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Abstract

Stein Variational Gradient Descent (SVGD) is a widely used sampling algorithm
that has been successfully applied in several areas of Machine Learning. SVGD
operates by iteratively moving a set of n interacting particles (which represent
the samples) to approximate the target distribution. Despite recent studies on the
complexity of SVGD and its variants, their long-time asymptotic behavior (i.e.,
after numerous iterations k) is still not understood in the finite number of particles
regime. We study the long-time asymptotic behavior of a noisy variant of SVGD.
First, we establish that the limit set of noisy SVGD for large k is well-defined. We
then characterize this limit set, showing that it approaches the target distribution
as n increases. In particular, noisy SVGD provably avoids the variance collapse
observed for SVGD. Our approach involves demonstrating that the trajectories of
noisy SVGD closely resemble those described by a McKean-Vlasov process.

1 Introduction

Sampling is a fundamental task of machine learning, at the core of Bayesian inference and gener-
ative modeling. Mathematically, the task of sampling can be formulated as the task of generating
samples, i.e., random variables, from a given (or learnt) probability distribution π. This task can be
achieved by means of a sampling algorithm that iteratively generates the samples, which are meant to
asymptotically approximate the target distribution.

The question of the convergence in distribution of the samples to the target π is therefore of primary
interest in the theory of sampling. This question has been investigated by several works in the sampling
literature, with precise convergence rates for some sampling algorithms such as the celebrated
Langevin algorithm, see [9] for an overview.

Stein Variational Gradient Descent (SVGD) [18] is an algorithm to sample from a target distribution
π whose density w.r.t. Lebesgue measure is known up to a normalizing factor and written in the form

π(x) ∝ exp(−F (x)), where F : Rd → R. (1)

SVGD (and its variants) is an alternative to the Langevin algorithm that has been successfully applied
in several areas of machine learning, see [15, 20, 23, 26, 31, 34, 35] among others. For example, the
SVGD dynamics can be seen as a "kernelized" version of the probability flow ODE used in generative
modeling [8, 29]. The SVGD algorithm takes the form of an interacting particles system of n particles.
The empirical distribution of the n particles at time k, denoted µnk , is meant to approximate the target
π when the number of iterations k is large.

1.1 Related works

Several works have investigated the convergence of SVGD, i.e., the convergence of µnk to π.
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Most of these works have considered the hypothetical regime n = ∞, called the population limit [16,
24, 27, 30]. More precisely, in the population limit, [16, 27, 30] showed that for every k > 0,

Istein(µ
∞
k ||π) < C

k
, (2)

where C > 0 is a constant and Istein denotes the Stein Fisher Information, a discrepancy between the
current iterate µ∞

k and the target π. The convergence in distribution of SVGD to the target π can be
deduced, in the population limit, by letting k → ∞ in (2), see [27].

More recently, some works have considered the finite number of particles regime n < ∞ [6, 11,
14, 19, 28]. More precisely, in this regime, one can show that SVGD approximates its population
limit provided that k is small enough [16, 17, 21, 28]. Combining this fact with (2), [6, 28] showed
that Istein(µ

n
k ||π) < C ′/k, where C ′ > 0 is a constant, provided that k is small enough (e.g.,

k < log log(n) in [28]). Because of this upper bound on k, the convergence of SVGD, in the finite
number of particles regime, cannot be deduced by letting k → ∞.

Indeed, SVGD does not converge to the target when n < ∞. Because the iterates of SVGD are
discrete measures with a finite support of n points, whereas the target π has a continuous density w.r.t.
Lebesgue. Therefore, we ask the following question.

What does SVGD converge to (i.e., when k → ∞) in the finite number of particles regime (i.e., when
n <∞ is fixed)?

To the best of our knowledge, this question remains unanswered except in the particular case where π
is a centered Gaussian distribution, see [19, Theorem 10]. For a fixed n, the paper [14] demonstrates
that SVGD converges in expectation to a system of n continuous-time particles, but does not enable
the establishment of consistency with the target distribution π, when n becomes large.

However, we can already make a few observations.

• As mentioned above, SVGD does not converge to the target π because the iterates of SVGD
are discrete whereas π is continuous.

• The best one can hope in general is for the SVGD iterates to converge to some "limit" L n

that approaches π as n grows.
• Even if we were able to show that the limit L n is well-defined (this task is already non

trivial since some particles could diverge for example), L n would probably not approach
the target π as n grows. Indeed, SVGD has been empirically shown not to converge to the
target π in high dimension. More precisely, SVGD has been observed to underestimate the
variance of the target distribution and the particles of SVGD have been observed to collapse
to some modes of the distribution, see [2, 10, 36].

1.2 Contributions

In this paper, we introduce a new noisy variant of SVGD where each iteration is regularized by
noise which takes the form of an iteration of the Langevin algorithm. We study the "limit" L n of
our algorithm, noisy SVGD, with n < ∞ particles, when the number of iterations k → ∞. More
precisely, our contributions are the following.

• We propose a new noisy variant of SVGD where each iteration is regularized by noise which
takes the form of an iteration of the Langevin algorithm.

• We first show that, when the number of particles n <∞ is fixed, noisy SVGD converges
when k → ∞ to a well-defined limit set L n (Th. 1).

• Then, we describe this limit set L n: it cannot contain the target π, but we show that L n

approaches π as n grows (Th. 2).
• Finally, we obtain Cor. 1 on the convergence of noisy SVGD in the regime lim

n→∞
lim
k→∞

.

Since the convergence in the regime lim
k→∞

lim
n→∞

can be deduced from the existing works

mentioned above, Cor. 1 implies that lim
n→∞

and lim
k→∞

can be exchanged.

• Our overall approach relies on proving that the trajectories of noisy SVGD mimic that of a
McKean-Vlasov process [3], a dynamical result of independent interest (Proposition 2).
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• Our convergence results prove that noisy SVGD avoids the variance collapse of SVGD, a
fact that we verify experimentally by comparing noisy SVGD to SVGD (Fig. 1).

1.3 Paper structure

This paper is organized as follows. We review some background material in Section 2. In Section 3,
we introduce our main algorithm, noisy SVGD. Next, we state our main results regarding the
convergence of noisy SVGD in Section 4. In Section 5, we provide an overview of our convergence
proof, which relies on relating the trajectories of noisy SVGD with those of a McKean-Vlasov process.
In Section 6, we empirically show that noisy SVGD, unlike SVGD, does not suffer from the particles
collapse. Finally, we conclude in Section 7. The proofs are deferred to the Appendix.

2 Background

2.1 Notations

The Euclidean inner product and norm of Rd are denoted ⟨·, ·⟩ and ∥ · ∥. We consider a Reproducing
Kernel Hilbert Space (RKHS) H0 whose kernel is denoted K : Rd × Rd → R. The product space
H := Hd

0 , is a Hilbert space whose inner product and norm are denoted ⟨·, ·⟩H and ∥ · ∥H.

