
HAL Id: hal-04612352
https://hal.science/hal-04612352

Submitted on 14 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IDAGEmb : An Incremental Data Alignment Based on
Graph Embedding

Oumaima El Haddadi, Max Chevalier, Bernard Dousset, Ahmad El Allaoui,
Anass El Haddadi, Olivier Teste

To cite this version:
Oumaima El Haddadi, Max Chevalier, Bernard Dousset, Ahmad El Allaoui, Anass El Haddadi, et al..
IDAGEmb : An Incremental Data Alignment Based on Graph Embedding. The 26th International
Conference on Big Data Analytics and Knowledge Discovery (DAWAK 2024), Aug 2024, Naples, Italy.
�hal-04612352�

https://hal.science/hal-04612352
https://hal.archives-ouvertes.fr

IDAGEmb : An Incremental Data Alignment
Based on Graph Embedding

Oumaima El Haddadi1,2[0009−0008−7951−2231], Max
Chevalier1[0000−0001−5402−6255], Bernard Dousset1, Ahmad El

Allaoui2,3[0000−0002−8897−3565], Anass El Haddadi2,3[0000−0002−3338−2477], and
Olivier Teste1[0000−0003−0338−9886]

1 IRIT, SIG, Toulouse University, CNRS, France
firstname.lastname@irit.fr

2 LSA, SDIC, Abdelmalek Essaadi University, Tetouan, Morocco
3 lastname.firstname@uae.ac.ma

Abstract. In the evolving digital environments, information systems
are faced with a myriad of challenges such as data heterogeneity, the
dynamic nature of data and integration complexities. These challenges
impact on decision-making and data integration processes. We define
data alignment as the process of aligning columns from different tabular
sources using their schema and instances. Data alignment is emerging as
an essential solution, ensuring data consistency between different sources
and enabling effective integration and decision-making. However, exist-
ing solutions fail to take into account the dynamic nature of data in
an incremental way. This study presents an incremental methodology
that uses dynamic graph embedding techniques to progressively refine
data alignments. Although the use of graph embedding techniques for
data alignment is well established, their integration into incremental pro-
cessing approaches remains less explored. This research attempts to fill
this gap by evaluating the potential of incremental graph embedding
techniques for data alignment. The adoption of this incremental tech-
nique has significantly improved the management of heterogeneous data
in dynamic environments, while optimizing resource usage. Likewise, this
study brings a new perspective to the field of data alignment at it aims
to highlight the usefulness of dynamic embedding techniques for the ex-
ploration of dynamic datasets.

Keywords: Heterogenuous Data · Incremental Data Alignment · Dy-
namic Environment · Graph Embedding.

1 Introduction

The evolution of data (schema and instances) within information systems re-
quires advanced strategies for data alignment, which is vital for the integration
and interoperability of heterogeneous datasets. Data alignment is no longer a
static process but one that must evolve to reflect the ongoing changes within

2 O. El Haddadi et al.

data environments. To address this complexity, our research delves into incre-
mental data alignment, thus leveraging the potential of dynamic embedding
techniques to facilitate continuous alignment adjustments. Specifically, we detail
the selection of source and target tables to ensure a complete understanding of
the matching process. The matching status of each source column (1:1 match,
partial match or no match) is examined in detail to highlight the complexities
involved.

We define data alignment as the process of aligning columns from different
tabular sources using their schema and instances. Moreover, current embedding-
based methods for data alignment (i.e. schema matching), such as those proposed
by Cappuzzo et al.[1] and others [2–4] have shown promising results. However,
the integration of an incremental perspective in these methods has not been
explored. Our study aims to address this issue by evaluating how incremental
embedding techniques can be applied to the incremental data alignment, thereby
enhancing their adaptability and relevance.

The ability of embedding techniques to incorporate incremental changes is
well recognised in some domains such as representation learning, as shown by
models like Online Node2Vec and StreamNode2Vec [5, 6]. Nevertheless, their
application to data alignment has not been explored. Our research aims to fill
this gap by investigating the adaptation of dynamic embedding methods to the
requirements of evolving data alignment.

