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Abstract

Fast and asymptotically efficient one-step and two-steps estimation procedures for
the parameters of the location-scale t and log(t) distributions are proposed. They
are based on two possible initial guess estimators: the first one is the maximum
likelihood estimator on a subsample and the second one is a combination of
the empirical median for the location, a slowly converging Hill estimator for the
degree of freedom and a maximum likelihood type estimator for the scale. Then,
one step or two steps of the Fisher scoring gradient descent method are done
in order to correct the initial estimation and reach asymptotical efficiency. The
performances of the estimation procedures are evaluated on samples of finite size
in terms of mean square error and computation time. An application in economics
is also proposed.

Keywords: extreme value distribution, one-step procedure, Hill estimator, efficiency

1 Introduction

In various fields, including economics or finance and environmental science, extremely
large observations cannot be ignored and has to be considered. Modeling the occurence
of extreme values can be done with heavy-tailed probability distributions (see [7]
and the references therein). For instance, the Student distribution and the log Stu-
dent distribution are used to model extreme phenomena due to their heavy tails and
flexibility.
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The Student distribution (or t distribution) is a generalization of the Cauchy dis-
tribution [2]. The estimation of the parameters of the t distribution has historically
been one of the more intractable cases with the presence of the degree-of-freedom
parameter [12].

For the t or log(t) distributions, the parameters are generally estimated by the
maximum likelihood estimator which is asymptotically efficient. For the R software,
the fitdist function in the fitdistrplus package or the fitdistr function in the
MASS package use numerical optimization method to compute the maximum likeli-
hood estimator (MLE). The starting point used corresponds to the estimators for the
location and scale in a Cauchy distribution (respectively the median and half of the
interquartile range) and the degree of freedom is fixed to 10. This non-consistent ini-
tial guess estimator can leads to computation errors. Moreover, for large dataset and
real-time applications, the MLE can be time consuming.

Fast and asymptotically efficient estimation one-step or two-steps procedures for
the parameters of the location-scale t and log(t) distributions are considered in this
paper. They are based on two possible initial guess estimators. The first one is the
maximum likelihood estimator computed on a subsample. The second one is a combi-
nation of the empirical median for the location, the slowly converging Hill estimator
for the degree of freedom and a maximum likelihood type estimator for the scale.
Then, one-step or two steps of the Fisher scoring gradient descent method are done
to correct the initial estimation and reach efficiency.

The aforementioned statistical procedures are directly inspired by the Le Cam one-
step estimation procedure [13]. The asymptotical efficiency of the one-step estimator
has been initially proved for a

√
n-consistent initial guess estimator and a uniformly

continuous Fisher information matrix. It had been extended to n
δ
2 -consistent ini-

tial guess estimator and Lipshitz continuous Fisher information matrix and also to
multi-step estimation (see for instance [11]). For the R software, these methods were
implemented for samples of independent and identically distributed univariate ran-
dom variables in the OneStep package [3] and for several multivariate distribution in
the MLEce package (see also [9, 10] for the Gamma and Weibull distributions). It is
worth mentioning that the method has also been extended recently to independent
but not identically distributed random variables [14], counting processes [4, 6], Markov
processes [11], etc.

The notations and the classical estimation properties in this setting are detailed
in Section 2. Main results on the one-step and two-steps estimation procedures are
described in Section 3. In Section 4, the performances of the estimation procedures
are evaluated on samples of finite size in terms of mean square error and computation
time. An application in economics is also proposed in Section 5.
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2 Notations

2.1 The t distribution

Let ϑ = (µ, σ, ν) ∈ Θ ⊂ R×R+
∗ ×R+

∗ . The scale-location Student (or t) distribution
is considered and characterized by its probability density function

g(x, ϑ) = f

(
x− µ

σ
, ν

)
(1)

where

f(x, ν) =
Γ(ν+1

2 )

Γ(ν2 )
√
νπ

(
1 +

x2

ν

)− ν+1
2

.