2.2 Optimal transport

For every topological space E, we denote by P(E) the set of probability measures on the Borel
σ-field B(E). If E is a Polish (complete, metrizable) space, then P(E) equipped with the weak⋆
topology is Polish as well. A subset A of random variables on E is called tight, if, for every ε > 0,
there exists a compact set A ⊂ E, such that P(X ∈ A) > 1− ε, for every X ∈ A. If E is a Banach
space, we define

P2(E) := {µ ∈ P(E) :

∫
∥x∥2dµ(x) <∞} ,

and the Wasserstein-2 distance by

W2(µ, ν) :=

(
inf

ς∈Π(µ,ν)

∫
∥x− y∥2dς(x, y)

)1/2

,

where Π(µ, ν) is the set couplings of µ ∈ P2(E) and ν ∈ P2(E), i.e., the set of measures ς ∈
P(E × E) such that ς( · × E) = µ and ς(E × · ) = ν. The Wasserstein space, i.e., the set P2(E)
endowed with the distance W2, is a Polish space.

In the proofs, we need to consider the case where the space E coincides with the set C of continuous
function on [0,∞) to Rd. Eventhough C is not a Banach space, the definitions follow the same lines.
The set C is equipped with the topology of uniform convergence on compact intervals. For every
ρ ∈ P(C), we denote by ρT the restriction of ρ to functions on the compact interval [0, T ] (that is,
ρT = (π[0,T ])#ρ, the pushforward of ρ by the map π[0,T ] which, to every function f ∈ C, associates
its restriction to the compact interval [0, T ]). We denote by P2(C) the set of measures ρ ∈ P(C)
such that ρT ∈ P2(C([0, T ],Rd)) for all T > 0. This space is naturally equipped with the following
topology: a sequence ρn converges to ρ in the Wasserstein-2 sense if ρTn → ρT in the Wasserstein-2
sense, for every T > 0. Then, P2(C) is metrizable, and we denote by W2(ρ, ρ

′) a proper distance [3,
Sec. 2.2].

2.3 Functional inequalities

Let π ∈ P2(Rd) be the target distribution, i.e., π ∝ exp(−F ). The Kullback-Leibler divergence with
respect to π is defined for every µ ∈ P2(Rd) by

KL(µ||π) =
∫

log
dµ

dπ
dµ ,

if µ has a density dµ
dπ w.r.t. π, and KL(µ||π) = +∞ else. The Stein Fisher Information w.r.t. π is

defined by

Istein(µ||π) :=
∥∥∥∥Pµ∇ log

dµ

dπ

∥∥∥∥2
H
,
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where Pµ : L2(µ) → H is the so-called kernel integral operator Pµf =
∫
K(·, y)f(y)dµ(y). The

Fisher Information w.r.t. π is defined by

I(µ||π) :=
∫ ∥∥∥∥∇ log

dµ

dπ

∥∥∥∥2 dµ(x) .
Finally, we recall the Log Sobolev Inequality (LSI) that relates the Kullback-Leibler divergence and
the Fisher Information.
Definition 1 (Logarithmic Sobolev Inequality). The distribution π satisfies the Logarithmic Sobolev
Inequality, if there exists α > 0 such that for every µ ∈ P2(Rd),

KL(µ||π) ≤ 1

2α
I(µ||π).

The LSI is satisfied when F is α-strongly convex but can also be used to study the convergence of
sampling algorithms in the case where F is not convex [33, Section 21] (see also [32]).

3 Noisy Stein Variational Gradient Descent

The Stein Variational Gradient Descent (SVGD) algorithm [18] is used to sample from a distribution
π ∝ exp(−F ), where F : Rd → R is a differentiable function. At every iteration k, the algorithm
updates the values of n Rd-valued vectors, refered to as the particles X1,n

k , · · · , Xn,n
k . We study

a generalization of SVGD, called noisy SVGD, that incorporates noise in the form of a Langevin
iteration at each step of SVGD.

Let (Ω,F ,P) be a probability space, λ ≥ 0 and (γk) be a positive deterministic sequence in R.
Starting with a n–uple (X1,n

0 , . . . , Xn,n
0 ) of Rd-valued random variables, the particles are updated

according to Algorithm 1 where (ξi,nk )i,k is a family of i.i.d standard Gaussian vectors in Rd.

Algorithm 1 Noisy Stein Variational Gradient Descent

Initialization: generate n particles (X1,n
0 , . . . , Xn,n

0 )
for k = 0, 1, 2, . . . do

for i = 1, 2, . . . , n do

Xi,n
k+1 = Xi,n

k − γk+1

n

∑
j∈[n]

(
K(Xi,n

k , Xj,n
k )∇F (Xj,n

k )−∇2K(Xi,n
k , Xj,n

k )
)

−λγk+1∇F (Xi,n
k ) +

√
2λγk+1ξ

i,n
k+1︸ ︷︷ ︸

Langevin regularization

. (3)

end for
end for

Noisy SVGD boils down to the standard deterministic SVGD algorithm when λ = 0. The regulariza-
tion parameter λ > 0 allows the introduction of noise into the algorithm with the aim of preventing
the mode collapse phenomenon described in the introduction. We state our assumptions on the step
size and the noise sequence.

Assumption 1. Let the following holds.

i) (γk) is a non-negative deterministic sequence satisfying limk→∞ γk = 0, and
∑
k γk = +∞.

ii) (ξi,nk )k∈N,i∈[n] is an i.i.d. sequence of standard Gaussian variables, independent of (Xi,n
0 )i∈[n].

Noisy SVGD allows for the approximation of linear functionals of the form
∫
f dπ, where f is

an arbitrary integrand, by the discrete sum 1
n

∑n
i=1 f(X

i,n
k ) . The latter can be written as

∫
f dµnk ,
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where µnk is the empirical measure of the particles, defined by

µnk :=
1

n

∑
i∈[n]

δXi,n
k
.

Note that (µnk )k is a sequence of random measures. A useful convergence result for noisy SVGD
involves studying the convergence in probability of this sequence towards the target distribution π.
In some situations, it is more convenient to study the averaged empirical measure µ̄nk , defined for
k, n ∈ N∗, by:

µ̄nk :=

∑
i∈[k] γiµ

n
i∑

i∈[k] γi
.

4 Convergence results of noisy SVGD

4.1 Limit set of noisy SVGD is well-defined

We start our analysis by studying the limit set of SVGD as k tend to infinity, for a fixed number n of
particles. As the number of particles is fixed, it cannot be expected that the limit of µnk coincides with
π as k → ∞, because a discrete measure with a fixed number of atoms cannot approach a density.
We formally describe the limit set of the empirical measures in a distributional sense
Definition 2 (Distributional limit set). Let ν, (νk : k ∈ N) be random variables on P(Rd). We say
that ν is a distributional cluster point of (νk), if νk converges in distribution to ν along a subsequence.
The distributional limit set L ((νk)) of the sequence (νk) is defined as the set of distributional cluster
points of (νk).

