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Abstract: This paper addresses linear propagation in an acoustic pipe with a porous wall, a
common scenario in wooden wind instruments. First, a scale separation technique is proposed
for dissipative propagation within the wall: the material is modelled as a periodic assembly
of identical microscopic cells, forming a network of channels filled with air. It is shown
that the resulting PDE admits a port-Hamiltonian formulation, of which the state, flow,
effort, Hamiltonian, and differential connection operator are structured using powers of the
scale parameter. The resulting macroscopic description, derived from the governing equations
at the two lowest orders, manifests as a constrained port-Hamiltonian system involving a
Lagrange multiplier. As an example, using an academic cell geometry, we determine the effective
wavenumber and dissipation coefficient of a straight tube with a porous wall.

Keywords: Modelling, Homogenisation method, Port-Hamiltonian systems, Distributed
parameter systems, Acoustics

1. INTRODUCTION

The propagation of acoustic waves in a wind instrument is
slightly influenced by the material used. In the case of
wood, the presence of pores (see Figures 1 and 2) can
lead to volume dissipation inside the wall. Instrument
makers may wish to adjust this effect. In Boutin et al.
(2017), the influence of porosity (and surface roughness)
was measured on the acoustic input impedance of pipes
made from different woods and at different stages (drilling,
polishing, oiling) in the instrument manufacturing process.
It concluded that oiling reduces acoustic dissipation 1 .

To model the effective acoustic behaviour of the porous
material without describing each individual pore, Biot
(1956a,b) considers a fluid motion in a rigid frame. Assum-
ing that propagation takes place inside a periodic array
of rigid-skeleton cells, Allard and Atalla (2009) propose a
simpler equivalent fluid model in the frequency domain 2 .
Its derivation can be achieved using a scale separation
and a homogenisation process to isolate the macroscopic
behaviour (see e.g. Allaire and Alouges (2014); Alouges
(2016)).

This paper focuses on passive modelling of the macroscopic
effect of wall porosity on linear propagation in an acous-

1 This practice is also recommended to musicians for other reasons
(see Holder (2018)), such as protecting the wood against variations
in temperature and humidity, and the risk of cracking.
2 See in particular section 5.9 in the article by these authors.

tic pipe, based on scale separation, the homogenisation
method, and its recasting in the port-Hamiltonian frame-
work. As an important result, it reveals that the homogeni-
sation method and the Port-Hamiltonian formulation com-
bine successfully to produce a passive formal structure
composed of scale-parameterised objects (state, effort,
flow, Hamiltonian, conservative and dissipative connection
operators). The truncation of the asymptotic expansion
at the two lowest orders provides a description that is
used as the macroscopic model 3 . This model defines an
interpretable port-Hamiltonian system that involves con-
straints. It is used to derive the acoustic dispersion relation
for the first mode (closest to the plane mode) inside a
straight pipe and examine the influence of the porous wall
on the wave propagation.

The paper is organised as follows. Section 2 sets the equa-
tions of the original linear visco-thermal acoustic problem
in a porous wall. Section 3 formulates the problem using
scale separation, periodic homogenisation and presents
the resulting port-hamiltonian models. Based on the ho-
mogenised model, section 4 derives macroscopic loss op-
erators which are involved in acoustics. Finally, numerical
solutions are presented for a wall made of cells with an
academic geometry, illustrating the resulting effect on the
input acoustic impedance of a cylindrical pipe.

3 Further mathematical analysis would be required to give math-
ematical results regarding to the convergence of the double-scale
expansion to the homogenised limit, as described by Bensoussan
et al. (2011). This study is out of the scope of this paper.



a. (zoom ×80) Transverse (top) and radial longitudinal (bottom)
sections of Ulmus procera Salisb. (Fagacaceae)

b. (zoom ×3000) Longitudinal radial section
of Knightia excelsa R.Br. (Proteaceae)

Fig. 1. Electron microscopy images of wood (extracted from Butterfield et al. (1972)). (a): unevenly distributed vessels
on the rings, connected vertically by perforations in their walls (white arrows indicate ring boundaries); (b): simple
perforation between two vessel elements, with opening in the secondary wall (red arrows) and closed diaphragms
in the primary wall (blue arrows).