Here ν is the degree of freedom of the Student distribution. This distribution is denoted
t(µ, σ, ν) in the following. The Cauchy distribution is obtained for ν = 1. Let us also
recall that for X1 ∼ t(µ, σ, ν), the first moment only exists for ν > 1 with Eϑ(X1) = µ
and the variance only exists for ν > 2 with Varϑ(X1) = σ2 ν

ν−2 .
Let ℓ(ϑ, x) = log g(x, ϑ). Direct computations, which are postponed in Appendix 1,

gives the score function

ℓ̇(ϑ, x) =


ν+1
σ · y/ν

1+y2/ν

− 1
σ + ν+1

σ · y2/ν
1+y2/ν

1
2ψ

(1)(ν+1
2 )− 1

2ψ
(1)(ν2 )−

1
2ν − 1

2 log(1 +
y2

ν ) + (ν+1)
2 · y2/ν2

(1+y2/ν)


with y = x−µ

σ and ψ(n) is the polygamma functions (see [1, section 6.4.1, page 260])

defined by ψ(n)(α) = ∂n

∂αn log Γ(α). The Fisher information matrix can also be obtained
and reads

I(ϑ) = −Eϑ

(
ℓ̈(ϑ,X1)

)
=


ν+1

σ2(ν+3)
0 0

0 2ν
σ2(ν+3)

− 2
σ(ν+1)(ν+3)

0 − 2
σ(ν+1)(ν+3)

− 1
4ψ

(2) (ν+1
2

)
+ 1

4ψ
(2) (ν

2

)
− (ν+5)

2ν(ν+1)(ν+3)

 . (2)

It is worth noting that for ν = 1, the Fisher information matrix reduces (see for
instance [3]) to

I1(µ, σ) =
(

1
2σ2 0
0 1

2σ2

)
and, for ν → ∞, to

I∞(µ, σ) =

(
1
σ2 0
0 2

σ2

)
which is the Fisher information matrix for the joint estimation of the mean and
standard-deviation of a Gaussian random variable.
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2.2 The log(t) distribution

Let ϑ = (µ, σ, ν) ∈ Θ ⊂ R×R+
∗ ×R+

∗ . The log-Student (or log(t)) distribution is also
considered and characterized by its probability density function

h(x, ϑ) =
1

x
g (log(x), ϑ)

where g is defined in (1).
For this distribution, the score function is given by ℓ̇(ϑ, log(x)) and the Fisher

information matrix is similar to (2). This distribution is denoted by log(t)(µ, σ, ν) in
the following.

2.3 Maximum likelihood estimator

Let X(n) = (X1, X2, . . . , Xn) be a sample of independent and identically distributed
location-scale t distribution (or log(t) distribution) random variables. The maximum

likelihood estimator ϑ̂n (when it exists) satisfies

ℓ̇n

(
ϑ̂n

)
= 0R3 (3)

where

ℓn (ϑ) =


n∑

i=1

ℓ(ϑ,Xi) if X1 ∼ t(µ, σ, ν),

n∑
i=1

ℓ(ϑ, log(Xi))− log(Xi) if X1 ∼ log(t)(µ, σ, ν).

It can be shown that, in both cases, the MLE is consistent, asymptotically normal
with √

n
(
ϑ̂n − ϑ

)
=⇒ N

(
0, I(ϑ)−1

)
as n→ ∞,

and asymptotically efficient in these statistical experiments. Since no explicit form
can be exhibited, the computation of the MLE needs numerical methods and can be
time consuming for large samples (see Section 4). Moreover, the optimization method
generally uses a starting point which is practically not chosen consistently.

3 Main results

One-step and two-steps estimation procedures for the parameter ϑ = (µ, σ, ν) in the
case of t and log(t) distributions are proposed in this section and are shown to be fast
and asymptotically efficient. Since heavy-tail modeling is considered, we only consider
distributions with ν < 4.

3.1 One step and two-steps procedures

Let X(n) = (X1, X2, . . . , Xn) be a sample of i.i.d. random variables of t or log(t)
distribution.