In this context, our study will focuses on several key questions that aim at
clarifying the capabilities and performance of our incremental alignment method.
These questions are essential to ensure that the approach is not only theoretically
sound, but also practical for managing the dynamism of today’s data ecosystems:

– RQ1 : How does the proposed incremental alignment method compared with
traditional techniques in terms of precision, recall and other key measures?

– RQ2 : Can the proposed incremental approach based on graph embedding
significantly reduce resource usage compared with static data alignment
methods?

– RQ3 : Given the potential variations in data models, how does the method
guarantee consistent and reliable data alignment?

By addressing these issues, our research can extend the theoretical founda-
tions and practical implementations of incremental data alignment. With the
increasing growth of data and the dynamic nature of data, the need for incre-
mental alignment methods becomes more crucial for data management.

This paper is organised as follows: Section 2 provides a background on data
alignment and representation learning, highlighting the shortcomings of static
alignment approaches and identifying the gaps that our research seeks to fill.
In Section 3, we detail the methodology of the incremental approach. To do so,
we attempt to explain the concept and the incremental embedding method that
we adapted along with the processes steps. Section 4 presents the experimen-
tal setup, results, and discussion that follows, designed to address the research
questions mentioned above. It includes a description of the datasets, metrics
and measures that will be used to evaluate the performance of the incremental

IDAGEmb Approach 3

approach. Finally, section 5 concludes with a summary of our contributions and
suggestions for future research.

2 Background

The landscape of data alignment (i.e. schema matching) methodologies is rich
and varied. It addressess the critical need for effective management of data and
schema heterogeneity. This section explores a range of existing approaches, while
highlighting the absence of incremental data alignment approaches in current lit-
erature, as outlined in Section 2.1. and Section 2.2 introduces dynamic graph
embedding techniques, which we consider potential candidates for the develop-
ment of incremental data alignment strategies. Finally, Section 2.3 provides a
discussion of these topics.

2.1 Existing Data Alignment Approaches

Data alignment is a process of matching different data element, schema and
instances that address the challenge of data heterogeneity. This process has tra-
ditionally been met with non-incremental alignment methods, broadly classified
into schema-based, instance-based, and hybrid approaches [7]. Bernstein et al.
[8] provide a comprehensive classification of these methods, highlighting their
application in various contexts, from requirements-focused storage solutions like
data integration and schema mapping [9] to broader applications such as data
lakes [10] and ontology matching [11]. A particularly promising avenue in this
field is the use of embeddings for alignment, which offers a robust framework
for representing and comparing data from disparate sources [1, 2]. Through the
use of graphs, these methods do well in building complex connections between
different data parts, greatly improving the data alignment process.

The advent of machine learning and natural language processing technologies
has brought about significant advancements in data alignment methodologies. In-
corporating representation-based learning, especially embedding, these modern
approaches have redefined alignment strategies. Embeddings, essentially numer-
ical vector representations of schema attributes or instances, leverage distance-
based methods to compute alignments. Their applications extend beyond tradi-
tional databases to graph representations, offering a nuanced approach to data
alignment [4, 12].

2.2 Graph Embedding in Representation Learning

Exploring the domain of graph embedding has revealed several methods tailored
for incremental embedding in temporal graphs. Each method addresses different
aspects of dynamic graph analysis [13]. For instance, Online-Node2Vec [5] inno-
vatively updates dynamic network representations in real-time. Liu’s approach
[6] involves generating embeddings for new nodes and revising the embeddings
of nodes influenced by these additions. The FLDNE Framework [14] focuses on

4 O. El Haddadi et al.

evolving networks, employing a combination function and alignment mechanism
to adapt standard embedding techniques across various time steps.

These methods typically begin with an initialization phase using conventional
embedding techniques. One of the main challenges they face is updating dynamic
node representations (e.g. when new nodes are added). Most of these methods
give priority to node additions, leaving a significant gap in the ability to handle
node deletions and modifications in temporal networks. This gap highlights the
need for more comprehensive solutions capable of handling fully dynamic sources
(adding, deleting or modifying a schema element or instance in the source).

2.3 Discussion

Despite the absence of incremental data alignment to manage data evolution,
dynamic embedding methods have shown potential. Even though they were not
initially designed for data alignment, their ability to adapt to dynamic envi-
ronments makes them promising candidates for application in this field. Fur-
thermore, incremental graph embedding and representation learning techniques
have demonstrated their efficacy in capturing the evolution of relationships and
structural changes within complex data constructs [5, 13].