2. FLUID EQUATIONS INSIDE THE POROUS WALL

2.1 Hypotheses

Consider the fluid contained inside the bounded connected
open set Ωf ⊂ Rd of a porous wall and denote Γf ⊂ ∂Ωf

the regular boundary between this set and the solid part
of the wall. The wood is assumed to be isothermal, at
temperature T0 ≈ 20oC. The fluid (air) is characterised at
time t and position x by its fields of (total) mass density
ρtot, particle velocity vtot, pressure Ptot and temperature
Ttot. Air is assumed to behave like a perfect gas, so that
Ptot = R0ρtotTtot with gas constant R0 = 288 J.kg−1.K−1.
Its specific heat capacity at constant pressure is Cp = γ R0

γ−1

≈ 1004 J.kg−1.K−1 and heat capacity ratio γ = 1.402. Its
thermal conductivity κ ≈ 2.57×10−2J.m−1.s−1.K−1, shear
viscosity µ = 1.81 × 10−5 kg.m−1.s−1 and bulk viscosity
ζ = 1.3× 10−5kg.m−1.s−1.

The fluid is assumed to be initially at rest and subjected
to small perturbations due to acoustic waves outside
the wall. Around the initial homogeneous equilibrium
state 4 , the field fluctuations ρ(t,x) = ρtot(t,x) − ρ0,
v(t,x) = vtot(t,x) − 0, P (t,x) = Ptot(t,x) − P0 and
T (t,x) = Ttot(t,x)− T0 are then assumed to be small.

2.2 Thermo-visco-acoustic equations

Under these assumptions, the governing equations can be
approximated by the linearised Navier-Stokes equations
(see e.g. Regev et al. (2016); Bruneau and Potel (2013)):

• Mass conservation in Ωf

∂t ρ+ ρ0 div v = 0, (1a)

• Momentum conservation in Ωf

ρ0∂t v = −∇P + µ∆v +
(
ζ +

µ

3

)
∇(div v), (1b)

• Thermal conduction in Ωf

ρ0Cp∂t T = κ∆T + ∂t P, (1c)

4 with ρ0 = 1.2 kg.m−3,v0=0m.s−1, P0 = 101.3Pa, T0 = 293.15K.

• Gas state equation in Ωf

P/P0 = ρ/ρ0 + T/T0, (1d)

• No-slip condition: v = 0 on Γf , (1e)

• Isothermal wall: T = 0 on Γf . (1f)

The coupling boundary conditions between the fluid inside
and outside the wall are considered in section 4.

2.3 Port-Hamiltonian formulation

Using (1d), equations (1a-1c) rewrite 1
P0

0 − 1
T0

0 ρ0 0

− 1
T0

0
ρ0Cp

T0


︸ ︷︷ ︸

M

(
∂tP
∂tv
∂tT

)
︸ ︷︷ ︸

∂te

=

 0 −div 0
−∇ A 0
0 0 κ

T0
∆


︸ ︷︷ ︸

S

(
P
v
T

)
︸ ︷︷ ︸

e

,

(2)
where M = M⊺ ≻ 0 is a constant symmetric positive 5

matrix, and the operator A = µ∆+
(
ζ + µ

3

)
∇(div(·)) and

the Laplacian ∆ are negative self-adjoint operators. This
describes a linear 6 dissipative port-Hamiltonian system
of energy 1

2 ⟨e,Me⟩Ωf
= 1

2

∫
Ωf

e⊺MedΩ, without vol-

ume sources, formulated with the co-energy variables e
(see Van der Schaft et al. (2014)).

The standard state-space representation is formulated
with respect to the energy variable α and the Hamiltonian
function H such that δαH = e, as follows:

∂tα = (J −R)︸ ︷︷ ︸
S

δαH(α), (3a)

with α := M e =

 P
P0

− T
T0

= ρ
ρ0

ρ0v
ρ0CP

T
T0

− P
T0

 relative mass density,
momentum density,
≡entropy density,

(3b)

H(α) :=
1

2
⟨M−1α,α⟩Ωf

, (3c)

5 Positivity is satisfied since ρ0Cp/(P0T0) = γ/(γ − 1) > 1.
6 See Mora et al. (2021) for a nonlinear formulation.



Fig. 2. Schematic of the porous wall domain Ωε ⊂ Ω
corresponding to the ε-scale tiling of a representative
unit cell of domain Y , occupied by a solid part in Ys