We denote by L n := L ((µnk )) the distributional limit set of the sequence (µnk : k ∈ N), when
k → ∞, n being fixed. In words, L n is the set of random measures νn such that µnk converges to νn
in distribution, along a subsequence. Similarly, we denote by L̄ n the limit set of the sequence (µ̄nk ).

Assumption 2. There exists four non-negative constant c, c′, C, C ′, such that for every x, y ∈ Rd,
the following holds.

i) The hessian HF (x) is well-defined and ∥HF (x)∥op ≤ C.

ii) c′F (x)− C ≤ ∥∇F (x)∥2 ≤ C ′F (x) + C and c ∥x∥2 − C ≤ F (x).

iii) ∥K(·, y)∥H0
+ ∥∇2K(·, y)∥H ≤ C.

iv) supn E
(
(X1,n

0 )4
)
<∞.

Given the previous assumption, we can establish the stability of our algorithm, in the form of the
following lemma.

Lemma 1. Let Assumptions 1 and 2 be satisfied. Assume λ > 0. Then, supk,n E∥X
1,n
k ∥4 <∞.

Lem. 1 is the key component for establishing our first theorem.

Theorem 1. Let Assumptions 1 and 2 hold. Assume λ > 0. Then, for every n ∈ N∗, the sequence of
random variables (µnk )k is tight. As a consequence, the sets L n and L̄ n are non empty. Finally, all
random measures of L n and L̄ n belong almost surely to P2(Rd).

It remains to characterize the limit sets. As mentioned earlier, the random variable equal to π a.s.
does not belong to the set L n. Therefore, the question is whether L n reduces to the singleton π as
n goes to infinity.

4.2 Description of the limit set

Consider the target measure π.
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Definition 3. For every n ≥ 1, let E n be a set of random measures on P2(Rd). We say that the
sequence of random sets (E n : n ∈ N∗) converges in probability to π, denoted by E n P−→ π, if the
Hausdorff-Wasserstein distance between E n and π converges in probability to zero:

∀ε > 0, lim
n→∞

P( sup
ν∈En

W2(ν, π) > ε) = 0 .

Consider the following regularity assumption on the kernel K.
Assumption 3. There exists β > 0, such that for every x, x′, y ∈ Rd, we obtain

|K(x, y)−K(x′, y)|+ ∥∇2K(x, y)−∇2K(x′, y)∥ ≤ C ∥x− x′∥β .
Theorem 2. Let Assumptions 1 , 2, and 3 hold. Assume λ > 0. Then,

L̄ n P−−−−→
n→∞

π .

The motivation for studying the limit set L̄ n of the averaged measure µ̄nk is technical. However,
the limit set L n of the (non-averaged) empirical measure µnk can also be characterized, provided an
additional assumption on the target density is met.
Assumption 4. The distribution π satisfies the Logarithmic Sobolev Inequality for a constant α > 0.
Theorem 3. Let Assumptions 1 , 2, 3 and 4 hold. Assume λ > 0. Then,

L n P−−−−→
n→∞

π .

4.3 Long-time convergence of the empirical measure

As a consequence of Th. 2 and Th. 3 respectively, we can characterize the long-time convergence of
the empirical measure of the particles, averaged and non-averaged respectively.
Corollary 1. Let Assumptions 1 , 2 and 3 hold. Assume λ > 0. Then, for every ε > 0,

lim
n→∞

lim sup
k→∞

P(W2(µ̄
n
k , π) > ε) = 0 .

If Assumption 4 moreover holds, the same result holds when µ̄nk is replaced by µnk .

Since the convergence in the regime lim
k→∞

lim sup
n→∞

can be deduced from the existing works mentioned

above, Cor. 1 implies that lim
n→∞

and lim
k→∞

can be exchanged.

5 Overview of the convergence proof and dynamical behavior of noisy SVGD

The method used to prove our main result involves studying the convergence of the particles at the
level of stochastic processes.

5.1 Interpolated process

We consider for each i ∈ [n] the random continuous-time process X̄i,n : [0,∞) → Rd, t 7→ X̄i,n
t

defined as the piecewise linear interpolation of the particles (Xi,n
k )k. Specifically, writing τk :=∑k

j=1 γj , for each k ∈ N, we define:

∀t ∈ [τk, τk+1), X̄i,n
t := Xi,n

k +
t− τk
γk+1

(
Xi,n
k+1 −Xi,n

k

)
.

The interpolated processes X̄i,n, for i ∈ [n], are elements of the set C of continuous functions
on [0,∞) → Rd. Rather than solely examining the empirical measure of the particles Xi,n

k , our
approach focuses on analyzing the empirical measure of the interpolated processes X̄i,n across the
entire positive real line. Define:

mn
t :=

1

n

n∑
i=1

δX̄i,n
t+·
,

for each n and t. Note that mn
t is a random variable on P2(C)). The empirical measure µnk of the

discrete particles can be deduced from mn
t by marginalization, which is why we focus on mn

t from
now on.
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5.2 McKean-Vlasov distributions

For a fixed n, the particles Xi,n
k , for i ∈ [n], can be interpreted as an Euler discretization scheme of

a stochastic differential equation involving n continuous-time particles. As the discretization step
γk tends to zero, the interpolated processes eventually share the same behavior as the continuous-
time particles as k tends to infinity. Moreover, in the population limit where n is large, any of
the continuous-time particles coincides, in law, with the solution to a McKean-Vlasov equation, as
defined below. This phenomenon is known as the propagation of chaos. We refer to [7] for a detailed
exposition.
Definition 4. We say that a measure ρ ∈ P2(C) is a McKean-Vlasov distribution, if it coincides with
the pathwise law of a weak solution (Xt)t≥0 to the nonlinear Stochastic Differential Equation (SDE)

dXt = −
∫

(K(Xt, y)∇F (y)−∇2K(Xt, y)) dρt(y) dt− λ∇F (Xt) dt+
√
2λ dWt,

where (Wt)t≥0 is a standard Brownian motion. Denote by V2 the set of McKean-Vlasov distributions.

5.3 Limit measures of noisy SVGD are McKean-Vlasov distributions

It remains to explain in which sense, the empirical measures mn
t converge to a McKean-Vlasov

distribution as (t, n) → (∞,∞). The question requires the introduction of the following measure:

Mn
t :=

1

t

∫ t

0

δmn
s
ds .

To summarize, we introduced the following of random variables: (process level) X̄i,n is a r.v. on
C; (process-measure level) mn

t is a r.v. on P2(C); (process-measure-measure level) Mn
t is a r.v. on

P(P2(C)). As a consequence of Lem. 1, we obtain the following result.
Proposition 1. Let Assumptions 1 and 2 be satisfied. Assume λ > 0. For every n ∈ N∗, the sequence
of random variables (Mn

t )t is tight.