4



Since the Fisher information matrix is explicit, a fast and asymptotically efficient
(Fisher scoring) multi-step procedure can be applied to estimate the 3-dimensional
parameter ϑ. Namely, if we denote ϑ∗n an initial guess estimator (which is not rate

efficient but fast to be computed), the one-step estimator ϑ
(1)

n is defined by

ϑ
(1)

n = ϑ∗n + I(ϑ∗n)−1 · 1
n

n∑
j=1

ℓ̇(ϑ∗n, Xj), n ≥ 1, (4)

and the two-steps estimator ϑ
(2)

n is defined by

ϑ
(2)

n = ϑ
(1)

n + I(ϑ(1)n )−1 · 1
n

n∑
j=1

ℓ̇(ϑ
(1)

n , Xj), n ≥ 1, (5)

for the t distribution. It also reads

ϑ
(1)

n = ϑ∗n + I(ϑ∗n)−1 · 1
n

n∑
j=1

ℓ̇(ϑ∗n, log(Xj)), n ≥ 1, (6)

ϑ
(2)

n = ϑ
(1)

n + I(ϑ(1)n )−1 · 1
n

n∑
j=1

ℓ̇(ϑ
(1)

n , log(Xj)), n ≥ 1, (7)

for the log(t) distribution.
Theorem 1. Let us consider an initial guess estimator ϑ∗n that satisfy

nδ/2 (ϑ∗n − ϑ) is tight in R3 as n→ ∞,
1

4
< δ ≤ 1.

For 1
2 < δ ≤ 1, the one-step estimator ϑ

(1)

n is asymptotically normal with

√
n
(
ϑ
(1)

n − ϑ
)
=⇒ N

(
0, I(ϑ)−1

)
as n→ ∞.

For 1
4 < δ ≤ 1, the two-steps estimator ϑ

(2)

n is asymptotically normal with

√
n
(
ϑ
(2)

n − ϑ
)
=⇒ N

(
0, I(ϑ)−1

)
as n→ ∞.

Proof. The proof relies on the Lipschitz regularity of the explicit Fisher information
matrix and is postponed in Appendix A.

The choice of an initial estimation is a key point of the whole procedure. For the t
or log(t) distributions, we face the following challenge: when the parameter ν is high,
moment estimators can be defined but the 3-3 component of the Fisher information
matrix tends to zero, meaning that the estimation cannot be precise in practice. When
ν is low, no moment exists for the random variable and no moment estimator can be
defined. Later on, two initial guess estimators are proposed:
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1. The (non-explicit) MLE on a subsample improved by a one-step procedure.
2. An ingenious combination of the empirical median for the location parameter
µ the slowly converging Hill estimator for the degree-of-freedom ν and a maxi-
mum likelihood type estimator for the scale parameter σ, improved by a two-step
procedure.

3.2 Initial guess estimator

In this section, two procedures are proposed: a one-step estimator with the MLE on a
subsample as initial guess estimator and a two-steps estimator with an initial unbiased
Hill estimator.

3.2.1 MLE on a subsample

The MLE is asymptotically normal with rate
√
n; consequently the MLE on a

subsample (subMLE) of size ⌊nδ⌋, denoted ϑ∗n = ϑ̂⌊nδ⌋, satisfy

√
nδ (ϑ∗n − ϑ) =⇒ N

(
0, I(ϑ)−1

)
as n→ ∞,

and is consequently nδ/2-consistent (see also [3] for other examples).
Choosing 1/2 < δ ≤ 1, the subMLE can be used as an initial guess estimator for

the one-step estimator ϑ
(1)

n in (4) or (6). This choice works well in practice but we
face the same problem of the choice of non-consistent starting point in the numerical
optimization scheme.

The choice of the subMLE with 1
4 < δ ≤ 1

2 as an initial guess in the two-step proce-
dure has been excluded from our study leading to numerical errors in the optimization
procedure for very small samples.

3.2.2 Slowly converging Hill based estimator

Motivation:

Let Y (n) = (Y1, Y2, . . . , Yn) be a sample of i.i.d. standard t(0, σ, ν) random variables.
The cumulative distribution function is given by

Fσ,ν(y) = P (Y1 ≤ y) =
1

2
+
y

σ
Γ

(
ν + 1

2

)
2F1

(
1
2 ,

ν+1
2 , 32 ,−

y2

νσ2

)
√
πνΓ

(
ν
2

) (8)

where 2F1 is the hypergeometric function (see [1, section 15.1.1, page 556]). Let us
denote F (u) = 1− Fσ,ν(y) the survival function of the distribution and γ = 1

ν .
Let Y1,n ≤ Y2,n ≤ . . . ≤ Yn,n be the order statistic. For this distribution, the

(upper) tail is characterized by

lim
t→∞

F (yt)