Adapting these methodologies for data alignment offers an interesting way
of developing solutions that can accommodate real-time schema modifications,
thereby improving the flexibility and efficiency of data alignment processes in
dynamic environment.

3 Methodology

This section describes the methodology of the incremental approach, IDAGEmb.
Section 3.1 introduces the concept, while Section 3.2 details the preliminaries and
the algorithms implemented.

3.1 Research Design

Incremental data alignment is emerging as an essential solution for managing
heterogeneous and dynamic data, as it avoids the need to recompute alignments
from scratch. This approach is designed to manage data changes, ensuring that
the alignment process remains both efficient and adaptive.

The changes taken into account fall into three main categories : the addi-
tion, modification, and deletion of 1) schema elements, 2) the entire schema
itself, and 3) the instances within the data sources. For example, modifications
have been planned to cover both minor changes (e.g. the removal of vowels from
attribute names) and major changes (e.g. the complete encoding of attribute
names). By considering these diverse evolutions, we aim to ensure that the pro-
posed approach adequately addresses the dynamic nature of data sources and
captures any changes that may impact the alignments. It is essential to account
for these evolutions to maintain the efficiency and effectiveness of the alignment

IDAGEmb Approach 5

process over time. Moreover, such incremental dimension aims at reducing the
computational cost of identifying the matching in data alignment (only matching
concerned by data evolution should be updated).

Building on advances in representation learning, in particular studies of dy-
namic graph embedding, we have developed an incremental data alignment
framework inspired by the [6] method, focusing on both additions of new nodes
and modifications to existing nodes. Unlike previous approaches that focused
solely on adding data, our goal is broader, targeting a full range of data source
evolution to ensure up-to-date alignments. This strategy is essential for main-
taining accurate data alignments in changing environments, which is crucial
for sectors requiring real-time data analysis, such as healthcare IT and dynamic
database management, improving system efficiency and reducing redundant com-
putations.

3.2 Preliminaries

Fig. 1: Outline for the principle of Incremental Data Alignment.

To provide an overview of the process shown in Figure 1, we begin by trans-
forming the two data sources into a graphical representation. This allows the
schema elements as well as the instances to establish a basic structure for later
analysis. The process progresses with the generation of embedding for each node
via graph embedding techniques, a critical step in capturing the nuanced char-
acteristics of each node in a high-dimensional space.

Next, the similarity between nodes is determined using a vector distance mea-
sure, such as cosine similarity. This process facilitates the identification of data

6 O. El Haddadi et al.

source columns in different graphs by quantifying the similarity of their embed-
dings. When changes are detected in the data sources, the strategy switches from
recomputing the entire alignment to a more efficient approach. Specifically, we
update the embeddings of modified nodes according to the algorithm proposed
by [6], thus avoiding the process of recomputing from scratch. The foundational
equation used within this algorithm is presented as follows:

Z
(i+1)
t = Z

(i)
t + αiΓ (i)[Ik×k + α2

i (Γ (i))TΓ (i)]−1/2 (1)

where:

– Z
(i)
t is the embedding matrix at iteration i.

– αi is the step size at iteration i.
– Γ (i) is the search direction in the tangent space of the Stiefel manifold at

iteration i.
– Ik×k is the identity matrix of size k × k.

Each matrix embedding, as described by the set of n nodes vectors, is given
by: Zti = [(zv1)

T , zv2)
T , ..., zvn)

T].

By adopting incremental embedding methods, we can reduce computational
overhead and ensure efficient updates to the alignments without the necessity to
recompute the entire set of alignments. This process is depicted in Figure 1 and
elaborated through Steps 1-6 below, highlighting the seamless transition from
data transformation to alignment updates.

1. Transform each data source (DS1,DS2) into a graph representation, denoted
as Gti = (V,E).
Where ti represents the state of the graph at time i, V = v1, v2, ..., vn is the
a set of n nodes (vertices) and E = {eij = (vi, vj)|(vi, vj) ∈ (V XV)} is a set
of edges eij connecting pairs of nodes. This process involves transforming the
data available at ti in DS1 and DS2 into a graph that represents different
types of nodes (schema nodes and instance nodes) and adding prefixes for
each type to define the source node. At ti+1 , the graph is updated with the
new state of the data sources.

