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Abstract—Federated Learning (FL) is a widespread approach
that allows training machine learning (ML) models with data
distributed across multiple devices. In cross-silo FL, which often
appears in domains like healthcare or finance, the number of
participants is moderate, and each party typically represents a
well-known organization. However, malicious agents may still
attempt to disturb the training procedure in order to obtain
certain benefits, for example, a biased result or a reduction in
computational load. While one can easily detect a malicious agent
when data used for training is public, the problem becomes
much more acute when it is necessary to maintain the privacy
of the training dataset. To address this issue, there is recently
growing interest in developing verifiable protocols, where one can
check that parties do not deviate from the training procedure
and perform computations correctly. In this paper, we conduct
a comprehensive analysis of such protocols, and fit them in a
taxonomy. We perform a comparison of the efficiency and threat
models of various approaches. We next identify research gaps
and discuss potential directions for future scientific work.

Index Terms—federated learning, FL, cross-silo FL, verifica-
tion, verifiable protocols, zero knowledge proofs

I. INTRODUCTION

Nowadays, the broad propagation of ML technologies is
rapidly increasing. ML applications affect a variety of fields
such as medicine, finance, marketing, education, and many
others. Many ML approaches rely on a process of training
on historical data: a model learns statistical patterns that later
allow new predictions to be inferred. However, in some cases,
data may contain private or confidential information; therefore,
access to such data is limited, and applying ML must be done
with extreme caution, either due to an interest in privacy of the
data owners (DOs), e.g., individual persons caring about their
privacy or companies caring about intellectual property, or for
regulatory compliance, e.g., with the General Data Protection
Regulations (GDPR).

In FL, multiple DOs, who are also sometimes referred to as
clients, can train a model together, possibly under coordination
of a central server, by exchanging encrypted messages without
revealing their private data. As a result, researchers can benefit
from a large amount of shared data and at the same time pre-
serve privacy. However, while preserving privacy in FL allows
protecting sensitive information, at the same time it produces
an additional challenge in the verification of participants’
behavior. Indeed, due to a possibility of malicious actions,
it is important to ensure that all calculations are performed
correctly even if the used data is private.

FL is often divided into two categories: cross-device and
cross-silo. In the cross-device FL setting, data comes from
a large number of small and usually anonymous devices
with low computational capacities. Anonymity complicates
penalizing clients; a single client is free to abort or to violate
the procedure at any time. In contrast, in this paper we focus
on cross-silo FL where the number of parties is moderate; each
party is usually a well-known and large entity that is expected
to cooperate in the entire training process via devices with high
computing power. Each party has an incentive to care about its
reputation and can be held liable if it is found to be fraudulent.
For instance, cross-silo FL appears in the healthcare domain,
where DOs are medical centers or hospitals that collaborate
to train ML models to improve patient care. Although the
need for countermeasures against malicious attacks in such
setting could be reduced due to the liability of participants,
verification of the calculations is still required to establish
confidence in FL’s performance.

Recently, dozens of research works devoted to verifiable
FL have been published, proposing methods to ensure the
verifiability of the parties’ computations, using different in-
frastructures and relying on various assumptions. Nonetheless,
to the best of our knowledge, verifiability in the context of
cross-silo FL has not been thoroughly studied. Chao et al. in
[1] studied challenges of cross-silo FL setting in details, but
the verifiability property was not taken into account. In [2], [3]
authors were focused on verifiability in FL, however features
of the cross-silo setting were not considered and protocols’
efficiency was not analysed. Mansouri et al. presented a SoK
paper [4] devoted to secure aggregation protocols and included
verification in the list of challenges, nevertheless, specific
features of cross-silo FL were not in the scope of the paper
and an efficiency analysis of verification techniques was not
performed. Lastly, in [5], [6] authors studied applications of
various zero knowledge proof (ZKP) schemes for ML, but
these works do not address FL.

In this paper, we provide a comprehensive analysis of ex-
isting verifiable cross-silo FL protocols and identify principal
research gaps. Our contributions are summarized as follows:

• to the best of our knowledge, we are the first to conduct
an analysis of verifiable FL protocols while studying
specific challenges of the cross-silo setting;

• we propose a new taxonomy of existing verifiable cross-
silo FL protocols while analyzing their efficiency and



threat models;
• we discuss future challenges and identify research gaps.

II. BACKGROUND

A. FL process

In this paper, we consider a typical FL process where the
data owners each own a subset of the instances of a dataset,
and in order to train a model should compute the sum of
vectors (e.g., gradients). We consider both settings where this
aggregation is coordinated or performed by a central server [7]
and settings where the data owners perform the aggregation in
a decentralized way. The training procedure could be repeated
several times, we refer to each iteration as an epoch.

