𝑘−2⟂ 𝜖1∕2𝑘−5∕2⟂

Weak Co-propagating N/A 𝜖1∕2𝑘−4⟂ 𝜖1∕2𝑘−5∕2⟂

Strong Counter-propagating 𝜖2∕3𝑘−5∕3⟂ 𝜖2∕3𝑘−5∕3⟂ 𝜖2∕3𝑘−7∕3⟂

Strong Co-propagating N/A 𝜖2∕3𝑘−3⟂ 𝜖2∕3𝑘−7∕3⟂

In the strong turbulence regime, 𝛾𝑁𝐿
𝑘 𝛿𝑏2𝑘 ≃ 𝜖 ≃ const. and the

above scalings naturally predict a magnetic spectrum 𝐸(𝑘⟂) ≃ 𝛿𝑏2𝑘∕𝑘⟂ ≃
𝜖2∕3𝑘−5∕3⟂ in the MHD range (neglecting possible effects due to imbal-
ance and dynamic alignment) and a spectrum 𝐸(𝑘⟂) ≃ 𝜖2∕3𝑘−7∕3⟂ in the
SD range.

In the weak turbulence regime, the conditions (𝛾𝑁𝐿
𝑘 )2𝛿𝑏2𝑘∕(𝑘𝑧𝑣𝑝ℎ) ≃

𝜖 ≃ const. and 𝑘𝑧 ≃ const. apply, so the spectrum is 𝐸(𝑘⟂) ≃ 𝜖1∕2𝑘−2⟂
in the MHD range (where also 𝑣𝑝ℎ is constant) [33] and it becomes
𝐸(𝑘⟂) ≃ 𝜖1∕2𝑘−5∕2⟂ in the SD range (where 𝑣𝑝ℎ ≃ 𝑘⟂) [77].

Let us now concentrate on the more delicate WD range. Assuming
that the dominant interaction is between the co-propagating waves, we
predict a magnetic spectrum 𝐸(𝑘⟂) ≃ 𝜖2∕3𝑘−3⟂ in the strong regime,
while the spectrum steepens to 𝐸(𝑘⟂) ≃ 𝜖1∕2𝑘−4⟂ in the weak regime
(taking 𝑣𝑝ℎ roughly constant). For counter-propagating waves, the
slopes are identical to those in the MHD range.

Before proceeding further in the discussion, we summarize in Ta-
ble 3 the predicted scaling in the weak and strong regimes for cases
dominated by counter- or co-propagating interactions.

If the imbalance is large, the dominant wave undergoes a very weak
nonlinear interaction with the counter-streaming wave due to the much
smaller amplitude of the latter. On the other hand the co-propagating
interactions can become dominant in the WD range, especially because
the interaction is long lasting as the waves have a small phase velocity
difference. We thus expect that in the WD range, a steeper magnetic
spectrum will develop, associated with a regime somewhat intermedi-
ate between genuinely weak and strong turbulence. In the following,
we illustrate this prediction by studying the interaction between two
co-propagating plane waves with different wavenumbers.

A model for the time evolution of imbalanced Alfvénic turbulence,
consistent with the above estimates of the transfer times, is presented
in Passot et al. [21]. It appears as an extension of a previously-
developed diffusion model in spectral space [35,69], where the effect
of co-propagative waves at sub-ion scales is included by retaining
interactions between triad wavenumbers that are comparable but not
asymptotically close. The importance of this additional coupling is
expressed as a function of the ratio of the phase velocity 𝑣𝑝ℎ(𝑘⟂) to
the Alfvén velocity, which tends to zero when approaching the MHD
range. In the quasi-stationary regime, a closed system of equations
can be written for 𝑢± = 𝐸±(𝑘⟂)∕𝑘⟂, where free parameters include
the energy transfer rate (taken constant) and the GCH transfer rate
assumed to slowly decay in the sub-ion range, in order to model the
transfer and dissipation in the parallel direction observed near the
ion scale in the direct gyrofluid simulations. Numerical integration
of this system clearly shows that the energy spectrum of the most
energetic wave (and thus the transverse magnetic energy spectrum)
displays a transition zone whose spectral exponent is steeper when the
strength of co-propagating waves is increased. On the other hand, it
was consistently shown that such transition zone is not present when
interactions between co-propagating waves are not retained in the
model.
9
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4.3. Testing counter- and co-propagating KAW interactions with simulations

In order to validate the influence of the interaction between co-
propagating waves on the existence of a transition zone, we performed
numerical simulations of decaying turbulence with 𝛽𝑖 = 1∕2 and 𝛽𝑒 =
1∕16 (so 𝜏 = 8), when the initial conditions are two kinetic Alfvén plane
waves, either counter- or co-propagating, with wavevectors given by
𝒌− = ( 14 , 0,

1
4 ), 𝒌+ = (0, 12 ,−

1
2 ) and by 𝒌− = ( 14 , 0,

1
4 ), 𝒌+ = (0, 34 ,

1
2 ),

respectively (we recall to the reader that the background field 𝑩0 is
along 𝑧). In these simulations, a box of sizes3 𝐿⟂ = 𝐿𝑧 ≈ 25 has been
discretized with 4803 uniformly distributed grid points (corresponding
to a fully dealiased spectral range 0.25 ≤ 𝑘⟂ ≤ 160), and a combination
of Laplacian (∝ 𝑘2) and hyper-diffusion (∝ 𝑘8) has been employed to
properly dissipate energy at the smallest scales. As expected, turbulence
is more developed in the case of counter-propagating waves (Fig. 5),
where the rms (root mean square) current reaches a larger maximum
and the energy decay is much more important (not shown). Both
simulations display a −8∕3 spectrum deep in the sub-ion range (steeper
than the −7∕3 spectrum, possibly because of intermittency effects [73]),
with a transition zone with a spectral exponent qualitatively close to −4
clearly visible in the case of co-propagating wave (Fig. 6). Inspection of
the phase velocity 𝑣𝑝ℎ calculated with the parameters of the simulation
hows that the transition above which 𝑣𝑝ℎ ∼ 𝑘⟂ occurs smoothly, and a

clear linear scaling is actually achieved with a good level of accuracy
(with a margin of 1.3%) only at a transition wavenumber 𝑘⟂ ≳ 2.
This explains that the transition zone extends to scales as small as
𝜌𝑠∕2, much smaller than 𝜌𝑖. Nevertheless, a detailed investigation of
the transition region and its role in co-propagating KAW interaction
requires additional simulations and will be presented in a future work.

These results show that a steep spectral transition range between the
MHD cascade and sub-ion-scale turbulence can emerge from a situation
where the energy transfer is dominated by nonlinear interactions of
co-propagating waves, such as in imbalanced turbulence, especially in
situations, like the simulations of Section 4.1, where the energy flux is
not strongly depleted (thus not leading to an energy accumulation at
scales larger than the dispersive range).