(wood in grey) and a fluid part in Yf (air in blue).

where S is decomposed into the skew-symmetric operator

J = −J ∗ =

(
0 −div 0

−∇ 0 0
0 0 0

)
, (3d)

and a symmetric positive operator

R = R∗ =

0 0 0
0 −A 0
0 0 κ

T0
(−∆)

 ⪰ 0. (3e)

For null effort e at boundary, the power balance writes
d
dtH

(
α(t)

)
= ⟨δαH, α̇⟩Ωf

= −⟨δαH,−R δαH⟩Ωf
≤ 0.

3. SCALE SEPARATION METHOD: PERIODIC
WALL HOMOGENISATION

In order to separate the macroscopic scale at which acous-
tic propagation takes place (macroscopic length Lm = 1
to within one normalisation factor) from the microscopic
scale (pore length Lp ≪ Lm) at which dissipative phe-
nomena take place, a scaling coefficient ε = Lp/Lm is
introduced. The aim of the procedure is to determine the
macroscopic behaviour as ε → 0: this is the ”homogenised”
effect, in the sense that all the information linked to the
ratio of characteristic lengths has been removed.

3.1 Formulation of the homogenisation problem

The wooden porous wall Ω ⊂ (R)d made of solid (Ωs)
and fluid (Ωf) parts is now assumed to be composed of a
periodic array of a representative unit cell.

To distinguish macroscopic and microscopic scales, the
microscopic coordinate

y = x/ε mod 1, (4)

is introduced so that to the macroscopic variable x ∈ Ω,
we associate the corresponding point of the representative
microscopic cell Y

y ∈ Y = (R)d/Zd. (5)

The cell Y is identified with the unit cube [0, 1]d with
periodicity conditions. It is partitioned into a regular,
connected, open fluid part Yf and a solid part Ys (see
figure 2).

The fluid domain Ωf is now described as the following
scale-dependent periodic domain Ωε.

Definition 1. The periodic domain Ωε is defined as the
intersection of Ω with the fluid part of the cell array:

Ωε =
{
x ∈ Ω

∣∣x/ε ∈ Yf

}
. (6)

The interfaces with the solid part and with the external
environment are respectively Γε =

{
x ∈ Ω

∣∣x/ε ∈ ∂Yf

}
and Γext

ε = ∂Ω ∩ ∂Ωε.

For a scale ε > 0, the fluid movement is governed by (10)
in which the fields and the spatial sets are replaced by
their scale-dependent counterparts

ρ,v, P, T −→ ρε,vε, Pε, Tε, (7a)

Ωf , Γf −→ Ωε, Γε, (7b)

and where the visco-thermal coefficients are made scale-
dependent according to the choice of the following ansatz 7

µ, η, κ −→ ε2µ, ε2η, ε2κ, (7c)

the physical motivations of which are discussed in (Allard
and Atalla, 2009, sec. 5.9).

3.2 Two-scale asymptotic expansion

The double-scale asymptotic expansion technique first
consists of assuming that each unknown writes as a power
series for the scale parameter ε:

v̂ε(x) = v̂(0)(x,
x

ε
) + ε v̂(1)

(
x,

x

ε

)
+ ε2 v̂(2)

(
x,

x

ε

)
+ . . .

(8a)

P̂ε(x) = P̂ (0)
(
x,

x

ε

)
+ ε P̂ (1)

(
x,

x

ε

)
+ . . . (8b)

ρ̂′ε(x) = ρ̂′(0)
(
x,

x

ε

)
+ ε ρ̂′(1)

(
x,

x

ε

)
+ . . . (8c)

τ̂ε(x) = τ̂ (0)
(
x,

x

ε

)
+ ε τ̂ (1)

(
x,

x

ε

)
+ . . . (8d)

where the fields indexed by orders k = 0, 1, (. . . ) are
functions defined for all (x,y) ∈ Ω × Yf (meaning that
y ≡ x/ε must be understood ”modulo 1”).

The second step consists of deriving the first terms of
interest (here, v(0) and P (0)), which can be interpreted as
the homogenised solution, by formally identifying terms of
the same degree in ε in the governing equations.