In particular, Proposition 1 implies Th. 1 and the fact that the limit set of SVGD is non-empty. It
remains to characterize the latter in the doubly asymptotic regime where t, n both tend to infinity.
To that end, we study the (distributional) limit points of (Mn

t ), as (t, n) → (∞,∞). The following
result is a extracted from [3, Lem. 9].
Proposition 2. Let Assumptions 1 and 2 be satisfied. Assume λ > 0. Let M be a random measure
on P(P2(C)) such that Mn

t converges in distribution to M as (t, n) → (∞,∞), along some
subsequence. Then, M(V2) = 1 a.s.

Let us explain the main consequence of this result. Let f be the function defined by f(ρ) =W2(ρ,V2)
for every ρ ∈ P2(Rd). When Mn

t tends to M in distribution along some subsequence, our definition
of Mn

t implies that:∫
fdMn

t =
1

t

∫ t

0

W2(m
n
s ,V2)ds

D−→
∫
W2(ρ,V2)dM(ρ) = 0 ,

where the symbol D−→ stand for convergence in distribution. This shows that, in an ergodic sense, mn
t

converges in probability to the set of McKean-Vlasov distributions, as (t, n) → (∞,∞).

5.4 Limit measures of noisy SVGD are time-shift recurrent

More can be said about the particular McKean-Vlasov distribution in the limit set. For every τ > 0,
denote by Φτ : P(C) → P(C) the map which shifts a process-measure by a time τ , namely,
Φτ (ρ) : f 7→

∫
f(xτ+·)dρ(x). Obviously, Φτ (mn

t ) = mn
τ+t, which in turn implies that, as t→ ∞,

for every bounded continuous function G : P(C) → R,∫
G(Φτ (ρ))dM

n
t (ρ) =

1

t

∫ t

0

G(mn
τ+s)ds ≃

1

t

∫ t

0

G(mn
s )ds =

∫
G(ρ)dMn

t (ρ) ,

where the precise statement is found in the supplementary (see also [3, Lem. 10]). Passing to the
limit, this implies that every distributional limit point M of Mn

t is shift-invariant, in the sense that
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∫
G ◦ ΦτdM =

∫
GdM a.s., for every bounded continuous G and every τ > 0. Therefore, by the

Poincaré recurrence theorem, M is supported by the set of recurrent McKean-Vlasov distributions,
that is, the set of measures ρ ∈ V2 for which there exists a sequence τl → ∞, such that ρ =
limΦτl(ρ).

5.5 Recurrent McKean-Vlasov distributions coincide with the target

For any process-measure ρ ∈ P(C), we denote by (ρt : t ≥ 0) its marginals in P(Rd).
Proposition 3. Let Assumption 2 and 3 hold. Assume λ > 0. Let t2 > t1 > 0. For every ρ ∈ V2 and
every t ∈ [t1, t2], ρt admits a differentiable density w.r.t. the Lebesgue measure. Moreover,

KL(ρt2 ||π)−KL(ρt1 ||π) = −
∫ t2

t1

(Istein(ρt||π) + λI(ρt||π)) dt . (4)

The above proposition shows that the Kullback-Leibler divergence is a Lyapunov function, in the
sense that KL(ρt2 ||π) ≤ KL(ρt1 ||π). The inequality is strict unless the r.h.s. of (4) is zero, which
holds when ρt = π for almost all t. This implies that if ρ is a recurrent McKean-Vlasov distribution,
its marginals coincide with π. Therefore, in an ergodic sense, the marginals of the process-measure
mn
t converges in probability to π, as (t, n) → (∞,∞) (see Prop. 6 in the Appendix).

The last step is to establish Th. 3 under the additional Assumption 4. In other words, one should
discard the time-averaging. This can be done in the situation where, as t→ ∞, the marginal ρt of
any McKean-Vlasov distribution ρ ∈ V2 converges to π uniformly in the initial point ρ0 in a compact
set. This can be established using the LSI, as shown by the following result.
Proposition 4. Let the assumptions of Prop. 3 hold. Moreover, we assume that Assumption 4 is
satisfied with α > 0 and λ > 0. For any compact set K ⊂ P2(C), for every t2 > t1 > 0, there exists
a constant Ct1,K > 0 depending on t1 and K, such that

sup
ρ∈V2∩K

W2(ρt2 , π) ≤ Ct1,Ke
−αλ(t2−t1) .

6 Noisy SVGD avoids the particles collapse

The convergence results above show the convergence of noisy SVGD in a doubly asymptotic regime
(k, n) → (∞,∞). These convergence results could be reproduced for the deterministic SVGD
algorithm. However, in the case of SVGD, our approach would show the convergence of SVGD to a
set that includes the target π, but can also include Dirac measures at stationary points of F . Indeed,
the McKean-Vlasov process of SVGD (i.e., the case λ = 0) is stationary at δx for any x ∈ Rd such
that ∇F (x) = 0 and ∇2K(x, x) = 01.

This observation is inline with empirical results showing that the deterministic SVGD algorithm may
not converge in high dimension and instead collapse to some Diracs which represent modes of the
target distribution [2, 10, 36]. On the contrary, we showed (Th. 2 and 3) that noisy SVGD converges
to the target and, in particular, does not collapse to Dirac measures. In this section, we illustrate this
fact experimentally.

Fig. 1 (see Appendix for larger figures) reproduces an experiment from [2] on the variance collapse
of SVGD. We added our algorithm, noisy SVGD, to the plot.

The setup is the following. We consider the task of sampling from a standard Gaussian with
noisy SVGD and SVGD. We use the two most standard kernels for running SVGD: the Radial
Basis Function (RBF) kernel, a.k.a. Gaussian kernel K(x, y) = exp(− 1

2∥x− y∥2) and the Inverse
Multi-Quadratic (IMQ) kernel [12, 13] K(x, y) = 1√

1+ 1
2∥x−y∥2

. We simulate noisy SVGD until

convergence (i.e., after a large number k = 200 of iterations) for different values of the dimension d,
the number of particles n, and the regularization parameter λ. When λ = 0, noisy SVGD boils down
to the deterministic SVGD. The particles are initialized randomly from a standard Gaussian and the
step size is set to γk = 10/k.

1On the contrary, every stationary distribution of the McKean-Vlasov process of noisy SVGD (i.e., the case
λ > 0) must have a density w.r.t. Lebesgue thanks to the noise injection.
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Figure 1: Dimension-averaged Marginal Variance of SVGD and noisy SVGD at convergence for
sampling from a standard Gaussian.