5. Turbulent regimes in the nonlinear phase of the tearing insta-
bility at large and moderate 𝝉

Hamiltonian reduced fluid models are very convenient to address
the problem of collisionless magnetic reconnection for which dissi-
pative effects, necessary for well-posedness in the turbulent regime,
should be located at the smallest resolved scales. Previous investiga-
tions of the cold-ion regime, using a reduced description that appears
as a limit of our two-field model, have shown that 2D collisionless mag-
netic reconnection can trigger fluid-like secondary instabilities [78–83].
In particular, in the context of cold electrons and ions (𝜌𝑠 = 0),
numerical simulations presented in Refs. [78,80,82,83] exhibited jets
formed by the reconnection outflow. Such jets appear to collide or get
destabilized, eventually generating turbulence that remains confined
at the center of the island. For cold ions, low 𝛽𝑒, and for 𝜌𝑠 ∼ 𝑑𝑒,
on the other hand, the investigation of Ref. [84] found no evidence
of secondary fluid instabilities. However, in cases with 𝜌𝑠 > 𝑑𝑒, as
iscussed in Ref. [85], secondary instabilities along the separatrices,
ikely of Kelvin–Helmholtz type, were observed. We point out that the
ependence, that we just summarized, of secondary instabilities on
he ratio 𝜌𝑠∕𝑑𝑒, only refers to the case of symmetric reconnection, for
hich the equilibrium current density has an extremum point at the

esonant surface. The presence of asymmetry can modify the above
cenario, leading to Kelvin–Helmholtz-like secondary instabilities along

3 We remind the reader that perpendicular lengths are in 𝜌s units, while,
ecause of the gyrofluid rescaling, the parallel scales in the physical variables
re in fact much larger.
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Fig. 5. Contours of parallel current density 𝐽𝑧 (left) and of perpendicular magnetic field 𝐵⟂ (right) in a plane perpendicular to 𝑩0 generated by the interaction of counter-propagating
(top row) and co-propagating (bottom row) kinetic-Alfvén plane waves.

Fig. 6. Energy spectra of 𝐵⟂ fluctuations versus 𝑘⟂𝜌s due to the interaction of counter-propagating (red) and co-propagating (orange) kinetic-Alfvén waves. Spectra are averaged
over a quasi-steady turbulent state, and relevant power laws are shown as a reference. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 7. Color-scale plot of the out-of-plane electron gyrocenter velocity 𝑈𝑒 = 𝛥⟂𝐴∥, showing the evolution of the turbulence outside the separatrix for 𝜏 = 100 (top left and right)
and 𝜏 = 1 (bottom left and right). Isolines of the magnetic potential are shown in black within the turbulent region.
the separatrices, also for 𝜌𝑠 ∼ 𝑑𝑒 [86]. In this Section, we extend this
investigation to moderate and large values of the ion-electron tempera-
ture ratio 𝜏 = 𝑇0𝑖∕𝑇0𝑒 and analyze the influence of this parameter on the
nonlinear evolution of magnetic islands, as well as on the properties of
the turbulence driven by the secondary instabilities [42]. We consider
two cases representative of the finite-𝜏 and large-𝜏 regimes, namely
𝜏 = 1 and 𝜏 = 100, and use, for the simulations (performed with
the normalization of Eqs. (10)–(13) and 𝜌𝑠∕𝐿 = 1), the following
parameters:
𝑑𝑒
𝜌𝑠

= 0.223, 𝛽𝑒 = 0.02,
𝑑𝑖
𝜌𝑠

= 10, 𝛿2 = 𝑚𝑒∕𝑚𝑖 = 5 × 10−4. (16)

We consider an equilibrium current sheet given by

𝜑(0) = 0, 𝐴(0)
∥ = 𝐴𝑒𝑞

∥0∕ cosh
2 (𝑥) , 𝐵(0)

𝑧 = 0, (17)

with 𝐴𝑒𝑞
∥0 = 1.299 to ensure that max𝑥(𝐵

𝑒𝑞
𝑦 (𝑥)) = 1, where 𝐵𝑒𝑞

𝑦 (𝑥) =
−𝑑𝐴(0)

∥ ∕𝑑𝑥 is the amplitude of the equilibrium magnetic field. The
tearing stability parameter [87] for this equilibrium is given by [88]

𝛥′ = 2

(

5 − 𝑘2𝑦
)(

𝑘2𝑦 + 3
)

𝑘2𝑦(𝑘2𝑦 + 4)1∕2
. (18)

The equilibrium (17) is initially tearing unstable when 𝛥′ > 0, which
corresponds to wave numbers 𝑘𝑦 = 𝜋𝑚∕𝐿𝑦 <

√

5.
We use a grid of 20802 points within a 2D domain defined as −2.2𝜋 ≤

𝑥 ≤ 2.2𝜋 and −1.8𝜋 ≤ 𝑦 ≤ 1.8𝜋. To introduce numerical dissipation, we
apply filters as described in [89]. These filters are designed to damp
fluctuations at scales for which 𝑘⟂ > 500, in such a way that the
dissipation acts at scales much smaller than the electron Larmor radius.
11
In both the cases 𝜏 = 1 and 𝜏 = 100, simulations reveal the existence
of strong electronic velocity shears, aligned with the separatrices, that
initiate KH instabilities. These instabilities lead to the generation of
turbulence and to the formation of eddies in a region outside the
magnetic island.

In the case 𝜏 = 100, the linear growth rate of the tearing mode
is larger than for the case 𝜏 = 1. In the early fast growth phase,
the outflow directed towards the interior of the island generates a
mushroom-shaped structure, symptomatic of an interchange-like insta-
bility as mentioned in Del Sarto and Deriaz [85]. This reference to the
interchange instability is based on the observation of the morphology
of the structures and is thus purely qualitative. Note however that the
conditions for the emergence of such a secondary instability (magnetic
field curvature and density gradients) could be met following the pri-
mary tearing instability [85,90]. The outflow electron jets then collide
and generate turbulence at the center of the island, as also reported
in the small-𝜏 regime [78,80,82,83]. The strong shear taking place
at the separatrices, leads to stretching and distortion of the magnetic
field lines, triggering reconnection and then the formation of magnetic
eddies. In particular, it is possible to see in Fig. 7 (top right panel),
the appearance of vortices surrounded by a magnetic island formed by
secondary reconnection events.

The top panel of Fig. 7 displays, for 𝜏 = 100, the out-of-plane elec-
tron gyrocenter velocity 𝑈𝑒 = 𝛥⟂𝐴∥, with a number of vortex structures
on a broad range of scales that have propagated outside the island and
whose size is significantly larger than 𝜌𝑒 (as shown in [42], the largest
structures can be fitted with a Gaussian profile whose FWHM is about
1.3 𝑑𝑒 ≈ 9.2 𝜌𝑒), indicating that their formation mechanism is insensitive
to the dynamics at the electron Larmor scale. Similar vortices are also
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observed in EMHD simulations, where electron FLR effects are absent.
The precise shape of EMHD vortices is however different, with the
presence of an inner core whose width appears to be influenced by dis-
sipative effects [42]. The spectrum of magnetic fluctuations developed
in the present simulations has a power law shape at sub-𝑑𝑒 scales, with a
spectral index of −4 (not shown). This observation is not consistent with
phenomenological predictions in the strong turbulence regime (where
a −11∕3 range is expected [12,91]), possibly reflecting an effect of the
central island and current-sheet structures. Further simulations in the
context of homogeneous turbulence are thus necessary to address this
issue.