B. Verifiable FL

In the scope of this paper, we rely on the definition of
Verifiable FL proposed in [2]:

Definition (Verifiable FL). FL is verifiable if selected parties
are able to verify that the tasks of all participants are correctly
performed without deviation.

Following this definition, in contrast to the survey [3], we
only include approaches that at least partly verify compu-
tations of the FL process. For example, we do not analyze
protocols which are focused only on verification of identity,
ownership, or data provenance. Moreover, we only consider
methods that aim at preserving privacy, hence do not publish
sensitive data. We also exclude protocols considered in [4]
that aim to prevent model poisoning attacks by analyzing
distribution of values submitted by parties. Such methods
efficiently mitigate some attacks, but do not allow to entirely
verify the correctness of individual computations or of the
individual uses of the input data, e.g., an individual outlier
input value is infrequent but possibly valid. Moreover, their
efficiency depends on the domain and an attacker strength. On
the other hand, we do include in our analysis several protocols
devoted to verifiable federated private averaging and verifiable
cross-device FL since the same verification techniques could
be used in the cross-silo FL setting.

C. Threat models

In the scope of the considered works, authors usually rely on
two widely-spread types of threat models: honest-but-curious
(a.k.a. semi-honest) and malicious. According to the standard
cryptography definitions, an honest-but-curious agent does not
deviate from the protocol, but keeps a record of the protocol
transcript and analyze it to gain extra information about
other users, while a malicious adversary can deviate from
the prescribed protocol instructions and follow an arbitrary
strategy to obtain greater benefits. However, in the context of
FL, authors often adapt these definitions with additional prop-
erties. In order to thoroughly analyze miscellaneous flavors of
the applied threat models we distinguish the following four
categories:

• honest: always follows the protocol correctly and is
trusted with sensitive information;

• honest-but-curious: always follows the protocol cor-
rectly, but is not trusted with sensitive information;

• forger: may try to forge different data, but otherwise
follows the protocol, is not trusted with sensitive infor-
mation;

• malicious: can arbitrary deviate from the protocol and is
not trusted with sensitive information.

Since the malicious threat model is not limited to a specific
type of attacks, we assume that a protocol supports the
malicious threat model when its defense mechanisms are able
to cope not only with forging, but also some other deviations.
Additionally, we note that malicious, forger, and honest-but-
curious agents can collude.

III. ANALYSIS OF EXISTING APPROACHES

In this section, we present a taxonomy of existing verifiable
cross-silo FL protocols, analyze the efficiency of verification
techniques, threat models and discuss the impact of the cross-
silo setting on verification. In the scope of this section, we
refer to the number of clients as C and to the number of
updates dimensions sent by clients as D.

In order to ensure that a FL protocol is executed correctly,
for each epoch one has to verify both the aggregation per-
formed by a server and local computations performed by
clients. We distinguish four categories of different verification
techniques and describe each of them below. The full taxon-
omy is presented on the Figure 1. Although each approach has
specific characteristics, our categories allow observing general
design patterns and infer conclusions about their efficiency.
For this purpose, we assess computational and communication
costs both per client and per server for each method. The
comparison of threat models and asymptotic complexities of
protocols devoted to verification of aggregation is presented
in the Table I. We emphasize that complexity metrics are
calculated specifically for the verification overhead and do
not reflect default FL interactions and computations. For
blockchain based approaches, we assume that uploading data
to the blockchain requires O(C) communication overhead.
Lastly, we assume that public key infrastructure, ML model
weights and seeds of PRGs are initialized before the training
procedure and do not require a presence of a trusted party.

A. Taxonomy description

Redundant aggregation (RA) based verification. This
category consists of approaches that require the server to
aggregate some redundant values in order to prove that the
aggregation of clients updates is performed correctly. This
feature leads to a computational cost of the server to be at
least O(C). Moreover, some protocols are designed under
assumption that each party has one secret value, therefore a
naive scaling of the approach to a FL setting where parties
share multi dimensional data would lead to an additional factor
D in the complexity.