2. Generate embeddings for the jth nodes (vj) using the graph embedding
method StreamNode2Vec (SN2V) [15]. Let Zti represent the set of nodes
embeddings for Gti . Where Zti = {z(vj)}.

3. Compute the similarity between pair of nodes’ embedding by the Cosine
Similarity at ti, selected for its dimentionality independence and ability to
effectively identify semantic relationships[16]:

Similarity (z(vi), z(vj)) =
z(vi) · z(vj)

∥z(vi)∥∥z(vj)∥
(2)

4. Compute data alignment set Ati .
5. If there are changes ∆Gi in the data sources (DS1, DS2), update graph,

then update the embedding matrix using equation (1).
6. Update data alignments set Ati+1

.

IDAGEmb Approach 7

3.3 Adopted Algorithm for IDAGEmb

The process of the algorithm proposed by Liu et al.[6] for real-time streaming
graph embedding can be described as follows:

1. Identify Influenced Vertices: Identify the set of vertices Vinfl that are
most influenced by the arrival of new vertices, as detailed in Algorithm 1 in
[6].

2. Generate Embeddings for each New Vertex: For a new vertex v, gener-
ate its embedding z(v) based on the linear summation of original embeddings
of other vertices based on equation 1.

3. Adjust Embeddings of Influenced Vertices: Update the embeddings of
vertices in Vinfl considering the influence of the new vertex.

Algorithm 1 TRANSFORM(DS1, DS2, t0)

1: G0 ← transformToGraph(DS1, DS2) ▷ Step 1
2: Initialise Zt0 as an empty set ▷ Initialise embedding matrix
3: for all v ∈ V (G0) do ▷ V (G0) is the set of nodes
4: zt0(v)← Embedding(v) ▷ Step 2
5: Zt0 ← Zt0 ∪ [(zt0(v))T]T

6: end for
7: At0 ← CalculateSimilarity(zti(v), zti(v′)) ▷ Equation (2)
8: return At0 ,Zt0 ,G0

Inspired by this algorithm and the implementation presented in [15], our
development incorporates mechanisms for creating and updating graphs, as well
as their respective alignments. Algorithm 1 encompasses the first three steps of
our methodology, while Algorithm 3 focuses on steps 4 to 6.

4 Experiments and Results

To evaluate the approach, we designed an experimental protocol that addresses
the three research questions described in the introduction. This involves detail-
ing the set-up implemented and the dataset used. For each research question, we
develop the main objective as well as the results and discussion that follows. Be-
fore discussing the procedure and results associated with each research question,
we incorporate an experiment (Experiment #1) devoted to optimizing the al-
gorithm’s hyperparameters. Section 4.1 describes the set-up and data sets used,
followed by section 4.2 to section 4.4 which outline the objectives and present
the relevant results for each experiment.

4.1 Experiment Configuration

For the three experiments we will follow the process described in Figure 2, using
the materials, datasets, and metrics/measures described below:

8 O. El Haddadi et al.

Algorithm 3 UPDATE(DS1, DS2, t, At0 , Zt0 , G0)

Initialise the set of alignment At

2: for i = 1 to |t| − 1 do ▷ Iterate over subsequent timestamps
Gi ← UpdateGraph(Gi−1,∆Gi) ▷ Step 5

4: Infti(uj)← DetectInfluencedNodes(Gi) ▷ Algorithm 1 [6]
Compute embedding for new nodes

6: z(ti)(uj)← 1

|Inf(ti)(uj)|

∑
v∈Inf(ti)(uj)

zti−1(v) ▷ Generated from Equation (2)

Update z(uj) based on Infti(uj)
8: Zti ← Zti−1 ▷ Initialise Zt[i] with previous embeddings

for all vj ∈ Influenced(V) do
10: z(vj)← UpdateEmbedding(z(vj), Infti(uj)) ▷ Algorithm 2 [6]

Zti ← Zti + z(vj) ▷ Update Zti with new embeddings
12: end for

At ← UpdateAlignment(At0 , Zti) ▷ Step 6
14: end for

return Ati ▷ Return the alignments for the last timestamp

Fig. 2: Experiment Process.