In contrast, simulations with 𝜏 = 1, which show a similar devel-
opment of the turbulent current layer at the edge of the islands, lead
to the formation of smaller vortices (Fig. 7, bottom panel). Their size
being closer to 𝜌𝑒, the question arises whether their formation could be
associated with the presence of electron FLR effects. To investigate this
issue, a simulation where the FLR term in Eq. (13) was suppressed,
has been performed. Interestingly, this simulation required a more
extended filter, indicating that FLR terms have a regularizing effect.4
In this simulation, we note a significant reduction of magnetic vortices
and an absence of current structures of sizes similar to 𝑑𝑒 or smaller.
This point is discussed in more details in Section 6 in the context of
homogeneous turbulence.

6. Limitations of the two-field model

In Section 5, it was mentioned that, when 𝜏 = 1, the formation of
vortices resulting from the KH instability triggered by strong electron
velocity shear at the edge of the magnetic island, only occurs in the
presence of the (subdominant) electron FLR-correction terms in the
two-field model. The size of these vortices is significantly smaller
than 𝑑𝑒 and in fact approaches 𝜌𝑒. Since the two-field model does
not systematically take into account all the electron FLR effects, the
dynamics that is observed at scales approaching the electron Larmor
radius in these simulations is not fully trustworthy. In order to better
understand the limitations of the model, simulations of homogeneous
turbulence in domains of various sizes have been performed, with a
number of collocation points equal to 40002. These simulations have
been carried out with the model formulated in the non-dimensional
variables used in Eqs. (2)–(5).

In Fig. 8, we display 𝛥⟂𝐴∥ at the same instant of time in a sub-
domain of two simulations when including (left) or not (right) the
electron FLR term. The simulations have been initialized with random
fluctuations, taking the same parameters and a domain of similar size
(here 8𝜋𝜌𝑠) as in the 𝜏 = 1 simulation of Section 5. Similarly to the
evolution of the secondary instabilities following the initial reconnec-
tion event in Fig. 7, also in Fig. 8 small vortices of size comparable
to 𝜌𝑒 are formed in regions of strong shear in the presence of the
FLR term (left panel). On the other hand, current sheets display less
fragmentation when such FLR term is removed from the gyrofluid
equations (right panel of Fig. 8). In fact, increasing the filtering was
necessary in order to run the simulation without the FLR term, thus
supporting the observation made in the previous Section that FLR terms
have a regularizing effect. However, the size of the domain used in
the simulations of Fig. 8 limits the aspect ratio of the current sheets,
thus preventing the early formation of plasmoids. This limitation is not
present in the case where the same initial conditions are taken at a
larger scale, as shown in Fig. 11 (left panel) that is discussed below.

4 Note that the FLR term in our gyrofluid formulation contributes to
he third term of Eq. (9) for the IKAWs. This latter term on the other
and originates from the polarization drift of the electron velocity in the
luid formulation used in [92]. The FLR term is non dissipative but affects
he dispersion relation by making 𝜔∕𝑘∥ to decay roughly like 𝑘−1⟂ at small
cales, while 𝜔∕𝑘∥ remains constant in its absence. It can thus be viewed as
12

ntroducing a dispersive regularization.
Fig. 9 displays a later time of the simulation shown in Fig. 8, when
using the full gyrofluid model (i.e., including the FLR term), the right
panel being a zoom of the full box (left panel). The global view on the
left panel of Fig. 9 displays multiple current sheets brought together
by the motion of large-scale coherent structures around which some of
them are rolling up in a spiral shape structure. These current sheets
are thickened by competing KH and reconnection instabilities inside
the layer, leading to the formation of many vortices at the electron
Larmor radius scale. In Fourier space, the magnetic energy spectrum,
displayed in Fig. 10, shows three power-laws associated with the sub-
ion range (spectral index close to −8∕3, obtained by Boldyrev and Perez
[73] when taking into account intermittency corrections), the sub-𝑑𝑒
range (spectral index close to −11∕3 predicted in [91]) and a sub-
𝜌𝑒 range (spectral index of −4.5, consistent with Cluster observations
in the terrestrial magnetosheath [93]). These findings, which show
consistency with space plasma measurements, deserve confirmation
using a model which includes a comprehensive description of electron
Larmor radius corrections.

We now display in Fig. 11 two snapshots of a simulation using the
full model with the same physical parameters as above, except that the
size of the domain is an order of magnitude larger, i.e., 80𝜋𝜌𝑠. In this
ase, scales comparable to the electron Larmor radius are inside the
issipation zone. We note a qualitative similarity with the simulations
n the cold-ion regime reported in [10]. The most obvious difference
ith the previous smaller-box simulation (left panel of Fig. 8) is that we
ow observe vortices at all the scales (including meso-scale plasmoid
hains), resulting from the turbulent dynamics. In addition to the
urrent sheets, two types of structures are clearly visible at early times
left panel), namely plasmoids formed in extended current sheets as
result of reconnection (lower part of the left panel of Fig. 11), and

maller vortices produced by the KH instability that develops in the
utflow of a reconnection site (top left part of the left panel of Fig. 11).
n the late phase of the simulation (right panel), the structures undergo
onlinear interactions, leading to a fully developed turbulent regime
here it is difficult to distinguish between structures originated by the

wo different processes. The associated time-averaged magnetic energy
pectrum, displayed in Fig. 10, shows a −5∕3 MHD range followed by a
8∕3 sub-ion range, limited at small scale by dissipation. Note that this
imulation, which is performed in the spectral range of strict validity
f the model, does not resolve the sub-electron scales (and especially
𝑒). The question arises whether the active dynamics observed at
hese scales in the previous simulation, could affect the evolution of
eso-scale turbulence.

In order to address a situation where dissipation acts at scales
maller than the electron Larmor radius, and also to extend the validity
f the gyrofluid model to larger values of the 𝛽𝑒 parameter, there is a
eed for a more sophisticated model taking into account both the ion
nd electron FLR effects (and also possibly the Landau damping terms,
s shortly discussed below). It is also necessary to include the coupling
o the full ion motion, with dynamical equations for the ion gyrocenter
ensity and parallel velocity. This will also make it possible to capture
he coupling of AWs to ion acoustic waves (IAWs), necessary to describe
he parametric decay instability at MHD scales (for 𝛽𝑖 < 1). Note that a
urther coupling to electron and ion parallel temperatures would also
pen the possibility to introduce Landau damping effects (through a
andau-fluid type of closure), particularly important when 𝛽𝑖 reaches
alues of order unity [94]. A four-field gyrofluid model that takes into
ccount the coupling to the parallel ion velocity and incorporates the
ull electron FLR effects is detailed in Appendix.