Given a probability distribution over Rd, the Dimension-Averaged Marginal Variance (DAMV) is
a statistics of the distribution equal to the average across the d coordinates of the variance of each
coordinate. We reproduce an experiment from [2] where they plotted the DAMV of SVGD after a
large number of iterations against the dimension. We added noisy SVGD to the plot, see Fig. 1. Since
noisy SVGD is random, its DAMV is a random number, therefore we plotted the averaged value of
the DAMV over 10 runs and represented the standard deviation of the DAMV in the shaded area
behind the curve. Our Python script is available in the Supplementary Material and Fig. 1 is available
in the Appendix in a larger format.

From Fig. 1, two important observations can be made:

• Since each point in the figure represents a statistical measure (the DAMV) for noisy SVGD
after numerous iterations, our theoretical analysis predicts that as n increases, the DAMV
values for noisy SVGD should converge to the DAMV of the standard Gaussian, which is 1.
This convergence towards 1 with increasing n is indeed what we observe in the noisy SVGD
data.

• Contrasting this, SVGD shows a different behavior where its DAMV tends to zero as the
dimension increases, as discussed in [2]. Unlike SVGD, noisy SVGD does not exhibit this
variance collapsing behavior.

7 Conclusion

What does a user do? A user sets a finite value for the number n of particles and then runs the
algorithm until convergence. Therefore understanding what the algorithm converges to when n is
finite is of primary interest. In this work, we provided an understanding of the limit set L n of noisy
SVGD after a large number of iterations. We showed that this limit set is well-defined, and that it
approaches the target as n grows. We obtained various conclusions from these results. In particular,
noisy SVGD, unlike SVGD, provably avoids collapsing to some modes of the target distribution.

Our work opens the door to several questions regarding the convergence speed of noisy SVGD.
First, can we quantify the convergence of noisy SVGD to the set L n? Then, can we quantify the
convergence of the set L n to the target? Finally, how to choose the regularization parameter λ and
what is its effect on the convergence rate?

These problems, which are not covered in the literature on SVGD and its variants, would strengthen
our understanding of interacting particles systems for sampling, in a regime that matters from a
practical perspective.
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Figure 2: Dimension-averaged Marginal Variance of SVGD and noisy SVGD at convergence for
sampling from a standard Gaussian.
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B Notations

We denote by [n] the set of integers {1, . . . , n}.

We denote by ⟨·, ·⟩ and ∥ · ∥ the inner product and the corresponding norm in a Euclidean space. We
use the same notation in an infinite dimensional space.

Let d ∈ N∗. For k ∈ N∪{∞}, we denote by Ck(Rd,Rq) the set of functions which are continuously
differentiable up to the order k. We denote by Cc(Rd,R) the set of Rd → R continuous functions
with compact support. Given p ∈ N∗∪{∞}, we denote as Cpc (Rd,R) the set of compactly supported
Rd → R functions which are continuously differentiable up to the order p.

The notation f#µ stands for the pushforward of the measure µ by the map f , that is, f#µ = µ ◦ f−1.

For t ≥ 0, we define the projections πt and π[0,t] as πt : (Rd)[0,∞) → Rd, x 7→ xt, and π[0,t] :
(Rd)[0,∞) → (Rd)[0, t], x 7→ (xu : u ∈ [0, t])

Define:
P2(C) = {ρ ∈ P(C) : ∀T > 0,

∫
sup
t∈[0,T ]

∥xt∥2dρ(x) <∞} .

For every ρ, ρ′ ∈ P2(C), we define:

W2(ρ, ρ
′) =

∞∑
n=1

2−n(1 ∧W2((π[0,n])#ρ, (π[0,n])#ρ
′)) ,

where we equipped the space of the [0, n] → Rd continuous function with the uniform norm for
every n ∈ N∗. We equip P2(C) with the distance W2. By [3, Prop. 1], P2(C) is a Polish space.

For ρ ∈ P2(C), we denote
ρt := (πt)#ρ .

C Proof of Lem. 1

In this section, we let Assumptions 1 and 2 hold. Additionally, we assume λ > 0. Furthermore,
C > 0 will denote a generic and sufficiently large constant independent of k and n.

We define:
Ik,n :=

1

n

∑
i∈[n]

F (Xi,n
k ) .

We will proceeds in three steps. First, we will obtain:
Lemma 2. The following holds:

sup
k,n

E(Ik,n) <∞ .

Secondly:
Lemma 3. The following holds:

sup
k,n

E(I2k,n) <∞ .

The latter lemma gives a bound on the cross terms of the form E(F (Xi,n
k )F (Xj,n

k )) for i ̸= j. With
this at hand, we obtain:
Lemma 4. The following holds:

sup
k,n

E(F (X1,n
k )2) <∞ .

Since, F (x) ≥ c′
∥∥x2∥∥− C by Assumtion 2. By Lem. 4, Lem. 1 is proven.
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Proof of Lem. 2 By Taylor-Lagrange formula, there exists ti,nk+1 ∈ [0, 1] such that:

F (Xi,n
k+1) = F (Xi,n

k ) + ⟨∇F (Xi,n
k ), Xi,n

k+1 −Xi,n
k ⟩+

1

2

((
Xi,n
k+1 −Xi,n

k

)T
HF

(
Xi,n
k+1 + ti,nk+1

(
Xi,n
k+1 −Xi,n

k

))
(Xi,n

k+1 −Xi,n
k )

)
. (5)

We recall the iteration Eq. (3)

Xi,n
k+1 −Xi,n

k = −γk+1

n

∑
j∈[n]

(
K(Xi,n

k , Xj,n
k )∇F (Xj,n

k )−∇2K(Xi,n
k , Xj,n

k )
)

− λγk+1∇F (Xi,n
k ) +

√
2γk+1λξ

i,n
k+1 .

By Assumption 2, ∥HF (x)∥op ≤ C for every x ∈ Rd. Using Eq. (5), we obtain

F (Xi,n
k+1) ≤ F (Xi,n

k )− γk+1

n

∑
j∈[n]

⟨∇F (Xi,n
k ),∇F (Xj,n

k )⟩K(Xi,n
k , Xj,n

k )

+
γk+1

n

∑
j∈[n]

⟨∇F (Xi,n
k ),∇2K(Xi,n

k , Xj,n
k )⟩+

√
2γk+1λ⟨∇F (Xi,n

k ), ξi,nk+1⟩

+ Cγ2k+1


∥∥∥∥∥∥ 1n

∑
j∈[n]

K(Xi,n
k , Xj,n

k )∇F (Xj,n
k )

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1n
∑
j∈[n]

∇2K(Xi,n
k , Xj,n

k )

∥∥∥∥∥∥
2


− λγk+1

∥∥∥∇F (Xi,n
k )
∥∥∥2 + Cλ2γ2k+1

∥∥∥∇F (Xi,n
k )
∥∥∥2 + Cλγk+1

∥∥∥ξi,nk+1

∥∥∥2 .
Note that

1

n

∑
j∈[n]

⟨∇F (Xi,n
k ),∇2K(Xi,n

k , Xj,n
k )⟩ ≤ C

∥∥∥∇F (Xi,n
k )
∥∥∥ .