IDAGEmb Approach 9

Materials The experiments will be conducted on a high-performance comput-
ing node to ensure efficient processing of complex data manipulations and model
training. The node specifications are as follows: - Processor: AMD EPYC 7402
2.8 GHz dual processor. - Architecture: 48 processors. - Memory: 512 GB RAM.
- Operating System: Linux Centos7.

Datasets We have selected a set of datasets referenced in the literature [1, 17] as
described in Table 1. Three datasets, TPC-DI, Open Data and ChEMBL, were
prepared according to the methodologies described by [17]. For each dataset, we
identified four pairs of source and target tables. These datasets were selected
because of their complexity and heterogeneity, characterised by differences when
specific attributes in the source tables differ textually from their counterparts in
the target tables. In addition, we encountered cases where attributes in the source
tables matched textually those in the target tables, but differed semantically.
Moreover, in some cases, only one column in each table could be accurately
mapped. These tables range from 11 to 43 columns and from 7491 to 23254
rows.

Additionally, we use two raw datasets from [17] — Magellan and Wikidata.
Magellan comprises 7 pairs, while Wikidata contains 4 pairs, with variations
ranging from 331 to 10845 rows and 4 to 20 columns. The IMDB-Movielens
dataset, sourced from [1], features a source table with 4529 rows and 11 columns,
and a target table with 45346 rows and 13 columns. The later three dataset
present simple heterogeneity with a significant number of rows. These tabular
datasets comprise numerical, textual and noisy data.

Table 1: Datasets Characteristics.
Dataset #Pairs #Columns #Rows

TPC-DI 4 11 to 22 7491 to 14982
Open Data 4 26 to 43 11627 to 23254
ChEMBL 4 14 to 20 7500
Magellan 7 4 to 9 331 to 64263
Wikidata 4 13 to 20 5422 to 10845

IMDB-Movielens 1 11 to 12 4529 to 45346

All datasets include files representing a list of true matches, as determined
by researchers, which we use to compare the matches obtained from our model.

Given that these datasets are ’static’, we processed them to simulate dynamic
data. This was achieved through a splitting method that applied timestamps to
distinguish schema (i.e. column attributes) from instances (i.e. rows) in each
table, in order to simulate the addition, modification and deletion of data. For
example, the addition, modification or deletion of schema was simulated at three
splits, while the addition, modification or deletion of instances occurred at four

10 O. El Haddadi et al.

splits. As a result, this process produced seven timestamps, assuming that the
changes were not simultaneous; if they were, the number of timestamps could be
lower. For each split, we selected part of the dataset. It was found that for large
datasets, the starting point had to be 70% of the initial data, whereas for small
datasets, it was sufficient to start with 30%. The purpose of this step (step 1 in
Figure 2) is to facilitate the detection of changes in both instances and schema.

Metrics and Measure To evaluate the performance of the embedding methods
and the overall model, the following metrics and measure will be used, focusing
in particular on the F1 Score:

– For effectiveness:
• F1 Score: To understand the balance between precision and recall in the
model’s performance.

• Precision: Assessing the model’s ability to correctly identify relevant
matches.

• Recall: Evaluate the model’s capability to find all relevant instances.
– For efficiency:

• Resource Usage: Evaluates the computational resources required by each
method, including consumption and transformation duration and mem-
ory usage. This metric could compare the resource used in the static and
incremental method.

Baseline methods We used static schema matching methods as a reference to
compare the obtained alignments. Specifically, we selected the six methods used
by [17], which fall into three categories:

– Schema-based matching
• Similarity Flooding: A method that relies on graphical similarity flooding
algorithms to find matches between schema elements

• Cupid: Uses linguistic and structural analysis of schemas to match ele-
ments, taking into account both names and data types.

• Coma SHM: This technique, part of the COMA (Combined Approach)
suite, combines several matching tools to improve the accuracy of schema
matching through structural analysis.

– Instance-based matching
• Coma INS: Another variant of the COMA suite, which focuses on in-
stances to determine matches between schemas.

• Jaccard Levenstein: Uses a combination of Jaccard similarity and Lev-
enshtein distance to match schema elements based on their instances

– Hybrid matching
• EmbDi: An approach that integrates both schema and instance informa-
tion, using embedding techniques to generate a complete match.