. Conclusion

The present paper, which includes a review together with new
esults, illustrates the capability of a relatively simple Hamiltonian two-
ield model to provide a uniform description, from the MHD to the
lectron scales, of turbulent space plasmas, when dominated by the
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Fig. 8. Color-scale plots of 𝛥⟂𝐴∥ from a simulation of decaying turbulence with (left) or without (right) the electron-FLR correction, for 𝛽𝑒 = 0.02, 𝜏 = 1. The simulations are
initialized with homogeneous random fluctuations. Only a quarter of the whole computational box [0, 8𝜋𝜌𝑠] is shown, at a time (𝑡 = 1.375𝛺−1

𝑖 ) taken within the early period of
turbulence decay. On the left panel, squares with sides 𝜋𝑑𝑒 and 𝜋𝜌𝑒 are superimposed.
Fig. 9. Left: Color-scale plots of 𝛥⟂𝐴∥ in the whole computational box, from the same simulation of Fig. 8 at a later time 𝑡 = 6𝛺−1
𝑖 . Right: zoom of the region enclosed in the

square displayed in the left panel, along with the characteristic sizes 𝜋𝑑𝑒, 𝜋𝜌𝑒 as in Fig. 8 (left).
Fig. 10. Energy spectra of 𝐵⟂ fluctuations versus 𝑘⟂𝜌s. Blue: same run as in Fig. 8
(left), averaged over the time interval [5,7] 𝛺−1

𝑖 . Red: same run as in Fig. 11, averaged
over the time interval [20,30] 𝛺−1

𝑖 . Inset: blue spectrum, compensated by 𝑘8∕3 (solid
line), 𝑘11∕3 (dashed line), 𝑘4.5 (dash-dotted line). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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dynamics of Alfvén, kinetic Alfvén or inertial kinetic Alfvén waves, and
by magnetic reconnection. Such processes are known to constitute the
building blocks of heliospheric turbulence. Retaining the whole range
of scales within a single system of equations requires the use of nonlocal
operators, most conveniently described in Fourier space, which pre-
scribe constraints on the geometry of the computational domain. This
model is thus most suited to address fundamental physical processes,
some of which have been reviewed in this paper. We have reported
the first numerical evidence of reconnection-mediated MHD turbulence
in three dimensional simulations in a regime of moderate and low
nonlinearity. We then analyzed the energy and cross-helicity cascades
of imbalanced Alfvénic turbulence and in particular the existence of
a transition zone at ion scales that, at moderate nonlinearity, appears
to be associated with an helicity barrier. In the simulations presented
in this paper, where the driving prescribes the energy and imbalance
levels at the largest scales, there is no significant drop in the energy
transfer rate at the ion scale, in contrast with [9], and the transition
zone results from the local dominance of co-propagating interactions
in this range. This effect is illustrated by new numerical simulations
initialized by co- or counter-propagating plane waves. Simulations of
2D collisionless reconnection at moderate and large values of the ion-
electron temperature ratio 𝜏 are also reported, pointing out the onset
of turbulence as a result of secondary instabilities that develop at
the boundaries of the magnetic island formed by the primary tearing
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Fig. 11. For a decaying run in a box [0, 80𝜋𝜌𝑠] with random initial fluctuations and 𝛽𝑒 = 0.02, 𝜏 = 1, color-scale plots of the out-of-plane electron gyrocenter velocity 𝑈𝑒 in a half
of the computational box, at times 𝑡 = 10𝛺−1

𝑖 (left) and 𝑡 = 24𝛺−1
𝑖 .
instability of an initially unstable current sheet. Simulations of 2D
homogeneous turbulence in the same physical conditions are used to
point out the role of electron FLR corrections on the generation and
the characteristic size of the vortices emerging from the development
of a secondary KH instability. The latter observations suggest the need
for a model providing a complete description of both ion and electron
FLR corrections. A new four-field model, presented in the Appendix,
is introduced to meet these requirements. This model, which is also
Hamiltonian, does not prescribe conditions on 𝛽𝑒 and is consistent with
the linear theory in regimes where the ion gyrocenters can be viewed
as adiabatic and the electrons as isothermal. Perspectives involve simu-
lations of low-frequency turbulence and collisionless reconnection with
this new model in both 2D and 3D frameworks.
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Appendix. Derivation of the two-field gyrofluid model from a four-
field gyrofluid model

In this Appendix, we provide a derivation of the model (10)–(13),
which is different and more detailed with respect to the one presented
in the original Ref. [12]. The starting point for the present derivation
indeed differs from that of [12] and corresponds to the four-field
gyrofluid model

𝜕𝑁𝑒

𝜕𝑡
+ [𝐺10𝑒𝜑 − 𝜌2𝑠2𝐺20𝑒𝐵𝑧, 𝑁𝑒] − [𝐺10𝑒𝐴∥, 𝑈𝑒] +

𝜕𝑈𝑒

𝜕𝑧
= 0, (A.1)

𝜕
𝜕𝑡
(𝐺10𝑒𝐴∥ − 𝑑2

𝑒𝑈𝑒) + [𝐺10𝑒𝜑 − 𝜌2𝑠2𝐺20𝑒𝐵𝑧, 𝐺10𝑒𝐴∥ − 𝑑2
𝑒𝑈𝑒] + 𝜌2𝑠 [𝐺10𝑒𝐴∥, 𝑁𝑒]

+ 𝜕
𝜕𝑧

(𝐺10𝑒𝜑 − 𝜌2𝑠 (2𝐺20𝑒𝐵𝑧 +𝑁𝑒)) = 0, (A.2)
𝜕𝑁𝑖

𝜕𝑡
+ [𝐺10𝑖𝜑 + 𝜏𝜌2𝑠2𝐺20𝑖𝐵𝑧, 𝑁𝑖] − [𝐺10𝑖𝐴∥, 𝑈𝑖] +

𝜕𝑈𝑖

𝜕𝑧
= 0, (A.3)

𝜕
𝜕𝑡
(𝐺10𝑖𝐴∥ + 𝑑2

𝑖 𝑈𝑖) + [𝐺10𝑖𝜑 + 𝜏𝜌2𝑠2𝐺20𝑖𝐵𝑧, 𝐺10𝑖𝐴∥ + 𝑑2
𝑖 𝑈𝑖] − 𝜏𝜌2𝑠 [𝐺10𝑖𝐴∥, 𝑁𝑖]

+ 𝜕
𝜕𝑧

(𝐺10𝑖𝜑 + 𝜏𝜌2𝑠 (2𝐺20𝑖𝐵𝑧 +𝑁𝑖)) = 0, (A.4)