We remark that for an arbitrary Φ = (Φℓ)ℓ∈[d] ∈ H, and for every y ∈ Rd

∥Φ(y)∥2 =
∑
ℓ∈[d]

⟨Φℓ,K(·, y)⟩2H0
≤
∑
ℓ∈[d]

∥Φℓ∥2H0
∥K(·, y)∥2H0

≤ C ∥Φ∥2H .

Therefore, ∥∥∥∇2K(Xi,n
k , Xj,n

k )
∥∥∥2 ≤ C

∥∥∥∇2K(·, Xj,n
k )
∥∥∥2
H

≤ C ,

and ∥∥∥∥∥∥
∑
j∈[n]

K(Xi,n
k , Xj,n

k )∇F (Xj,n
k )

∥∥∥∥∥∥
2

≤ C

∥∥∥∥∥∥
∑
j∈[n]

K(·, Xj,n
k )∇F (Xj,n

k )

∥∥∥∥∥∥
2

H

.

Consequently, we obtain

F (Xi,n
k+1) ≤ F (Xi,n

k )− γk+1

n

∑
j∈[n]

⟨∇F (Xi,n
k ),∇F (Xj,n

k )⟩K(Xi,n
k , Xj,n

k )

+ γk+1C
∥∥∥∇F (Xi,n

k )
∥∥∥+√2γk+1λ⟨∇F (Xi,n

k ), ξi,nk+1⟩

+ Cγ2k+1


∥∥∥∥∥∥ 1n

∑
j∈[n]

K(·, Xj,n
k )∇F (Xj,n

k )

∥∥∥∥∥∥
2

H

+ 1


− λγk+1(1− Cλγk+1)

∥∥∥∇F (Xi,n
k )
∥∥∥2 + Cλγk+1

∥∥∥ξi,nk+1

∥∥∥2 . (6)
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We define Jk,n := 1
n

∑
i∈[n]

∥∥∥∇F (Xi,n
k )
∥∥∥2. Hence, we obtain

Ik+1,n ≤ Ik,n − γk+1(1− Cγk+1)

∥∥∥∥∥∥ 1n
∑
j∈[n]

K(·, Xj,n
k )∇F (Xj,n

k )

∥∥∥∥∥∥
2

H

− λγk+1(1− Cλγk+1)Jk,n + γk+1C
√
Jk,n

+
√
2γk+1λ

1

n

∑
i∈[n]

⟨∇F (Xi,n
k ), ξi,nk+1⟩+ Cλγk+1

1

n

∑
i∈[n]

∥∥∥ξi,nk+1

∥∥∥2 + Cγ2k+1 .

By Assumption 2, c′Ik,n−C ≤ Jk,n ≤ C ′Ik,n+C. Hence, for k large enough, there exist a constant
c > 0 small enough

Ik+1,n ≤ Ik,n(1− cγk+1) + Cγk+1

√
C ′Ik,n + C

+
√
2γk+1λ

1

n

∑
i∈[n]

⟨∇F (Xi,n
k ), ξi,nk+1⟩+ Cλγk+1

1

n

∑
i∈[n]

∥∥∥ξi,nk+1

∥∥∥2 + Cγk+1 . (7)

Taking the expectation in Eq. (7), we obtain by Assumption 1:

E [Ik+1,n] ≤ E [Ik,n] (1− cγk+1) + Cγk+1

√
C ′E [Ik,n] + C + Cγk+1 .

There exists a constant κ large enough satisfying

cκ ≥ C
√
C ′κ+ C + C .

Hence, as soon as there exists k large enough such that E [Ik,n] ≥ κ, we obtain E [Ik+1,n] ≤ E [Ik,n].
Consequently, since κ is independent of n, Lem. 2 is proven.

Proof of Lem. 3 Raising Eq. (7) to the square and taking the expectation, we obtain for k large
enough, the existence of a constant c̃ > 0 small enough, such that

E
[
I2k+1,n

]
≤ E

[
I2k,n

]
(1− c̃γk+1) + Cγk+1E

[
I2k,n

]3/4
+ Cγk+1E

[
I2k,n

]1/2
+ Cγ2k+1 .

As in the proof of Lem. 2, Lem. 3 is proven.

Proof of Lem. 4 By Assumption 1, the sequence (Xi,n
k )i∈[n] is exchangeable, i.e. the sequence is

invariant in law by permutation of the indices i ∈ [n]. Then, by Lem. 3, we obtain

sup
k,n

(
n− 1

n
E
[
F (X1,n

k )F (X2,n
k )

]
+

1

n
E
[
F (X1,n

k )2
])

<∞ . (8)

Going back to Eq. (6) and raising it to the square and taking the expectation, using ∥∇F (x)∥2 ≤
C(|F (x)|+ 1) and the exchangeability of (Xk,n

i )i∈[n], we obtain the existence of a constant c̃ small
enough, such that

E
[
F (X1,n

k+1)
2
]
≤ E

[
F (X1,n

k )2
]
(1− c̃γk+1)

+ Cγk+1

(
n− 1

n
E
∣∣∣⟨∇F (X1,n

k ),∇F (X2,n
k )⟩F (X1,n

k )
∣∣∣+ 1

n
E
[∥∥∥∇F (X1,n

k )
∥∥∥2 ∣∣∣F (X1,n

k )
∣∣∣])

+ Cγk+1E
[∥∥∥∇F (X1,n

k )
∥∥∥ ∣∣∣F (X1,n

k )
∣∣∣]+ Cγk+1E

[∣∣∣F (Xi,n
k )
∣∣∣]+ Cγk+1 .

(9)

In the above inequality, we didn’t write the terms in γ2k as they are dominated by the terms in γk. In
the rest of the proof, we bound the second term on the right-hand side of the above inequality. The
other terms are easier and are left to the reader. By Cauchy-Schwarz inequality, we obtain

E
[
⟨∇F (X1,n

k ),∇F (X2,n
k )⟩F (X1,n

k )
]
≤
√

E
[
F (X1,n

k )2
]√

E
[∥∥∥∇F (X1,n

k )
∥∥∥2 ∥∥∥∇F (X2,n

k )
∥∥∥2] .
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Moreover, by Assumption 2, ∥∇F (x)∥2 ≤ C ′F (x) + C, and∥∥∥∇F (X1,n
k )

∥∥∥2 ∥∥∥∇F (X2,n
k )

∥∥∥2 ≤ C ′2F (X1,n
k )F (X2,n

k ) + CC ′F (X1,n
k ) + C ′CF (X2,n

k ) + C2 .

By Eq. (8),

E
∣∣∣∣∥∥∥∇F (X1,n

k )
∥∥∥2 ∥∥∥∇F (X2,n

k )
∥∥∥2∣∣∣∣ ≤ C(1 +

√
E
[
F (X1,n

k )2
]
) .