Our method, IDAGEmb, falls into the category of hybrid matching and is
the only one that incorporates an incremental aspect.

IDAGEmb Approach 11

4.2 Experiment #1: Embedding Method Selection

Objective The main objective of this study is to identify the most efficient
graph embedding technique among three distinct methodologies and to choose
the best hyperparameters to generate node embedding at the first iteration. The
first method considered is the node2vec (N2V) algorithm [18], which is read-
ily available in the Python library. The second is the StreamNode2Vec (SN2V)
method detailed by [15], and the third is EMBDI, a graph embedding method
presented in [1]. The evaluation critically examines various hyperparameters: em-
bedding dimension, walk length, window size, number of walks and min count.
This evaluation is essential to achieve an optimal balance between the consump-
tion of computing resources and the quality of the embedding results.

Description and Results For this experiment, we focused on the following
five hyperparameters for the three embedding graph methods:

– Embedding dimension= [64, 100, 128, 300]: Specifies the size of the vector
space for embedding nodes, which is crucial for encapsulating the essential
features of the graph.

– Walk length = [20, 40, 60, 80, 200]: Specifies the number of walks taken in
each random walk, a parameter that influences the scope of local neighbor-
hood exploration.

– Window size = [3, 5, 7, 10]: Defines the contextual window for the inclusion
of neighboring nodes in the embedding process, influencing the amount of
graph contextual information included in the embedding of each node.

– Min count = [0, 1, 2]: Defines the minimum frequency a node must have
to be included in the embedding process, allowing us to filter out nodes with
few occurrences.

– Number of walk = [10, 20, 30, 40, 100]: Indicates the number of ran-
dom walks launched from each node, which plays an important role in the
completeness of graph exploration.

Initially, we explored all possible combinations of hyperparameters for the
three embedding methods, focusing on a relatively small, non-heterogeneous
dataset to simplify the analysis. However, the EMBDI method proved particu-
larly time-consuming, especially with higher dimensions. Therefore, we excluded
the EMBDI method from further evaluations.

Subsequently, we conducted full experiments with the two remaining meth-
ods, N2V and SN2V, on three datasets of varying complexity: a simple dataset,
an intermediate dataset characterized by its larger size, and a complex dataset
with more heterogeneous columns. This strategic approach allowed us to evaluate
the performance of both methods under diverse conditions, providing valuable
insights into their applicability and effectiveness across datasets with varying
characteristics and complexities. As a result, the F1 Score of SN2V is generally
higher in most configurations than the F1 Score of N2V for the different datasets.

Based on these analyses, we determined that the optimal set of hyperparam-
eters for different datasets is as follows: embedding dimension = 128, walk length
= 40, window size = 10, minimum count = 0, and number of walks = 20.

12 O. El Haddadi et al.

4.3 Experiment #2: Comparison with Static Methods (effectiveness
and efficiency)

Objective The main objective of this experiment is to evaluate the performance
of the incremental alignment method, IDAGEmb, compared to traditional static
methods. This evaluation, conducted on dynamic datasets, is designed to answer
the two research questions, RQ1 and RQ2, by determining the effectiveness and
efficiency of the embedding method in dynamical data environments, respec-
tively.

Results and Evaluation In this experiment, we aim to identify columns that
are similar in different dynamic data sources. The data processing step was struc-
tured in three main phases. Firstly, we exclusively added, modified and deleted
schema element (i.e. attributes column). Secondly, we simulated the addition,
modification and deletion of instances (i.e. value cells). Finally, we simulated
modifications encompassing both schema element and instances (e.g. modifying
the numerical ages to a categorical value, modifying schema element values).

In all stages, the baseline methods relying on schema-based failed to match
the correct columns when the attribute value or the instances values are modified,
despite their faster performance. On the other hand, methods based on instance-
based matching and those that match textually also failed to detect the correct
columns when the instances were modified. However, the method that match
semantically can match the columns correctly after the re-execution from scratch.
Similarly, the baseline based on hybrid method, Embdi, was able to correctly
match columns after re-execution of the whole process.