𝐺10𝑖𝑁𝑖 − 𝐺10𝑒𝑁𝑒 =
1 − 𝛤0

𝜏
𝜑
𝜌2𝑠

− (𝛤0 − 𝛤1)𝐵𝑧 − (𝐺2
10𝑒 − 1)

𝜑
𝜌2𝑠

+ 𝐺10𝑒2𝐺20𝑒𝐵𝑧,

(A.5)

𝛥⟂𝐴∥ = 𝐺10𝑒𝑈𝑒 − 𝐺10𝑖𝑈𝑖, (A.6)

𝐵𝑧 = −
𝛽𝑒
2

(

𝜏2𝐺20𝑖𝑁𝑖 + (𝛤0 − 𝛤1)
𝜑
𝜌2𝑠

+ 2𝜏(𝛤0 − 𝛤1)𝐵𝑧

+2𝐺20𝑒𝑁𝑒 − 𝐺10𝑒2𝐺20𝑒
𝜑
𝜌2𝑠

+ 4𝐺2
20𝑒𝐵𝑧

)

. (A.7)

As discussed in Section 6, this model has an interest in itself. Indeed,
while still being relatively simpler than gyrokinetic models, it does not
assume, unlike the two-field model (10)–(13), that 𝛽𝑒 and 𝑑𝑒 are small
parameters. Consequently, it retains the coupling with ion gyrocenter
density and parallel velocity dynamics, as well as electron FLR effects.

Eqs. (A.1)–(A.2) and (A.3)–(A.4) correspond to the continuity and
parallel momentum equations for electron and ion gyrocenters, respec-
tively. Eqs. (A.5), (A.6) and (A.7) represent quasi-neutrality, paral-
lel and perpendicular components of Ampère’s law, respectively. The
model is formulated according to the normalization (14). Eqs. (A.1)–
(A.7) involve additional quantities, 𝑁𝑖, 𝑈𝑒 and 𝑈𝑖, corresponding re-
spectively to the ion density and to the electron and ion parallel
velocity gyrocenter fluctuations, whose normalization is given by

𝑁𝑖 =
𝐿 �̂�𝑖 , 𝑈𝑒,𝑖 =

𝐿 �̂�𝑒,𝑖 . (A.8)

𝑑𝑖 𝑛0 𝑑𝑖 𝑣𝐴
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Also, the gyroaverage operators 𝐺10𝑒 = 2𝐺20𝑒 and 𝐺10𝑖 = 2𝐺20𝑖 corre-
spond, in Fourier space, to operators multiplying Fourier coefficients
by exp(−(𝛽𝑒∕4)𝑑2𝑒 𝑘

2
⟂) and by exp(−𝜏𝜌2𝑠𝑘

2
⟂∕2), respectively. We point out

that these expressions correspond to those obtained by exact integration
in [23]. Alternative expressions, providing a better agreement with
linear theory for large values of (𝛽𝑒∕4)𝑑2𝑒 𝑘

2
⟂ and (𝜏∕2)𝜌2𝑠𝑘

2
⟂, could also

be used, as discussed, for instance, in [95–97].
Unlike the parent gyrofluid model [23] used for the derivation in

Ref. [12], the four-field model (A.1)–(A.7) is a closed system. The
gyrofluid model in [23] evolves also parallel and perpendicular gyro-
center pressures and accounts for nonuniform equilibrium magnetic,
density and temperature equilibria. Expressions for the heat fluxes and
fourth-order moments are not specified, as the closure problem is not
addressed. The four-field model (A.1)–(A.7) can be derived from 𝛿𝑓
gyrokinetic equations such as those presented in [36,98]. In particular,
the hierarchy of the resulting electron gyrofluid equations is truncated
by imposing a quasi-static closure, as described in Ref. [94]. In the
present case, in which the hierarchy is truncated at the level of the par-
allel momentum equation, the quasi-static closure amounts to imposing
an isothermal electron fluid. The ion gyrofluid hierarchy, on the other
hand, is truncated using the closure described in [99,100]. This closure
is based on retaining a finite number (two, in our case) of coefficients in
the Hermite–Laguerre expansion of a generalized perturbed distribution
function and in simplifying nonlinear terms involving gyroaverage
operators, in such a way that the resulting gyrofluid system, if the
closure is applied to all species, conserves energy. In Ref. [100] it is
shown that such closure also preserves the Hamiltonian character of
the parent gyrokinetic model. It also emerges that the model (A.1)–
(A.7) is Hamiltonian, although two different closures are adopted for
electrons and ions. We also remark that the differences between the
two closures emerge not in the evolution equations, but rather in the
different treatments of ion and electron terms in the static relations
(A.5)–(A.7).

If one looks at the linear dispersion relation of the parent gy-
rokinetic model, it turns out that the closures imposed on the mo-
ments of higher order with respect to density and parallel momentum
fluctuations are compatible with the regime

𝑣𝑡ℎ𝑖 ≪
𝜔
𝑘𝑧

≪ 𝑣𝑡ℎ𝑒. (A.9)

The inequality 𝑣𝑡ℎ𝑖 ≪ 𝜔∕𝑘𝑧 leads to the closure relation for the ions.
The inequality 𝜔∕𝑘𝑧 ≪ 𝑣𝑡ℎ𝑒, on the other hand, concerns the electron
fluid and, as above stated, is compatible with an isothermal electron
fluid.

The derivation of the two-field model from the four-field model
proceeds by first identifying a small parameter which we take to be
the square root of the mass ratio

𝛿 = (𝑚𝑒∕𝑚𝑖)1∕2. (A.10)

This will allow in particular to neglect most of the electron FLR effects.
Corrections of order 𝛿 with respect to the leading order will however be
retained in the model. This will make it possible, in particular, to retain
electron inertia effects in the parallel electron momentum equation, and
thus allow for magnetic reconnection, also in the large 𝜏 regime.

The key to the derivation of the two-field model from the four-
field model is the decoupling, through an asymptotic expansion, of
the ion gyrocenter density and parallel velocity fluctuations, reducing
Eqs. (A.1)–(A.2), complemented by appropriate static relations, to a
closed system. The model focuses on the regime
𝛽𝑒
2

= 𝑂(𝛿) (A.11)

as 𝛿 → 0. This will help to make all electron FLR terms subdominant
with respect to electron inertia terms when considering a scaling with
finite 𝜏. Also, parallel magnetic perturbations (which, at the leading
order, are proportional to 𝛽𝑒) will be retained as corrections one order
smaller in 𝛿.
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We also require that the two-field model retains ion FLR effects, and
in particular that it reduces to known reduced models (see Section 2)
in the small and large 𝜏 limits.

All these requirements can be met by retaining, from the parent
model, (A.1)–(A.7) only the leading order terms, as well as their first
order corrections in 𝛿, on the basis of two scalings. The final model
is obtained by considering the union of all the terms present in the
reduced models obtained from the two scalings.