Hence, we obtain

E
∣∣∣⟨∇F (X1,n

k ),∇F (X2,n
k )⟩F (X1,n

k )
∣∣∣ ≤ C

(
E
[
F (X1,n

k )2
]1/2

+ E
[
F (X1,n

k )2
]3/4)

.

By Eq. (8), we also obtain

1

n
E
[∥∥∥∇F (X1,n

k )
∥∥∥2 ∣∣∣F (X1,n

k )
∣∣∣] ≤ C

n
(E
[
F (X1,n

k )2
]
+ E

∣∣∣F (X1,n
k )

∣∣∣) ≤ C .

Going back to Eq. (9), we obtain

E
[
F (X1,n

k+1)
2
]
≤ E

[
F (X1,n

k )2
]
(1− c̃γk+1) + Cγk+1(E

[
F (X1,n

k )2
] 1
2
+ E

[
F (X1,n

k )2
] 3
4
+ 1) .

Hence, supk,n E
[
F (X1,n

k )2
]
<∞.

D Tightness results

We define the intensity of a random variable ν : Ω → P2(Rd), as the measure I(ν) ∈ P(Rd) that
satisfies

∀A ∈ B(Rd), I(ν)(A) := E (ν(A)) .

Lemma 5. A sequence (µn) of random variables on P2(Rd) is tight if the sequence (I(µn)) is
relatively compact in P2(Rd).

Proof. This proof is identical to the one presented in [3, Lem. 2].

D.1 Proof of Th. 1 and Prop. 1

First, we state a more general result, which is a consequence of Lem. 1.

Lemma 6. [3, Prop. 4] The collection of measure (I(mn
t ))t,n is relatively compact in P2(C).

Moreover, the collection of random variables (mn
t )t,n is tight.

Next, as the consequence of the above lemma, we obtain the proof of Prop. 1.

Proof of Prop. 1 This is given by [3, Lem. 8].

Proof of Th. 1 Remark that (π0)#mn
τk

= µnk , for every k. Hence, (π0)#I(mn
τk
). For a compact set

K ⊂ P2(C), one can obtain that (π0)#K is a compact set in P2(Rd). Consequently, since I(mn
t )t,n

is relatively compact in P2(C) by Lem. 6, (I(µnk ))k,n is relatively compact in P2(Rd). This yields
the first claim of the theorem, by Lem. 5.

Moreover,

I(µ̄nk ) =
∑
i∈[k] γiI(µni )∑

i∈[k] γi
.

Since, (I(µnk ))k,n is relatively compact in P2(Rd), the same holds for (I(µ̄nk ))k,n. The proof is left
to the reader. By Lem. 5, this finishes the proof.
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E The McKean-Vlasov measures

For every µ ∈ P2(Rd), we define L(µ) which, to every test function ϕ ∈ C2
c (Rd,R), associates the

function L(µ)(ϕ) given by

L(µ)(ϕ)(x) = ⟨
∫
(−K(x, y)∇F (y) +∇2K(x, y))dµ(y)− λ∇F (x),∇ϕ(x)⟩+ λ∆ϕ(x) . (10)

Let (Xt : t ∈ [0,∞)) be the canonical process on C. Denote by (FX
t )t≥0 the natural filtration (i.e.,

the filtration generated by {Xs : 0 ≤ s ≤ t}).

By a weak solution of the McKean-Vlasov SDE in Definition 4, we mean a solution of the martingale
problem defined hereafter. Hence, for the rest of the appendix, we will take the subsequent definition
of V2 into account.
Definition 5. We say that a measure ρ ∈ P2(C) belongs to the class V2 if, for every ϕ ∈ C2

c (Rd,R),

ϕ(Xt)−
∫ t

0

L(ρs)(ϕ)(Xs)ds

is a (FX
t )t≥0-martingale on the probability space (C,B(C), ρ).

We define the function

b(x, y) := −K(x, y)∇F (y) +∇2K(x, y)− λ∇F (x)

With a slight abuse of notation, for a measure µ ∈ P(Rd), we denote b(x, µ) :=
∫
b(x, y)dµ(y).

Therefore, L(µ)(ϕ)(x) = ⟨b(x, µ),∇ϕ(x)⟩+ λ∆ϕ(x). When b is continuous with linear growth, i.e.
∥b(x, y)∥ ≤ C(1 + ∥x∥+ ∥y∥) for every x, y ∈ Rd, the space V2 is Polish.
Lemma 7. [3, Prop. 3] Let Assumption 2 holds. V2 is closed. Consequently, the space (V2,W2) is
Polish.

In the rest of the appendix, we will use the following property when we want to obtain properties on
the space V2

Proposition 5. Let Assumption 2 holds. Let ψ ∈ C∞
c (R+ × Rd), then for every t2 ≥ t1 ≥ 0, we

obtain∫
ψ(t2, x)dρt2(x)−

∫
ψ(t1, x)dρt1(x) =

∫ t2

t1

∫
∂tψ(t, x)dρt(x)dt

+

∫ t2

t1

∫
⟨∇ψ(t, x), b(x, ρt)⟩dρt(x)dt+ λ

∫ t2

t1

∫
∆ψ(t, x)dρt(x)dt . (11)

Proof. Let ϕ ∈ C∞
c (Rd). Let ρ ∈ V2. By Def. 5, the function

t ∈ R+ 7→
∫
ϕ(x)dρt(x)−

∫ t

0

∫
L(ρs)(ϕ)(x)dρs(x)ds

is constant. Hence, the function Φ(t) :=
∫
ϕ(x)dρt(x) is absolutely continuous, with derivative

Φ′(t) =
∫
L(ρt)(ϕ)(x)dρt(x), which is bounded on compacts under Assumption 2. Let η ∈

C∞
c (R+), by an integration by parts, we obtain for every t2 > t1 ≥ 0∫ t2

t1

Φ(t)η(t)dt =

∫ t2

t1

Φ′(t)η(t) + Φ(t)η′(t)dt .

Hence, if we define ψ(t, x) := ψ(x)η(t), we obtain Eq. (11). It suffices to remark that functions of
the form (t, x) 7→ ψ(x)η(t) for every (η, ϕ) ∈ C∞

c (R+) × C∞
c (Rd) are dense in C∞

c (R+ × Rd),
and the proof is finished.

Lemma 8. Let Assumptions 2 and 3 hold. Moreover, we assume λ > 0. Let ρ ∈ V2. For every t > 0,
ρt admits a density x 7→ ϱ(t, x) ∈ C1(Rd,R). Moreover, for every R > 0, t2 > t1 > 0, there exists
a constant CR,t1,t2 > 0 such that:

inf
t∈[t1,t2],∥x∥≤R

ϱ(t, x) ≥ CR,t1,t2 , (12)
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and there exist a constant Ct1,t2 > 0, such that

sup
x∈Rd,t∈[t1,t2]

∥∇ϱ(t, x)∥+ ϱ(t, x) ≤ Ct1,t2 . (13)

Additionally,

sup
t∈[t1,t2]

∫
(1 + ∥x∥2) ∥∇ϱ(t, x)∥ dx <∞ . (14)

Finally,
sup
ρ∈K

KL(ρt1 ||π) <∞ , (15)

for every compact set K ⊂ V2.