F (t)
= y−1/γ , y > 0,

6



and the second order variation by

lim
t→∞

1

A(1/F (t))

(
F (yt)

F (t)
− y−1/γ

)
= y−1/γ y

ρ/γ − 1

γρ

where ρ = −2/ν, A(t) = γbtρ and b = ν(ν+1)
ν+2

(
Γ( ν+1

2 )ν(ν−1)/2

√
πνΓ( ν

2 )

)ρ

. The proof is

postponed in Appendix B. In this setting, the Hill estimator

γn =
1

kn

kn∑
i=1

log
Yn−i+1,n

Yn−kn,n
, (9)

is generally biased, namely for kn → ∞, kn/n→ 0 and
√
knA(n/kn) −→ λ ∈ R,

√
kn (γn − γ) =⇒ N

(
λ

1− ρ
, γ2
)

as n→ ∞. (10)

For the Student distribution, taking kn = nδ, 1/4 < δ ≤ 1, we have the following
cases:

• If δ < 4
4+ν then λ = 0,

• If δ = 4
4+ν , then λ = γb <∞,

• If δ > 4
4+ν , then λ→ ∞.

Therefore for ν < 4 and a choice of 1
4 < δ < 1/2, independently of the value of

σ, the Hill estimator is unbiased and can be used as an initial guess estimator in our
two-steps procedure.

Construction of the estimator of ϑ = (µ, σ, ν):

Let us consider the sample X(n) = (X1, X2, . . . , Xn) composed of i.i.d. random
variables of t(µ, σ, ν) distribution. For the joint estimation, we proceed as follows:

1. Estimate the parameter µ with the empirical median µ̃n.
2. Apply the Hill estimator (9) on the recentered sample composed of Zi = Xi −
µ̃n which are approximatively t(0, σ, ν) distributed. Here σ acts as a nuisance
parameter.

3. Estimate, finally, the scale σ by a MLE-type estimator σ̃n with the second
component of the score function, namely

∂

∂σ
ℓn(µ̃n, σ̃n, ν̃n) = 0 (11)

where µ̃n and ν̃n are previously computed.

Theorem 2. The aforementioned estimation procedure leads to a n
δ
2 -consistent initial

guess estimator with 1
4 < δ < 1

2 .
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Proof. Let X(n) = (X1, X2, . . . , Xn) be a sample of i.i.d. random variables of t(µ, σ, ν)
distribution. The empirical median µ̃n is a

√
n-consistent and asymptotically normal

estimator of µ.
The parameter σ acts as a nuisance parameter in the estimation of ν with the

aforementioned Hill type procedure. By plug-in, the proposed estimator ν̃n is
√
kn-

consistent with asymptotic zero mean for 1
4 < δ < 1

2 (the asymptotic variance depends
on σ). Namely,

γ̃n =
1

kn

kn∑
i=1

log
Zn−i+1,n

Zn−kn,n
=

1

kn

kn∑
i=1

log
Yn−i+1,n + (µ̃n − µ)

Yn−kn,n + (µ̃n − µ)

= γn + (µ̃n − µ)
1

kn

kn∑
i=1

(
1

Yn−i+1,n
− 1

Yn−kn,n

)
+ o(µ̃n − µ)

where γn is defined in (9). Consequently, one obtains√
kn (γ̃n − γ) =

√
kn (γn − γ) +

√
kn(µ̃n − µ)A + o(

√
kn(µ̃n − µ))

=
√

kn (γn − γ) +

√
kn

n
·
√
n(µ̃n − µ) · A + o

(√
kn

n
·
√
n(µ̃n − µ)

)
(12)

where

A =
1

kn

kn∑
i=1

(
1

Yn−i+1,n
− 1

Yn−kn,n

)

=
1

Yn−kn,n
·

(
1

kn

kn∑
i=1

Yn−kn,n

Yn−i+1,n
− 1

)
.