More precisely, we first introduce the following
Scaling I

𝜕𝑡 = 𝑂(𝜀𝛿1∕2), 𝜕𝑥 = 𝑂(1), 𝜕𝑦 = 𝑂(1), 𝜕𝑧 = 𝑂(𝜀𝛿1∕2), (A.12)

𝜌𝑠 = 𝑂(1), 𝑑2𝑒 = 𝑂(𝛿), 𝑑2𝑖 = 𝑂(1∕𝛿),
𝛽𝑒
2

= 𝑂(𝛿), 𝜏 = 𝑂(1)

(A.13)

𝑒 = 𝜀(𝛿1∕2𝑁𝑒0 + 𝛿3∕2𝑁𝑒1 + 𝑂(𝛿5∕2)), (A.14)

𝑖 = 𝜀(𝛿2𝑁𝑖0 + 𝛿3𝑁𝑖1 + 𝑂(𝛿4)), (A.15)

𝑒 = 𝜀(𝛿1∕2𝑈𝑒0 + 𝛿3∕2𝑈𝑒1 + 𝑂(𝛿5∕2)), (A.16)

𝑖 = 𝜀(𝛿2𝑈𝑖0 + 𝛿3𝑈𝑖1 + 𝑂(𝛿4)), (A.17)

= 𝜀(𝛿1∕2𝜑0 + 𝛿3∕2𝜑1 + 𝑂(𝛿5∕2)), (A.18)

∥ = 𝜀(𝛿1∕2𝐴∥0 + 𝛿3∕2𝐴∥1 + 𝑂(𝛿5∕2)), (A.19)

𝑧 = 𝜀(𝛿3∕2𝐵𝑧0 + 𝛿5∕2𝐵𝑧1 + 𝑂(𝛿7∕2)) (A.20)

nd
Scaling II

𝜕𝑡 = 𝑂(𝜀𝛿1∕2), 𝜕𝑥 = 𝑂(1), 𝜕𝑦 = 𝑂(1), 𝜕𝑧 = 𝑂(𝜀𝛿), (A.21)

𝜌𝑠 = 𝑂(1), 𝑑2𝑒 = 𝑂(𝛿), 𝑑2𝑖 = 𝑂(1∕𝛿),
𝛽𝑒
2

= 𝑂(𝛿), 𝜏 = 𝑂(1∕𝛿),

(A.22)

𝑒 = 𝜀(𝛿3∕2𝑁𝑒0 + 𝛿5∕2𝑁𝑒1 + 𝑂(𝛿7∕2)), (A.23)

𝑖 = 𝜀(𝛿2𝑁𝑖0 + 𝛿3𝑁𝑖1 + 𝑂(𝛿4)), (A.24)

𝑒 = 𝜀(𝛿𝑈𝑒0 + 𝛿2𝑈𝑒1 + 𝑂(𝛿3)), (A.25)

𝑖 = 𝜀(𝛿2𝑈𝑖0 + 𝛿3𝑈𝑖1 + 𝑂(𝛿4)), (A.26)

= 𝜀(𝛿1∕2𝜑0 + 𝛿3∕2𝜑1 + 𝑂(𝛿5∕2)), (A.27)

∥ = 𝜀(𝛿𝐴∥0 + 𝛿2𝐴∥1 + 𝑂(𝛿3)), (A.28)

𝑧 = 𝜀(𝛿3∕2𝐵∥0 + 𝛿5∕2𝐵∥1 + 𝑂(𝛿7∕2)). (A.29)

n Eqs. (A.12)–(A.20) and (A.21)–(A.29) we used the parameter

= 𝐿
𝐿∥

≪ 1, (A.30)

already introduced in Section 2. This parameter accounts for the gy-
rokinetic ordering but in practice it will play no role in the derivation,
because all terms in the evolution equations are of quadratic order in
𝜀 and no further expansion is carried out in this parameter.

Scalings I and II are mostly consistent (taking into account the
different normalization) with those of Ref. [12], although here we im-
mediately anticipate the scalings for 𝑁𝑖 that were retrieved a posteriori
in [12]. We also take this opportunity to point out a misprint in Eq. (18)
of Ref. [12], where the correct expression should be 𝐴∥ ∼ 𝜕𝑧 = 𝑂(𝛿𝜀).

We begin by deriving a reduced model according to the scaling I,
which concerns the case of finite 𝜏. If we insert the relations (A.12)–
(A.20) into Eqs. (A.5)–(A.7) we can write

𝑁𝑒 +
1 − 𝛤0

𝜏
𝜑
𝜌2𝑠

− (𝛤0 − 𝛤1 − 1)𝐵𝑧 = 𝑂(𝜀𝛿2), (A.31)

⟂𝐴∥ = 𝑈𝑒 + 𝑂(𝜀𝛿2), (A.32)

𝑧 = −
𝛽𝑒 ((𝛤0 − 𝛤1 − 1)

𝜑
2
+
(

1 + 2𝜏(𝛤0 − 𝛤1)
)

𝐵𝑧
2 𝜌𝑠
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)

+ 𝑂(𝜀𝛿3). (A.33)

Note that all terms, such as 𝐺10𝑖𝑁𝑖 and electron FLR corrections, which
ontribute neither to the leading order nor to the first order correction
n 𝛿, are all included in the terms of the form 𝑂( ), which we refer to
s ‘‘unspecified quantities’’. In particular, for a function 𝑓 assumed of
rder unity, one has 𝐺10𝑒𝑓 = 2𝐺20𝑒𝑓 = 𝑓 + 𝑂(𝛿2). Therefore, electron

FLR corrections are at least of order 𝛿2 smaller than the dominant
ontribution in each equation.

If we neglect the unspecified terms in each equation we obtain

𝑒 +
1 − 𝛤0

𝜏
𝜑
𝜌2𝑠

− (𝛤0 − 𝛤1 − 1)𝐵𝑧 = 0, (A.34)

𝛥⟂𝐴∥ = 𝑈𝑒, (A.35)

𝐵𝑧 = −
𝛽𝑒
2

(

(𝛤0 − 𝛤1 − 1)
𝜑
𝜌2𝑠

+ (1 + 2𝜏(𝛤0 − 𝛤1))𝐵𝑧 +𝑁𝑒

)

. (A.36)

In this way the fields 𝑁𝑖 and 𝑈𝑖 are eliminated in the reduced static rela-
tions (A.34)–(A.36). Note, however, that by neglecting the unspecified
terms, not all the corrections which are 𝛿2 smaller than the dominant
contribution have been eliminated. In fact, the whole expansions, in
powers of 𝛿 of the fields, are retained. For instance, in Eq. (A.35), using
Eqs. (A.16) and (A.19), one finds

𝜀𝛿1∕2𝛥⟂𝐴∥0 + 𝜀𝛿3∕2𝛥⟂𝐴∥1 + 𝑂(𝜀𝛿5∕2) = 𝜀𝛿1∕2𝑈𝑒0 + 𝜀𝛿3∕2𝑈𝑒1 + 𝑂(𝜀𝛿5∕2).