In [10], [9] authors proposed to check that the result of the
updates aggregation is correct by means of cryptographic sig-
natures schemes based on bilinear pairings. In both works, the



Approach Computational cost Communication cost Threat model Server-Client
collusion TAclient server client server client server

VerSA [8] O(D) O(CD) O(D) O(CD) h-b-c [forger] ✗ ✗
SVeriFL [9] O(D) O(CD) O(D) O(CD) h-b-c forger ✗ ✓

Zhang et al. [10] O(D) O(C) O(1) O(C) [hon] forger [✗] ✗
DEVA [11] O(CD) O(CD) O(CD) O(CD) h-b-c forger ✗ ✗
NIVA [12] O(CD) O(CD) O(CD) O(CD) [h-b-c] [forger] [✗] ✗
SVFL [13] O(D) O(C) O(1) O(C) h-b-c [forger] ✗ ✗

Madi et al. [14] O(D) O(C) O(1) O(D) hon [forger] ✗ ✗
VerifyNet [15] O(D) O(CD) O(D) O(CD) h-b-c forger ✗ ✗
BytoChain [16] O(C +D) O(1) O(C) O(1) mal [mal] [✗] ✗
Fang et al. [17] O(C +D) O(1) O(C) O(1) [hon] [forger*] [✗] ✗

VeriFL [18] O(C + D
E
) O(1) O(C) O(1) h-b-c forger ✗ CRS

FedTrust [19] O(CD) O(1) O(CD) O(1) hon mal [✗] ✗
zkDFL [20] O(D) O(CD) O(C) O(C) hon [forger*] [✗] CRS
GOPA [21] O(DlogC) N/A O(DlogC) N/A mal* N/A N/A ✗
zkFL [22] O(CD) O(CD) O(1) O(Clog(CD)) [hon] [forger] [✗] ✗
VFL [23] O(D) O(1) O(1) O(1) h-b-c [forger] [✗] ✗

PVD-FL [24] O(D) N/A O(D) N/A [forger*] N/A N/A ✗

TABLE I: Asymptotic complexity and threat models comparison of FL protocols with verifiable aggregation. Sections
correspond to taxonomy categories (Figure 1). Server-Client collusion column shows if a method allows client and server to

collude to bypass the verification. Notations: E – a number of epochs, C – a number of clients, D – a number of vector
dimensions, TA – trusted authority. A symbol ”*” corresponds to a threat model applied to a fraction of agents. Square
brackets denote threat models and collusion markers that are inferred after analyzing the verification method and are not

explicitly described in the corresponding paper.

Fig. 1: A taxonomy of verifiable cross-silo FL protocols.
The red color corresponds to approaches focused on the
verification of clients’ computations, the yellow color is used
for approaches focused on the aggregation verification.

server has to compute a redundant aggregation of signatures.
Indeed, such schemes allow ensuring that the result is obtained
from data signed by all other clients, however a malicious
server may aggregate arbitrary signed values (e.g., values from
previous epochs) and successfully pass the verification with a
fabricated resulting value. As a result, by relaxing the threat
model, both approaches become leaders in their category from
the complexity perspective.

All RA-based approaches cope with a forger server while
considering clients to be honest or honest-but-curious. Addi-

tionally, in [9], integrity of data shared by clients is verified,
this threat is processed by addition of a TA.

Homomorphic property (HP) based verification. This
category covers verification techniques which rely on the
HP of underlying primitives: hash functions [18], [19] and
commitment schemes [16], [17]. The general idea of such pro-
tocols is the following: clients compute hashes/commitments
from their data and share results with each other, then all
clients may verify the result of aggregation, i.e. check that this
result corresponds to the aggregation of hashes/commitments
through homomorphism. As a consequence, both computa-
tional and communication costs of the server are O(1) if the
ciphertext length does not depend on C or D. Clients have
to compute a hash/commitment in O(D) from their data and
the aggregation of hashes/commitments from other clients in
O(C). Since clients have to exchange messages with each
other, the communication cost per client is at least O(C).
Exceptionally, in FedTrust [19] client costs have an additional
O(D) factor, as the hash is calculated for each component
separately.

In [16], [17] authors rely on a blockchain infrastructure.
While the complexity metrics for the verification overhead are
the same as for other approaches from this category, the total
computational cost of such approaches is much larger due to
the replication of computations. Moreover, such approaches
also have specific threat models, since they rely on blockchain
security. For instance, Fang et al. [17] assume 70% of stake
holders to be honest.

There are also several protocols that lie at the intersection
of the RA- and HP-based categories [10], [15], [14]. In such
approaches server has to perform a redundant aggregation,
however the verification of the aggregation is also based



on homomorphic properties. In terms of threat models and
complexities these approaches do not differ from concurrent
works from RA- and HP-based categories.

ZKP-based verification. The third category contains ap-
proaches which are based on ZKPs. The core principle could
be described as follows: a party performs calculations and at
the same time computes the proof, which is shared along with
the result of calculations; other parties can later run the proof
verification algorithm to ensure that the result was computed
correctly. In contrast to previous categories, advanced ZKPs
allow proving arbitrary computations, therefore such methods
are suitable for proving the correctness of both aggregation of
clients updates [22], [20], [21] and computation of these up-
dates [25], [26], [27]. Moreover, recent ZKP schemes provide
a proof size that is sublinear in the amount of computations
to prove.