By Rényi representation [7, Lemma 3.2.3 p.71 and Exercise 3.2 p.125], we have
1
kn

∑kn

i=1
Yn−kn,n

Yn−i+1,n
−→ 1

1+γ in probability as n → ∞ and by [7, Lemma 3.2.1 p.69] we

have 1
Yn−kn,n

−→ 0 in probability as n→ ∞ that gives the convergence in probability

of A to zero . Since kn/n → 0 and µ̃n is
√
n-consistent, we have the convergence in

probability of the second term in the r.h.s. of (12) to zero as n→ ∞.
Finally, plugging the two estimates (µ̃n, ν̃n) in the score function to estimate σ

leads to a
√
kn-consistent estimator that ends the proof. Namely, the estimator is

defined by ∂
∂σ ℓn

(
ϑ̃n

)
= 0, µ̃n and ν̃n being defined previously.

∂

∂σ
ℓn

(
ϑ̃n

)
=

∂

∂σ
ℓn ((µ̃n, σ, ν̃n)) + (σ̃n − σ)

∂2

∂σ2
ℓn (µ̃n, σ̌n, ν̃n)

with σ < σ̌n < σ̃n say. On the other hand,

∂

∂σ
ℓn (µ̃n, σ, ν̃n) =

∂

∂σ
ℓn (µ, σ, ν) + (µ̃n − µ)

∂2

∂µ∂σ
ℓn(µ̌n, σ, ν̌n) +

+(ν̃n − ν)
∂2

∂ν∂σ
ℓn(µ̌n, σ, ν̌n)
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with µ < µ̌n < µ̃n and ν < ν̌n < ν̃n say. We get

√
kn(σ̃n − σ) = −

(
1

n

∂2

∂σ2
ℓn ((µ̃n, σ̌n, ν̃n))

)−1
(√

kn
n

√
n(µ̃n − µ)

1

n

∂2

∂µ∂σ
ℓn(µ̌n, σ, ν̌n)+

+
√
kn(ν̃n − ν)

1

n

∂2

∂ν∂σ
ℓn(µ̌n, σ, ν̌n) +

√
kn
n

1√
n

∂

∂σ
ℓn (µ, σ, ν)

)
. (13)

Consistency of the estimators µ̃n and ν̃n with the uniform continuity of the Fisher

information matrix gives the convergence of the quantities 1
n

∂2

∂ν∂σ ℓn,
1
n

∂2

∂µ∂σ ℓn and
1
n

∂2

∂σ2 ℓn with the law of large numbers. Since 1√
n

∂
∂σ ℓn(ϑ) is bounded in probability

due to the central limit theorem, the quantity
√
n(µ̃n−µ) is tight and kn/n→ 0 gives

the convergence in probability of the first and third term in the r.h.s. in (13) to zero
as n→ ∞. Finally, we deduce

√
kn(σ̃n − σ) =⇒ N

(
0, γ2

I(ϑ)22,3
I(ϑ)23,3

)
as n −→ ∞. (14)

Remark 1. Our estimator reduces the optimization (or root solving) problem (3)
of dimension 3 to the root solving problem (11) of dimension 1 for the sole scale
parameter. In practice, we keep the starting point in this procedure to half of the
interquartile range.
Remark 2. It is worth noting that the procedure works the same for the log(t)(µ, σ, ν)
distribution, namely:

1. Estimate the parameter µ with the empirical median on the log values of the sample.
2. Applying the Hill estimator on the recentered sample composed of Zi = log(Xi)−µ̃n.
3. Finally, estimate the scale by a MLE-type estimator on the sole scale parameter.

4 Simulations

The aforementioned methodologies:

• MLE: Maximum Likelihood Estimator
• subMLE: MLE computed on a subsample
• OS-subMLE: One-step procedure with initial subMLE guess estimator
• Hill: Slowly converging Hill based estimator introduced in Section 3.2.2
• TS-Hill: Two-steps procedure with initial Hill estimator

have been implemented with the R sofware for evaluating the performance of the
estimators on samples of finite size in terms of mean square error and computation
time. We present in this section the results for the t distribution but simulation results
for the log(t) distribution are similar. In our simulations, the MLE are computed in
two differents ways:

1. with the optimization method used by the fitdistr function of the MASS package
on the loglikelihood function. As mentioned above, the starting point used in the

9



numerical procedure corresponds to the estimators for the location and scale in a
Cauchy distribution, respectively the median and half of the interquartile range
whereas the degree of freedom is fixed to 10. It is called MLE (max) in the following.

2. with the multiroot function of the rootSolve package on our own score function
mimicking Equation (3). The starting point is the true value in order to avoid
numerical instability of this method. For this reason, this method cannot be used in
practice but serves here for computation time comparison. It is called MLE (score)
in the following.