Applying the chain rule to the expressions of the fields (8a-
8d), the differentiation operators in space involve different
powers of ε. They are expressed as

∇ = ∇x + ε−1∇y, (9a)

div = divx +ε−1 divy, (9b)

∆ = ∆x + ε−1(divx ∇y + divy ∇x) + ε−2∆y, (9c)

where, for any differential operator D, operators Dx and
Dy denote the partial derivative operators with respect to
the first and second variable, respectively.

Injecting the power series of the fields into the conservation
of mass equation (1a) modified by (7) leads to

∂t

∞∑
k=0

εkρ(k) + ρ0

∞∑
k=0

εk
(
divx v

(k) + ε−1 divy v
(k)
)
= 0.

Similar results are obtained for equations (1b-1f). The for-
mal identification of the terms with homogeneous degree

7 This artificial manipulation allows the velocity vε to have a non-
trivial limit when ε tends to zero, by compensating for shrinking
pores by reducing friction.



εk leads to a cascade of equations. The degrees ε−1 and ε0

are sufficient to describe the homogenised problem:

• Mass conservation

ε−1 : divy v
(0) = 0, (10a)

ε0 : ∂tρ
(0) + ρ0 divx v

(0) + ρ0 divy v
(1) = 0. (10b)

• Momentum conservation

ε−1 : ∇yP
(0) =0, (10c)

ε0 : ρ0∂tv
(0) =µ∆yv

(0) + (ζ + µ/3)∇y(divy v
(0))

−∇yP
(1) −∇xP

(0). (10d)

• Thermal conduction

ε0 : κ∆yT
(0) − ρ0Cp∂tT

(0) = −∂tP
(0). (10e)

• Gas state equation

ε0 : P (0)/P0 = ρ(0)/ρ0 + T (0)/T0. (10f)

The boundary conditions stemming from (1e-1f) read 8

∀(x,y) ∈ Ω× ∂Yf , v(0)(x,y) = v(1)(x,y) = 0, (11a)

∀(x,y) ∈ Ω× ∂Yf , T (0)(x,y) = 0. (11b)

3.3 Port-Hamiltonian formulation

The homogenisation problem described in section 3.1 ad-
mits a port-Hamiltonian formulation, which straightfor-
wardly stems from (13a) or (3), by adapting (7a) into

e, α → eε, αε (12)

and following the same process as in section 3.2.

n Jn Rn

-1

(
0 − divy 0

−∇y 0 0
0 0 0

)
03×3

0

(
0 − divx 0

−∇x 0 0
0 0 0

) (
0 0 0
0 −Ay 0
0 0 − κ

T0
∆y

)

1 03×3

(
0 0 0
0 −Axy 0
0 0 − κ

T0
∆xy

)

2 03×3

(
0 0 0
0 −Ax 0
0 0 − κ

T0
∆x

)
Table 1. Decomposition of Sε = Jε − Rε

into skew-symmetric and symmetric oper-
ators: Jε = −J ⋆

ε =
∑0

n=−1 ε
nJn and

Rε = R⋆
ε =

∑2
n=0 ε

nRn ⪰ 0. Operators Jn

and Rn with their dependence on x or y detail
how the conservative and dissipative phenom-
ena are fed and structured by the macroscopic
(x) or microscopic (y) scales for each scale-
degree transfer n. Note that the homogeneised
problem (16) only involves n = −1 and 0.

Co-energy variables. The port-Hamiltonian formulation
written for the co-energy variables eε = [pε,v

⊺
ε , Tε]

⊺ is

M ∂teε = Sεeε, (13a)

where operator Sε is formally negative and given by

Sε = ε−1S−1 + S0 + εS1 + ε2S2, (13b)

8 For more details, see the PhD manuscript (Thibault, 2023, p. 169).

with (see also table 1 for a detailed decomposition)

S−1 =

(
0 −divy 0

−∇y 0 0
0 0 0

)
S0 =

 0 −divx 0
−∇x Ay 0
0 0 κ

T0
∆y


S1 =

0 0 0
0 Axy 0
0 0 κ

T0
∆xy

 S2 =

0 0 0
0 Ax 0
0 0 κ

T0
∆x

 , (13c)

and where the differential operators are defined by

∆xy = divx ∇y + divy ∇x, (13d)