In protocols focused on aggregation, authors build on
different infrastructures and ZKP schemes. In GOPA [21],
authors introduced a decentralized gossip approach where
nodes publish proofs of their computations using Σ-protocols.
In zkFL [22] authors apply more modern ZKP scheme, Halo2,
and provide two version of the protocol – a centralized FL
setting and a blockchain based one. In zkDFL [20] authors rely
on blockchain infrastructure and Groth16 scheme. Moreover,
authors use different techniques to prove that each update
was sent by one of the clients. Consequently, differences
in the settings and chosen ZKP schemes result in different
complexity metrics while applied threat models are similar.

In contrast to the verifiable aggregation protocols, ap-
proaches focused on DO’s computation verification [27], [26],
[25] have almost identical design: all protocols use the Groth16
scheme to achieve verifiability in a blockchain based set-
ting. However, authors focus on verification of different ML
models: a linear regression model in [27], a naive Bayes
classifier in [25] and a feedforward neural network in [26].
In all three approaches, aggregation is performed by a smart
contract, therefore the correctness of the aggregation relies on
the blockchain security assumptions.

Data Embedding (DE) based verification. This category
covers protocols, where participants embed additional values
into their data before sharing it with untrusted parties; later,
the result of calculations performed by an untrusted source
is assumed to be correct if the corresponding additional
values are computed correctly. The embedding principle leads
to an increase in the size of the transmitted data and the
complexity of the outsourced calculations, which depends on
the size of embedded values, and require more expensive data
preprocessing.

B. Features of cross-silo FL verification

One can notice that in Table I there are mainly two pa-
rameters determining communication cost: C and D, however
there is a difference in their impact on the cross-silo setting.
Since the number of participants in such setting is moderate
while ML models typically have large sizes, a dependence
on D is less desirable. Besides, taking into account that

clients must send their local models to a server, the overall
FL complexity would only be asymptotically worse in cases
when communication cost depends on CD, such as in [11],
[12], [19]. We note that VFL approach [23] achieves the best
asymptotic complexity in comparison to others.

We also observed that many approaches rely on a blockchain
infrastructure [17], [16], [20], [27], [26]. This strategy of-
fers several advantages. For instance, smart contracts enforce
transparent and verifiable distribution of incentives [27]. Ad-
ditionally, the use of smart contracts also makes a presence
of a distinct server unnecessary, thereby replacing a single
party trust with blockchain trust guarantees. However, within
the context of cross-silo FL, such infrastructure leads to a
significant computational overhead. All miners have to execute
identical calculations, resulting in a tremendous total compu-
tational burden across all participants. At the same time, in
cross-silo FL there is typically at least one party interested in
obtaining the results of training, thus there is no a strong need
for a decentralized infrastructure.

Almost all verifiable aggregation approaches from our anal-
ysis rely on honest or honest-but-curios clients threat model.
The only exceptions with support of malicious clients are: the
blockchain based approach BytoChain [16], where a commit-
tee of verifiers is tasked to check properties of clients uploads,
therefore partially mitigating poisoning attacks, and decentral-
ized protocols where clients perform aggregation themselves
[21], [24]. Indeed, weaker threat models are common in cross-
silo FL. However, in real world conditions the use of such
threat models is not always advisable.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we analyzed verifiable cross-silo FL protocols
while focusing on their efficiency and threat models. We
proposed a taxonomy based on applied verification techniques
and discussed how cross-silo FL characteristics impact the
verification. Finally, in this section, we discuss several chal-
lenges which have not yet been fully addressed by the research
community.

Firstly, most protocols target malicious behavior of either
the server or clients, while only few protocols cope with
both threats. We believe that consideration of such cases is
important for development of practical protocols. Secondly,
we observed that verifiable aggregation is primarily studied
for the most popular type of aggregation – averaging of
vectors possessed by DOs. Nevertheless, in certain settings,
other U-statistics with kernel of degree two or larger (e.g.
Kendall rank correlation coefficient) could be applied [28],
introducing new challenges in the verification process. Thirdly,
to the best of our knowledge, there are no protocols that
support collusion between client and server to bypass the
verification. However, in real world scenarios such collusion
might occur. Fourthly, we noticed that the iterative nature of
FL training is usually overlooked when designing a verifiable
protocol. Nevertheless, this property opens up a possibility of
developing various optimizations. For instance, in [18], authors
used this property to combine verification of multiple epochs



together, thereby reducing the computational cost. We believe
that new optimizations also could be developed for protocols
based on other verification techniques. Lastly, to the best of our
knowledge, there are no works conducting a thorough analysis
of the applicability of various ZKP schemes for the cross-silo
FL setting.
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