The subMLE is only computed with the fitdistr function using the aforemen-
tioned starting point. It is the initial guess estimator in the OS-subMLE procedure
(see Section 3.2.1). It is worth recalling that two-steps procedure with initial subMLE
estimate has been excluded leading to numerical instability.

Finally, the estimator that combines the empirical median for the location, the
slowly converging Hill estimator for the degree-of-freedom and the MLE-type estimator
for the scale is called Hill in the following. As explained in Section 3.2.2, we are using
the second component of the score to deduce the scale estimator. This is done with the
multiroot function with a starting point which is the half of the interquartile range.
This method is the initial guess estimator in the TS-Hill procedure.

For comparison in terms of mean square error and computation time, we generate
K = 4000 Monte-Carlo simulations of samples of size n = 104 choosing µ = 2, σ = 0.5
and ν = 3. For the OS-SubMLE procedure, δ is fixed to 0.8. For the TS-Hill procedure,
δ is fixed to 0.4.

Comparison in terms of mean square error:

The histograms of the renormalized error
√
n
(
ϑ̃n − ϑ

)
(for a generic estimation pro-

cedure ϑ̃n) have been illustrated on Figures 1, 2 and 3. The MLE (max), MLE (score),
OS-subMLE and OS-Hill which are shown to be asymptotically efficient naturally
overperform the initial guess estimators subMLE and Hill.

Comparison in terms of computation time:

The following table present the computation time of MLE (max), MLE (score), OS-
subMLE and TS-Hill estimators. The OS-subMLE is 6 times faster than the MLE
(max) and the TS-Hill procedure more than 130 times faster than the MLE (max).
We recall that MLE (score) cannot be used in practice due to numerical instability
but the TS-Hill procedure is still 2 times faster than the MLE (score).

MLE (max) MLE (score) TS-Hill OS-subMLE
time (s) 980.61 16.12 7.16 152.34
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Fig. 1 Histograms of the renormalized error for the MLE (max) of µ, σ and ν. The superimposed
red line is the asymptotical efficient distribution.

5 Applications

5.1 OneStep package

The previous estimation procedures (one-step with initial subMLE for 1
2 < δ ≤ 1 and

two-steps estimator with Hill based estimator for 1
4 < δ < 1/2) have been implemented

in the onestep command of the OneStep package for the R software [15].
The location-scale t distribution is available in the extraDistr package and named

lst. After loading the extraDistr and OneStep packages, the two-steps estimator
can be computed with the command
onestep(Z,"lst",control=list(delta=0.4))

5.2 Economics

A dataset of 157 of the national consumer price index in Brazil are considered in [2].
The authors have considered a Cauchy distribution in this context. We propose to
model the index with the t-distribution, adding the degree-of-freedom parameter in
the modelling.

In order to compare the two models, we will compute the Akaike Information
Criterion (AIC) defined

• for a general Student model t(µ, σ, ν) and an estimator ϑ∗n = (µ∗
n, σ

∗
n, ν

∗
n) by

AICt = 2× 3− 2ℓn(µ
∗
n, σ

∗
n, ν

∗
n),

11
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Fig. 2 Histograms of the renormalized error for the subMLE and OS-subMLE of µ, σ and ν. The
superimposed red line is the asymptotical efficient distribution.

• for the Cauchy model t(µ, σ, 1) and an estimator ϑ∗∗n = (µ∗∗
n , σ

∗∗
n ) by

AICC = 2× 2− 2ℓn(µ
∗∗
n , σ

∗∗
n , 1).

We select the model which presents the lowest AIC.
A one-step estimator has been used for the Cauchy model t(µ, σ, 1) (see [3] for the

definition) to compute the AIC. The estimation is 0.479 for the location parameter
and 0.265 for the scale parameter. The AIC is equal to 282.5.

For the general Student model t(µ, σ, ν), The two-steps estimator has been used to
compute the AIC. The estimation is 0.510 for the location, 0.410 the scale and 2.68
for the degree-of-freedom. The AIC is 261.9 and this model is selected.