Effectiveness: The average F1 Score for all matchers across all datasets,
as plotted in Figure 3(a, b), reveals that our method, IDAGEmb, achieved the
highest average F1 Score of 0.513, with a standard deviation of 0.283. In compar-
ison, the Similarity Flooding method, with the second-highest mean, achieved an
average F1 Score of 0.507, with a standard deviation of 0.352, while the EmbdI
method recorded mean F1 Score of 0.416 with a standard deviation of 0.337.
These results highlight the variability in performance between the matching
techniques. Although the average effectiveness of Similarity Flooding is slightly
lower than that of IDAGEmb, it shows considerable variability in the results, as
suggested by its higher standard deviation. In contrast, IDAGEmb shows more
consistent performance across the different scenarios, as indicated by its com-
paratively lower standard deviation. This consistency indicates that IDAGEmb
may provide more stable performance under varying data conditions, offering
a reliable, if slightly less accurate, matching solution compared to static meth-
ods. The high values of standard deviation and the variability observed in the
results can be attributed to the different sizes, heterogeneity, and complexity
of the datasets used. Improving and optimizing IDAGEmb could increase its
accuracy and make it a competitive choice for data alignment in environments
characterised by dynamic data.

Efficiency: The analysis of the consumption and transformation duration for
all the matching methods, as shown in Figure 3(c, d), shows that our method,

IDAGEmb Approach 13

Fig. 3: Standard deviation and Mean of performance metrics (a,b) and resource
usage (c,d).

IDAGEmb, requires ≈386 seconds on average, significantly less than the ≈4399
seconds required by the EmbDI method. EmbDI, a hybrid approach, also relies
on graph embedding techniques similar to those used by IDAGEmb. In addi-
tion, the memory usage of IDAGEmb is significantly lower than that of EmbDI.
These results indicate that IDAGEmb outperforms EmbDI in terms of process-
ing speed and memory efficiency. In summary, IDAGEmb is more efficient than
instance-based and graph-based methods such as EmbDI and Cupid. As a result,
IDAGEmb appears to be a more appropriate option for data alignment tasks,
particularly in dynamic data environments where resource optimization and fast
processing are paramount.

4.4 Experiment #3: Model Sensitivity to Data Order Variation

Objective The objective is to study the impact of changing the order of data
entries. Specifically, we examine whether the order in which certain matched
columns are presented at the beginning, middle or end of the alignment process
affects model performance. The aim of this test is to understand the sensitivity
of the model to the order in which the data is entered and to check whether the
model’s performance is consistent regardless of the order of the data.

Results and Evaluation By analysing the results presented in the Figure 4,
we observed that the final F1 Scores at time #5, which represent the result of the
alignment after data additions and modifications, retain a notable consistency.

14 O. El Haddadi et al.

This consistency persists even if the datasets are randomly changed (e.g., an
attribute that appears at the initial timestamp in one version of the dataset
preparation may appear at the final timestamp in another). For the ’musician’
dataset , the standard deviation of the final F1 Score is 0.02, implying very low
variability and indicating the robustness of the alignment method. In contrast,
the ’assays’ dataset has a slightly higher standard deviation of 0.04. Although
this indicates greater variability than the musician dataset, it still denotes a
relatively stable final alignment accuracy across different dataset preparations.
These observations suggest that the timing of data arrival has a negligible impact
on the final alignment result.

Fig. 4: F1 Score on two dataset with different order.

5 Conclusion and outlook

This research tackles data alignment in evolving information systems, charac-
terised by data heterogeneity, the dynamic data and complex integration pro-
cesses. By introducing an incremental methodology based on dynamic graph
embedding techniques, this study aims to improve data alignment progressively.
It addresses the gap in applying incremental graph embedding techniques to
incremental data alignement by evaluating their effectiveness (RQ1), efficiency
(RQ2) and senstivity (RQ3). The refined technique enhance the management of
heterogeneous data in dynamic environments and optimizes resource consump-
tion, offering a new perspective on data alignment through the integration of
dynamicity for exploring constantly evolving data.

Outlook In future work, we plan to enhance the process to align more com-
plex data by incorporating external dictionaries and leveraging models that are
pre-trained on other datasets, such as BERT found in Large Language Models
(LLMs). In addition, we wish to evaluate the integration of incremental data
alignment into broader data management processes, in order to improve the ef-
ficiency and consistency of data processing. This exploration will contribute to
more effective management of complex and dynamic data environments.