(A.37)

All terms at the leading order 𝑂(𝜀𝛿1∕2) and at the next order 𝑂(𝜀𝛿3∕2)
are correctly present. However, terms of order 𝑂(𝜀𝛿5∕2) are in principle
retained in Eq. (A.35), although the unspecified terms of order 𝑂(𝜀𝛿2)
in Eq. (A.32) (which are of lower order) have been neglected. With
this approach, therefore, some subdominant terms are retained. More
generally, each equation of the final model will turn out to be correct
at the leading order, at the next order in 𝛿 but will also contain
some subdominant higher order terms. It is therefore assumed that
such subdominant terms do not play a major role in the dynamics. As
discussed in Ref. [42], this assumption fails, as expected, at sufficiently
small scales, typically of the order of the electron Larmor radius. On
the other hand, the advantage of this approach is that it is significantly
simpler than the standard consistent approach, where equations are
solved order by order and only terms of the same order are retained
in the final model equations.

Inserting the expansions (A.12)–(A.20) into the evolution Eqs. (A.1)–
(A.4) yields
𝜕𝑁𝑒
𝜕𝑡

+ [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑁𝑒] − [𝐴∥, 𝑈𝑒] +
𝜕𝑈𝑒
𝜕𝑧

+ 𝑂(𝜀2𝛿3) = 0, (A.38)
𝜕
𝜕𝑡
(𝐴∥ − 𝑑2𝑒𝑈𝑒) + [𝜑 − 𝜌2𝑠𝐵𝑧, 𝐴∥ − 𝑑2𝑒𝑈𝑒] + 𝜌2𝑠 [𝐴∥, 𝑁𝑒]

+ 𝜕
𝜕𝑧

(𝜑 − 𝜌2𝑠 (𝐵𝑧 +𝑁𝑒)) + 𝑂(𝜀2𝛿3) = 0, (A.39)
𝜕𝑁𝑖
𝜕𝑡

+ [𝐺10𝑖𝜑 + 𝜏𝜌2𝑠2𝐺20𝑖𝐵𝑧, 𝑁𝑖] − [𝐺10𝑖𝐴∥, 𝑈𝑖] +
𝜕𝑈𝑖
𝜕𝑧

+ 𝑂(𝜀2𝛿9∕2) = 0,

(A.40)
𝜕
𝜕𝑡
(𝐺10𝑖𝐴∥ + 𝑑2𝑖 𝑈𝑖) + [𝐺10𝑖𝜑 + 𝜏𝜌2𝑠2𝐺20𝑖𝐵𝑧, 𝐺10𝑖𝐴∥] + [𝐺10𝑖𝜑, 𝑑

2
𝑖 𝑈𝑖]

+ 𝜕
𝜕𝑧

(𝐺10𝑖𝜑 + 𝜌2𝑠𝜏2𝐺20𝑖𝐵𝑧) + 𝑂(𝜀2𝛿5∕2) = 0. (A.41)

Note that, in Eq. (A.39), the term [𝜌2𝑠𝐵𝑧, 𝑑2𝑒𝑈𝑒], which is of order 𝜀2𝛿3,
has been explicitly retained, although it is 𝛿2 smaller than the leading
order terms in the equation. It can be verified a posteriori, that, in the
presence of such term, the model possesses a Hamiltonian structure,
which is a property that we require for our model.

Again, neglecting the unspecified terms, Eqs. (A.38)–(A.41) can be
written as
𝜕𝑁𝑒 + [𝜑 − 𝜌2𝐵 ,𝑁 ] + ∇ 𝑈 = 0, (A.42)
16

𝜕𝑡 𝑠 𝑧 𝑒 ∥ 𝑒
𝜕
𝜕𝑡
(𝐴∥ − 𝑑2𝑒𝑈𝑒) − [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑑

2
𝑒𝑈𝑒] + ∇∥(𝜑 − 𝜌2𝑠𝑁𝑒 − 𝜌2𝑠𝐵𝑧) = 0, (A.43)

𝜕𝑁𝑖
𝜕𝑡

+ [𝐺10𝑖𝜑 + 𝜏𝜌2𝑠2𝐺20𝑖𝐵𝑧, 𝑁𝑖] − [𝐺10𝑖𝐴∥, 𝑈𝑖] +
𝜕𝑈𝑖
𝜕𝑧

= 0, (A.44)
𝜕
𝜕𝑡
(𝐺10𝑖𝐴∥ + 𝑑2𝑖 𝑈𝑖) + [𝐺10𝑖𝜑 + 𝜏𝜌2𝑠2𝐺20𝑖𝐵𝑧, 𝐺10𝑖𝐴∥] + [𝐺10𝑖𝜑, 𝑑

2
𝑖 𝑈𝑖]

+ 𝜕
𝜕𝑧

(𝐺10𝑖𝜑 + 𝜌2𝑠𝜏2𝐺20𝑖𝐵𝑧) = 0. (A.45)

The evolution Eqs. (A.44)–(A.45) get effectively decoupled from the
ystem and can be solved with respect to 𝑁𝑖 and 𝑈𝑖 for given 𝜑, 𝐴∥
nd 𝐵𝑧. Inspection of the leading order terms in Eq. (A.45) according
o scaling I, actually reveals that, at order 𝜖2𝛿, contributions of 𝐴∥0 and
0, but not of 𝑈𝑖0, appear. The system then becomes overdetermined
t the leading order. However, if one considers that, in Fourier space,
he expression 𝐺10𝑖𝐴∥0 + 𝑑2𝑖 𝑈𝑖0 leads, for a given wave vector 𝒌, to
1∕2(exp(−𝜏𝜌2𝑠𝑘

2
⟂∕2)𝐴∥0𝒌 + 𝛿1∕2𝑈𝑖0𝒌 ), one can argue that, in an appro-

riate interval of 𝑘2⟂, the damping effect of the gyroaverage operator
an bring the term 𝐺10𝑖𝐴∥0 to become comparable to the term 𝑑2𝑖 𝑈𝑖0,
lthough the latter is in general smaller. Therefore, in an appropriate
ange of scales, depending on 𝛿, one can assume that 𝑈𝑖0 intervenes
n the leading order equation, thus yielding a correctly determined
ystem, at least in an approximate sense.