Acknowledgments: We would like to thank Gilles Stupfler for fruitful discussions
on the topic. This research benefited from the support of the ANR project ’Efficient
inference for large and high-frequency data’ (ANR-21-CE40-0021), the chair ’Efficience
et Sobriété Numériques’, a joint initiative by Le Mans University and EREN Groupe
under the aegis of the Institut Louis Bachelier and LabEx CHL ANR-11-LABX-020-01.

A Proof of Theorem 1

For an initial guess estimator ϑ∗n which is n
δ
2 -consistent with 1

2 < δ ≤ 1, the one-step

estimator ϑ
(1)
n is shown to be

√
n-consistent with a centered normal limit with variance

I(ϑ)−1. The proof relies on the Lipschitz regularity of the explicit Fisher information
matrix and is given in Section A.1

12
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Fig. 3 Histograms of the renormalized error for the Hill and TS-Hill of µ, σ and ν. The superim-
posed red line is the asymptotical efficient distribution. The blue line corresponds to the theoretical
asymptotic distribution of the Hill estimator of ν (see Equation (10)) and of the MLE-type estimator
of σ (see Equation 14).

For the two-steps estimation procedure, with an initial guess estimator ϑ∗n which is

n
δ
2 -consistent with 1

4 < δ ≤ 1
2 , we show firstly, that the one-step estimator ϑ

(1)
n is n

γ
2 -

consistent with 1
2 < γ = 2δ ≤ 1 in Section A.2. Then, secondly, we use the previous

result (Section A.1) to show that the two-steps estimator ϑ
(2)
n is

√
n-consistent with

a centered normal limit with variance I(ϑ)−1.

A.1 Efficiency of the one-step procedure

Let (ϑ∗n, n ≥ 1) be n
δ
2 -consistent initial sequence of guess estimators with 1

2 < δ ≤ 1.

Recall that (ϑ̂n, n ≥ 1) is the sequence of maximum likelihood estimator defined by (3).
We show in the following the asymptotic equivalence of the one-step estimator and
the maximum likelihood estimator, namely

√
n
(
ϑn − ϑ̂n

)
−→ 0 in probability

as n→ ∞.
The mean-value theorem gives,

ℓ̇n (ϑ
∗
n) = ℓ̇n

(
ϑ̂n

)
+

∫ 1

0

ℓ̈n

(
ϑ̂n + v

(
ϑ∗n − ϑ̂n

))
dv ·

(
ϑ∗n − ϑ̂n

)
=

∫ 1

0

ℓ̈n

(
ϑ̂n + v

(
ϑ∗n − ϑ̂n

))
dv ·

(
ϑ∗n − ϑ̂n

)
. (15)

13



Based on (5), let us define a generic one-step procedure

ϑn = ϑ∗n + I(ϑ∗n)−1 · ℓ̇n(ϑ
∗
n)

n
, n ≥ 1.

We have (
ϑn − ϑ̂n

)
=
(
ϑ∗n − ϑ̂n

)
+ I(ϑ∗n)−1 · ℓ̇n(ϑ

∗
n)

n
and (

ϑn − ϑ̂n

)
=

(
I3 + I(ϑ∗n)−1

∫ 1

0

ℓ̈n

(
ϑ̂n + v

(
ϑ∗n − ϑ̂n

))
dv

)(
ϑ∗n − ϑ̂n

)
where I3 is the 3× 3 identity matrix. It follows that

√
n
(
ϑn − ϑ̂n

)
= n

1
2−δ I(ϑ∗n)−1 ·

·n δ
2

([
I(ϑ∗n) +

ℓ̈n(ϑ̂n)

n

]
+

1

n

∫ 1

0

(
ℓ̈n

(
ϑ̂n + v(ϑ∗n − ϑ̂n)

)
− ℓ̈n(ϑ̂n)

)
dv

)
·

·n δ
2

(
ϑ∗n − ϑ̂n

)
.

A Lipschitz condition on the Fisher information matrix and the CLT give

1

n

∥∥∥ℓ̈n (ϑ̂)− ℓ̈n(ϑ
∗
n)
∥∥∥ ≤ L∥ϑ̂n − ϑ∗n∥

and the boundedness of the middle term in the r.h.s..