IDAGEmb Approach 15

References

1. Cappuzzo, R., Papotti, P., Thirumuruganathan, S. : Local Embeddings for Rela-
tional Data Integration , in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, juin 2020, p. 1335-1349. https://doi.org/10.
1145/3318464. 3389742.

2. Koutras, C., Fragkoulis, M., Katsifodimos, A., Lofi, C. : REMA: Graph embedding-
based Relational Schema Matching. In: EDBT/ICDT Workshops, (2020)

3. Rodrigues, D., da Silva, A. : A study on machine learning techniques for the schema
matching network problem , J Braz Comput Soc, vol. 27, no 1, p. 14, déc. 2021, doi:
10. 1186/s13173-021-00119-5.

4. Hättasch, B., Truong-Ngoc, M., Schmidt, A., Binnig, C. : It’s AI Match: A Two-Step
Approach for Schema Matching Using Embeddings. In: 2nd International Workshop
on Applied AI for Database Systems and Applications (AIDB’20) (2020).

5. Béres, F., Kelen, D. M., Pálovics, R., Benczúr, A. A. : Node embeddings in dynamic
graphs. Applied Network Science 2(4), 64 (2019). https://doi.org/10. 1007/s41109-
019-0169-5

6. Liu, X., Hsieh, P. -C., Duffield, N., Chen, R., Xie, M., Wen, X. : Real-Time Streaming
Graph Embedding Through Local Actions , in Companion Proceedings of The 2019
World Wide Web Conference, San Francisco USA: ACM, mai 2019, p. 285-293. doi:
10. 1145/3308560. 3316585.

7. Sutanta, E., Wardoyo, R., Mustofa, K., Winarko, E..: Survey: Models and Proto-
types of Schema Matching. IJECE, ;6(3):1011, (2016).

8. Bernstein, P., Jayant, M., Rahm, E. : Generic Schema Matching, Ten Years Later.
In: PVLDB, vol. 4, pp. 695–701 (2011). https://doi.org/10. 14778/3402707

9. Miller, RJ., Haas, LM., Hernandez, MA. : Schema Mapping as Query Discovery. In:
Very Large DataBase conference (VLDB), pp. 77—88. (2000)

10. Alserafi, A., Abelló, A., Romero, O., Calders T. : Keeping the Data Lake in Form:
Proximity Mining for Pre-Filtering Schema Matching. ACM Trans. Inf. Syst. 2(38),
3 (2020)

11. Aumueller, D., Do, H-H., Massmann, S., Rahm, E. : Schema and ontology match-
ing with COMA++. In: ACM international conference on Management of data
(SIGMOD ’05). Association for Computing Machinery, New York, NY, USA, pp.
906–908 (2005)

12. Zhao, Z., Castro Fernandez, R. : Leva: Boosting Machine Learning Performance
with Relational Embedding Data Augmentation. In: Proceedings of the 2022 In-
ternational Conference on Management of Data. ACM, Philadelphia PA USA, pp.
1504–1517 , (2022).

13. Barros, C.D., Mendonça, M.R., Vieira, A.B., Ziviani, A. : A Survey on Embedding
Dynamic Graphs. ACM Computing Surveys (CSUR), 55, 1 - 37. (2021).

14. Bielak, P., Tagowski, K., Falkiewicz, M., Kajdanowicz, T., Chawla, N. V.:
FILDNE: A Framework for Incremental Learning of Dynamic Networks Embed-
dings. Knowledge-Based Systems, 236, (2020). https://doi.org/10. 1016/j. knosys.
2021. 107453

15. StreamNode2Vec,https://github. com/husterzxh/StreamNode2Vec.
16. Wang, L., Luo, J., Deng, S., Guo, X.: RoCS: Knowledge Graph Embedding Based

on Joint Cosine Similarity. Electronics 2024, 13, 147.
17. Koutras, C., Siachamis, G., Ionescu, A.,Psarakis, K., et al.: Valentine: Evaluating

Matching Techniques for Dataset Discovery. In: IEEE 37th International Conference
on Data Engineering (ICDE),(2021). doi: 10.1109/ICDE51399.2021.00047

18. Node2vec python https://github. com/eliorc/node2vec. Last accessed 10-03-2024