Ay = µ∆y +
(
ζ +

µ

3

)
∇y(divy(·)), (13e)

Axy = µ∆xy +
(
ζ +

µ

3

)
(∇x(divy(·)) +∇y(divx(·))) ,

(13f)

Ax = µ∆x +
(
ζ +

µ

3

)
∇x(divx(·)). (13g)

The energy of the system

Eε(t) =
1

2

〈
x 7→ eε(t,x,x/ε) , x 7→ M eε(t,x,x/ε)

〉
Ωε

=
1

2

∫
Ωε

∑
k1,k2≥0

εk1+k2e(k1)
(
t,x,

x

ε

)⊺Me(k2)
(
t,x,

x

ε

)
dΩ

is also structured by the scale parameter ε.

The evolution equation (13a) rewrites

M
∞∑
k=0

εk∂te
(k) =

2∑
n=−1

εnSn

∞∑
k=0

εke(k). (14)

Identifying terms of the same degree in ε yields

ε−1 : 0 =S−1e
(0), (15a)

ε0 : M∂te
(0) =S−1e

(1) + S0e
(0), (15b)

ε1 : M∂te
(1)t =S−1e

(2) + S0e
(1) + S1e

(0), (15c)

εk, k ≥ 2 : M∂te
(k) =S−1e

(k+1) + S0e
(k)

+ S1e
(k−1) + S2e

(k−2). (15d)

The system of equations (10) considered above corre-
sponds to (15a-15b). Note that this pair of equations,
which defines the homogenised problem, is also a port-
Hamiltonian system:(

M∂te
(0)

0

)
=

(
S0 S−1

S−1 0

)(
e(0)

e(1)

)
, (16)

where the operator in the right-hand side is formally
negative, because S0 is negative and S−1 is formally skew-
adjoint (see table 1). As in section 3.2, the unknown
e(1) serves as the Lagrange multiplier associated with the
constraint.

Energy variables. Following the same process for (3-3e),
the state-space representation with respect to the energy
variable αε is

∂tαε︸ ︷︷ ︸
M∂teε

= (Jε −Rε)︸ ︷︷ ︸
Sε

δαε
Hε(αε)︸ ︷︷ ︸

M−1αε=eε

, (17a)

with αε := M eε (17b)

and Hε(αε) :=
1

2
⟨M−1αε,αε⟩Ωε

, (17c)

The port-Hamiltonian system of the homogenised problem
(equivalent to (16)) is(

∂tα
(0)

0

)
=

(
S0 S−1

S−1 0

)(
M−1α(0)

M−1α(1)

)
. (18)



4. MACROSCOPIC LOSS OPERATORS IN THE
LAPLACE DOMAIN AND APPLICATION

The homogenised problem describes the macroscopic dis-
sipation due to the thermo-viscous phenomena involved at
microscopic scale in a porous media. This section briefly
introduces some related loss operators in the spectral do-
main, and gives an illustration of their effect on a cylindri-
cal acoustic pipe with a porous wall for an academic cell
geometry (see Thibault (2023) for a detailed presentation).

To this end, the linear problem (10-11) is addressed in the
spectral domain. In the following, we consider the Laplace

variable s ∈ C+
0 = {s ∈ C | Re(s) ≥ 0} (or s = iω ∈ iR for

the Fourier domain). The fields expressed in the spectral
domain are denoted with a hat symbol.

4.1 Fields P̂ (0), T̂ (0) and v̂(0)

In this subsection, variable s is omitted for conciseness.
From (10c), the first pressure term P̂ (0) depends only on x
(in other words, it appears constant at microscopic scale).

After calculations, it can be shown that fields T̂ (0) and
v̂(0) are related to P̂ (0) as

τ̂ (0)(x,y) = P̂ (0)(x)φ(y), (19)

v̂(0)(x,y) =

d∑
i=1

wi(y)
∂
ˆ̂
P (0)

∂xi
(x), (20)

where φ and (wi, qi) are solutions to boundary problems
in the unit cell (Ei denotes the unit vector oriented in
direction i):{

κ∆φ(y)− sρ0Cp φ(y) = −s on Yf ,

φ|∂Yf
= 0,

(21)
µ∆wi(y)−∇qi(y)− sρ0 wi(y) = Ei on Yf

divwi(y) = 0 on Yf

wi|∂Yf
= 0.