A.2 The first step in the two step procedure

Let us now consider (ϑ∗n, n ≥ 1) an initial n
δ
2 -consistent initial sequence of guess

estimators with 1
4 < δ ≤ 1/2. We show that the one-step estimator ϑ

(1)

n defined by

ϑ
(1)

n = ϑ∗n + I(ϑ∗n)−1 · ℓ̇n(ϑ
∗
n)

n
, n ≥ 1,

is n
γ
2 -consistent with 1

2 < γ = 2δ < 1. Direct computations lead to

n
γ
2

(
ϑ
(1)

n − ϑ
)
= n

γ
2 (ϑ∗n − ϑ) + n

γ
2 I(ϑ∗n)−1 · ℓ̇n(ϑ

∗
n)

n

= n
δ
2

(
I3 −

1

n

∫ 1

0

ℓ̈(ϑ+ v(ϑ∗n − ϑ)dv

)
n

δ
2 (ϑ∗n − ϑ) +

+n
γ
2 −

1
2 I(ϑ∗n)−1 · ℓ̇n(ϑ)√

n
.

14



The second term on the r.h.s. tends to zero in probability since 1√
n
ℓ̇n(ϑ) is bounded

in probability due to the central limit theorem and n
γ
2 −

1
2 tends to zero as n→ ∞.

The first term of the r.h.s. is bounded in probability, with similar computations
using the Lipschitz continuity of the Fisher information matrix and the fact that
n

δ
2 (ϑ∗n − ϑ) is tight.

B Characterization of the survival function of the t
distribution

Let us recall that, for b− a /∈ Z,

2F1 (a, b, c, z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)

1

(−z)a 2F1

(
a, a− c+ 1, a− b+ 1,

1

z

)
+

+
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)

1

(−z)b 2F1

(
b, b− c+ 1, b− a+ 1,

1

z

)
(16)

and

2F1(a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n
. (17)

With (16), we get

F (y) = −y−ν Γ((ν + 1)/2)Γ(−ν/2)
Γ(ν/2)Γ(1− ν/2)

σν(
√
ν)ν

2
√
π

2F1((ν + 1)/2, ν/2, 1 + ν/2,−σ2ν/y2)

= y−ν Γ((ν + 1)/2)

Γ(1 + ν/2)

σν(
√
ν)ν

2
√
π

2F1((ν + 1)/2, ν/2, 1 + ν/2,−σ2ν/y2).

with Γ(z)Γ(1 − z) = π
sin(πz) . Then, one can use the first order expansion in (17) to

obtain

F (y) ≃ y−να(1 + βy−2)

with

α =
Γ((ν + 1)/2)

Γ(1 + ν/2)

σν(
√
ν)ν

2
√
π

=
Γ((ν + 1)/2)

Γ(ν/2)

σν(
√
ν)ν−1

√
πν

and β = −ν
2
· ν(ν + 1)

(ν + 2)
σ2

exploiting Γ(z + 1) = zΓ(z) when Re(z) > 0. Denoting γ = 1
ν , we get

lim
t→∞

F (yt)

F (t)
= y−1/γ , y > 0.

15



Then, fixing ρ = − 2
ν , we deduce(
F (yt)

F (t)
− y−1/γ

)
≃ γρβt−2 · y−1/γ y

ρ/γ − 1

γρ
.

Since F (t) ≃= αt−ν , we fix A(u) = γραρβuρ to get

lim
t→∞

1

A(1/F (t))

(
F (yt)

F (t)
− y−1/γ

)
= y−1/γ y

ρ/γ − 1

γρ
.

C Some results

Here are some results about the moments of the t(0, 1, ν) distribution. Namely

Eϑ

[
(1 + Y 2

1 /ν)
−m
]
=

(ν/2 +m− 1) · · · (ν/2)
(ν + 1)/2 +m− 1) · · · ((ν + 1)/2)

.

The expectation of the score is null, for the second component, since

Eϑ

[
Y 2
1 /ν · (1 + Y 2

1 /ν)
−1
]
=

1

ν + 1
.

For the computation of the Fisher information matrix, the following moment are
also generally used:

Eϑ

[
Y 2
1 /ν · (1 + Y 2

1 /ν)
−2
]
=

ν

(ν + 3)(ν + 1)

and

Eϑ

[(
Y 2
1 /ν

)2 · (1 + Y 2
1 /ν)

−2
]
=

3

(ν + 3)(ν + 1)
.
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