Eventually, from Eqs. (A.42), (A.43), (A.35), (A.36), one obtains a
losed two-field system given by
𝜕𝑁𝑒
𝜕𝑡

+ [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑁𝑒] + ∇∥𝛥⟂𝐴∥ = 0, (A.46)
𝜕
𝜕𝑡
(𝐴∥ − 𝑑2𝑒𝛥⟂𝐴∥) − [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑑

2
𝑒𝛥⟂𝐴∥] + ∇∥(𝜑 − 𝜌2𝑠𝑁𝑒 − 𝜌2𝑠𝐵𝑧) = 0,

(A.47)

𝑒 =
𝛤0 − 1

𝜏
𝜑
𝜌2𝑠

− (1 − 𝛤0 + 𝛤1)𝐵𝑧, (A.48)

𝐵𝑧 = −
𝛽𝑒
2

(

(𝛤0 − 𝛤1 − 1)
𝜑
𝜌2𝑠

+ (1 + 2𝜏(𝛤0 − 𝛤1))𝐵𝑧 +𝑁𝑒

)

, (A.49)

where we also made use of Eq. (A.35) to replace 𝑈𝑒 in favor of 𝛥⟂𝐴∥.
At larger scales, or for 𝜏 ≪ 1 (a situation where 𝐺10𝑖 is too close to

the identity operator and the above approximation on 𝐺10𝑖𝐴∥0 + 𝑑2𝑖 𝑈𝑖0
cannot be performed), Eqs. (A.44)–(A.45) imply that, for 𝛽𝑒 = 𝑂(𝛿)
and 𝜏 ∼ 1, 𝑈𝑖 and 𝑁𝑖 reach a larger amplitude 𝑂(𝜖𝛿3∕2), and thus
become of the same order as the first order corrections included in
the two-field system (e.g. the term ∇𝑈𝑖, of order 𝑂(𝜖2𝛿2), would enter
Eq. (A.46)). The two-field model is therefore not applicable in this
regime. It turns out that a version of the two-field model is nevertheless
formally valid also at the level of the first order corrections in 𝛿, if
ne considers a scaling different from I. Such an alternative scaling
onsiders 𝛽𝑒∕2 = 𝑂(𝛿2), 𝜏 = 𝑂(1), 𝜌𝑠 = 𝑂(1), 𝑑𝑒 = 𝑂(1) and is analogous
o the one adopted in [40]. Other orderings where 𝛽𝑒 is taken of
ntermediate magnitude between 𝑂(𝛿2) and 𝑂(𝛿) (but strictly smaller
han 𝑂(𝛿)) are also possible, leading to the same results, but allowing
or larger 𝛽𝑒, which might be more relevant for some space plasmas
pplications. In these regimes, ion FLR effects are retained but parallel
agnetic perturbations become subdominant. In any event, no new

erms, with respect to those in Eqs. (A.46)–(A.49), are produced from
he alternative scalings. Therefore, such alternative scalings are already
ccounted for by the equations obtained from scaling I.

To address the case 𝜏 ≫ 1, the same procedure followed for scaling
is then applied to the parent four-field model with scaling II. In

his case, the decoupling of 𝑁𝑖 and 𝑈𝑖 similarly occurs due to the ion
yroaverage operators, which damp 𝑁𝑖 and 𝑈𝑖 exponentially, but no
ondition on the range of considered scales is to be imposed.

The two-field model resulting from scaling II reads
𝜕𝑁𝑒
𝜕𝑡

+ [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑁𝑒] + ∇∥𝛥⟂𝐴∥ = 0, (A.50)
𝜕
𝜕𝑡
(𝐴∥ − 𝑑2𝑒𝛥⟂𝐴∥) − [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑑

2
𝑒𝛥⟂𝐴∥] + ∇∥(𝜑 − 𝜌2𝑠𝑁𝑒 − 𝜌2𝑠𝐵𝑧) = 0,
(A.51)
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𝑁𝑒 =
(

−1
𝜏
+

𝛽𝑒
2
𝑑2𝑒𝛥⟂

)

𝜑
𝜌2𝑠

− 𝐵𝑧, (A.52)

𝐵𝑧 = −
𝛽𝑒
2

(

−
𝜑
𝜌2𝑠

+ 𝐵𝑧 +𝑁𝑒

)

. (A.53)

The evolution equations look identical to those obtained from scaling
I, although formally, the leading order terms in Eqs. (A.50) and (A.51)
are 𝑂(𝜀2𝛿2) and 𝑂(𝜀2𝛿3∕2), respectively, whereas leading order terms in
Eqs. (A.46) and (A.47) are both 𝑂(𝜀2𝛿). We emphasize the presence of
the only electron FLR correction appearing in our model, and given by
the term (𝛽∕2)𝑑2𝑒𝛥⟂𝜑∕ 𝜌2𝑠 in Eq. (A.52). This term emerges for 𝜏 ≫ 1 as
correction of order 𝛿 smaller, and is thus retained in the quasi-neutrality
relation. The importance of this term for vortex formation has been
discussed in Section 5.

The final two-field gyrofluid model consists of the two evolution
equations
𝜕𝑁𝑒
𝜕𝑡

+ [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑁𝑒] + ∇∥𝛥⟂𝐴∥ = 0, (A.54)
𝜕
𝜕𝑡
(1 − 𝑑2𝑒𝛥⟂)𝐴∥ − [𝜑 − 𝜌2𝑠𝐵𝑧, 𝑑

2
𝑒𝛥⟂𝐴∥] + ∇∥(𝜑 − 𝜌2𝑠𝑁𝑒 − 𝜌2𝑠𝐵𝑧) = 0,

(A.55)

obtained from both scalings, and given by Eqs. (A.46)–(A.47) or, equiv-
alently, by Eqs. (A.50)–(A.51). These equations correspond indeed to
Eqs. (10)–(11).

These two evolution equations are complemented by two static re-
lations obtained taking the union of all the terms in the static relations
obtained from the two scalings, i.e. Eqs. (A.48)–(A.49) and (A.52)–
(A.53). In this way, one can recover the appropriate limit of the static
relations, by applying the corresponding scaling. This procedure yields

𝑁𝑒 =
(

𝛤0 − 1
𝜏

+
𝛽𝑒
2
𝑑2𝑒𝛥⟂

)

𝜑
𝜌2𝑠

− (1 − 𝛤0 + 𝛤1)𝐵𝑧, (A.56)

𝐵𝑧 = −
𝛽𝑒
2

(

(𝛤0 − 𝛤1 − 1)
𝜑
𝜌2𝑠

+ (1 + 2𝜏(𝛤0 − 𝛤1))𝐵𝑧 +𝑁𝑒

)

. (A.57)

Making use of Eq. (A.56), from Eq. (A.57) one can obtain
(

2
𝛽𝑒

+ (1 + 2𝜏)(𝛤0 − 𝛤1)
)

𝐵𝑧 =
(

1 −
𝛤0 − 1

𝜏
− 𝛤0 + 𝛤1

)

𝜑
𝜌2𝑠

. (A.58)

Note that, in the right-hand side of Eq. (A.58), a term −(𝛽𝑒∕2)𝑑2𝑒𝛥⟂
∕𝜌𝑠 has been neglected. Within our approach this is legitimate, be-
ause such term would only contribute to terms which are of order 𝛿2

maller than the leading terms in each equation. As above explained,
ur model is not accurate at the level of such terms.

We can now summarize by pointing out that Eqs. (A.54), (A.55),
A.56) and (A.58) correspond to Eqs. (10), (11), (12) and (13), respec-
ively. This concludes the derivation of the model.
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