Overview on Data Ingestion and Schema Matching
Résumé
This overview traced the evolution of data management, transitioning from traditional ETL processes to addressing contemporary challenges in Big Data, with a particular emphasis on data ingestion and schema matching. It explored the classification of data ingestion into batch, real-time, and hybrid processing, underscoring the challenges associated with data quality and heterogeneity. Central to the discussion was the role of schema mapping in data alignment, proving indispensable for linking diverse data sources. Recent advancements, notably the adoption of machine learning techniques, were significantly reshaping the landscape. The paper also addressed current challenges, including the integration of new technologies and the necessity for effective schema matching solutions, highlighting the continuously evolving nature of schema matching in the context of Big Data.