(22)

4.2 Effective fluid and loss coefficients in acoustic pipes

It is shown (see (Thibault, 2023, Eq. (6.32) and re-
mark 6.5)) that:

• these fields corresponds to an effective fluid charac-
terised by

ρe(s) = −1

s
Â−1(s), (density) (23a)

Ke(s) =
1

1/P0 − B̂(s)/T0

, (compressibility) (23b)

• the loss coefficients (analog to those involved in acous-
tic pipes with boundary layers) that represent the
macroscopic dissipation inside the porous wall are

Kt(s) = 1− ρ0CpB̂(s), (thermal) (24a)

Kv(s) = Id + ρ0sÂ(s), (viscous) (24b)

where the permeability operators are defined by ÂEi = ⟨wi⟩
and B̂ = ⟨φ⟩ with the average operator ⟨·⟩ =

∫
Yf
·dy/

∫
Yf
1 dy.

Fig. 3. Cylindrical pipe with a porous wall (top) and
example of a 2D academic cell (bottom).

4.3 Wave equation in an acoustic pipe with a porous wall

Consider a cylindrical pipe with a porous wall, a circular
base and an internal radius R and an external radius Rext

(see figure 3).

Waves propagate without attenuation inside the pipe filled
with air (Ωair) and are attentuated inside the porous wall
Ωwood. The interface between the two media is denoted
Γab and the outer wall Γext. These sets are described in
cylindrical coordinates x = (r, θ, z) by

Ωair = {x | r < R} , Ωwood = {x | R < r < Rext} ,
Γab = {x | r = R} , Γext = {x | r = Rext} .

Studying the acoustic coupling between Ωair and Ωwood,
it is shown that the wave propagation in Ωair ∪ Ωwood is
governed by

ρ̃e(s,x) s ṽ(s,x) = −∇P̂ (0)(s,x) (25a)

s P̂ (0)(s,x) = −K̃e(s,x) div ṽ(s,x) (25b)

where ṽ = v̂, K̃e = γ P0, ρ̃e = ρ0 in Ωair, and where

ṽ(s,x) = ϕ ⟨v̂⟩(s,x), K̃e(s,x) = Ke(s)
ϕ , ρ̃e(s,x) = ρe(s)

ϕ

for x ∈ Ωbois. In these formula, ϕ := |Yf |/|Y | denotes the
porosity coefficient, ρe and Ke are defined in (23), Kt and
Kv are defined in (24).

Eliminating ṽ in (25) leads to a Helmholtz equation (in
the Laplace domain, or choosing s = iω)

s2 K̃−1
e (s,x) P̂ (0)(s,x)− div

(
ρ̃−1
e (s,x)∇P̂ (0)(s,x)

)
= 0.
(26)

We assume that the amount of energy leaking outside the
instrument is negligible, so that we can avoid modelling
what happens around the pipe. In this case, the boundary
condition is

P̂ (0) = 0 on Γext. (27)



Fig. 4. Radial profile of the first pressure mode at different
frequencies f : real (-) and imaginary(- -) parts; grey
background Ωwood. The vertical scale is arbitrary.

Fig. 5. Complex wavenumber: (black) perfect wall
(Zwicker-Kosten model); orange: porous wall (aca-
demic geometry with exaggerated porosity).

4.4 Numerical results

Simulations have been processed for a pipe with pa-
rameters R = 7.45mm, Rext = 15.0mm and porosity
ϕ = 0.156 that corresponds to a cell with the academic
geometry pictured in figure 3 (bottom part). The steps
are (Thibault, 2023, sections 6.5-6.6): solve the cell prob-
lem using the high-order finite element code Montjoie
(see Duruflé (2021)); derive the dispersion relationship
of the first pressure mode (closest to the planar mode).
Figures 4, 5 and 6 respectively present the resulting radial
profile, wavenumber and input impedance for the length
L = 240.5mm.

5. CONCLUSION

This article shows the interest of combining the homogeni-
sation method and the port-Hamiltonian formulation: this
enables the passivity of microscopic phenomena to be
characterised at several scales and this produces passive
macroscopic descriptions.

A perspective is concerned with the convergence analysis
of the solutions. Moreover, it would be interesting to
examine this approach on nonlinear systems.
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