Proof. The result is an application of [22, Th. 1.2] with the non homogeneous vector field
b̃(t, x) :=

∫
b(x, y)dρt(y). The proof consists in verifying the conditions of the latter theorem.

By Assumptions 2 and 3, for every (x, y, T ) ∈ (Rd)2 × R+,

sup
t∈[0,T ]

∥∥∥b̃(t, x)− b̃(t, y)
∥∥∥ ≤ λ ∥∇F (x)−∇F (y)∥

+ sup
t∈[0,T ]

∫
∥∇2K(x, z)−∇2K(y, z)∥ dρt(z)

+ sup
t∈[0,T ]

∫
∥∇F (z)∥ |K(x, z)−K(y, z)| dρt(z)

≤ C(∥x− y∥β ∨ ∥x− y∥) ,
Moreover,

sup
t∈[0,T ]

b̃(t, x) ≤ C(1 + ∥x∥+
∫

sup
t∈[0,T ]

∥yt∥ dρ(y)) ≤ C(1 + ∥x∥) . (16)

As λ > 0, [22, Th. 1.2] applies: ρ admits a density x 7→ ϱ(t, x) ∈ C1(Rd), for 0 < t ≤ T , and there
exists four constants (Ci,T , λi,T )i∈[2], such that:

1

C1,T td/2

∫
exp

(
−∥x− θt(y)∥2

λ1,T t

)
dρ0(y) ≤ ϱ(t, x)

ϱ(t, x) ≤ C1,T

td/2

∫
exp

(
−λ1,T

t
∥x− θt(y)∥2

)
dρ0(y)

∥∇ϱ(t, x)∥ ≤ C2,T

t(d+1)/2

∫
exp

(
−λ2,T

t
∥x− θt(y)∥2

)
dρ0(y) ,

where the map t 7→ θt(y) is a solution to the ordinary differential equation: dθt(y)dt = b̃(t, θt(y)) with
initial condition θ0(y) = y. By Grönwall’s lemma and Eq. (16), there exists a constant CT such that
∥θt(y)∥ ≤ CT ∥y∥, for every n, y, and t ≤ T . For every t1 ≤ t ≤ t2, and every x, we obtain using a
change of variables:

(C1,t2t1
d/2)−1 ≥ ϱ(t, x) ≥ C1,t2t

−d/2
2 exp

(
− 2

λ1,t2t1
∥x∥2

)∫
exp

(
− 2Ct2
λ1,t2t1

∥y∥2
)
dρ0(y)

∫
(1 + ∥x∥2) ∥∇ϱ(t, x)∥ dx

≤ C2,t2t
−(d+1)/2
1

∫
(1 + 2∥x∥2 + 2C2

t2

∫
∥y∥2dρ0(y)) exp

(
−λ2,t2t−1

2 ∥x∥2
)
dx ,

and ∥∇ϱ(t, x)∥ ≤ C2,t2t
−(d+1)/2
1 . Consequently, ρ satisfies Eq. (12), Eq. (13) and Eq. (14).

It remains to obtain Eq. (15). Let K ⊂ V2 be a compact set and let ρ ∈ K. We observe

KL(ρt1 ||π) ≤ C +

∫
|F (x)| dρt1(x) +

∫
∥log ϱ(t1, x)∥ dρt1(x) . (17)
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By Assumption 2, since (πt1)#K is a compact set in P2(Rd), we obtain

sup
ρ∈K

∫
|F (x)| dρt1(x) ≤ C sup

ρ∈K

∫
∥x∥2 dρt1(x) ≤ C sup

µ∈(πt1
)#K

∫
∥x∥2 dµ(x) <∞ .

Moreover, by the lower bound and the upper bound on ϱ,

∥log ϱ(t1, x)∥ ≤ C

(
1 + ∥x∥2 +

∫
∥y∥2 dρ0(y)

)
. (18)

Hence, we obtain

sup
ρ∈K

∫
∥log ϱ(t1, x)∥ dρt1(x) <∞ .

Finally, applying the latter results in Eq. (17), we obtain Eq. (15).

E.1 Sketch of the proof of Prop 3 using Wasserstein calculus

We give a sketch of the proof of Lyapunov using Wasserstein calculus [1]. This proof is not fully
rigorous because we would need to check th assumptions of the results from [1] that we are using. In
the next section we give a fully rigorous proof.

Consider ρ ∈ V2, i.e., the law of a weak solution (Xt)t of the McKean-Vlasov equation

dXt = −
∫

(K(Xt, y)∇F (y)−∇2K(Xt, y)) dρt(y) dt− λ∇F (Xt) dt+
√
2λ dWt.

For every t > 0, we denote by ρt the marginal of ρ. In other words, ρt is the law of Xt.

Using integration by parts, the McKean-Vlasov equation can be represented by

dXt = −Pµ∇ log
dρt
dπ

(Xt) dt− λ∇F (Xt) dt+
√
2λ dWt.

From this representation, we can derive the continuity equation satisfied by (ρt)t:
∂ρt
∂t

= ∇ · (ρtṽt),

where ṽt is the velocity field

ṽt := −Pµ∇ log
dρt
dπ

− λ∇ log
dρt
dπ

.

Using the chain rule in the Wasserstein space [1, Equation 10.1.16], we have for every functional
F : P2(Rd) → (−∞,+∞] regular enough that

d

dt
F(ρt) = ⟨∇WF(ρt), vt⟩ρt ,

where ⟨·, ·⟩ρ is the standard inner product in L2(ρ) and ∇WF(ρ) ∈ L2(ρ) is the Wasserstein gradient
of F at ρ. In the case where F(ρ) = KL(ρ||π), we have ∇WF(ρ) = ∇ log dρ

dπ , therefore

d

dt
F(ρt) =

〈
∇ log

dρ

dπ
,−Pµ∇ log

dρt
dπ

− λ∇ log
dρt
dπ

〉
ρt

= −
〈
∇ log

dρ

dπ
, Pµ∇ log

dρt
dπ

〉
ρt

− λ

〈
∇ log

dρ

dπ
,∇ log

dρt
dπ

〉
ρt

.

Finally, we use that the kernel integral operator is the adjoint of the injection [5] ιρ : H → L2(ρ). In
other words, for every f ∈ L2(ρ), g ∈ H, ⟨f, g⟩ρ = ⟨Pρf, g⟩H. Here, this property gives〈

∇ log
dρ

dπ
, Pµ∇ log

dρt
dπ

〉
ρt

=

∥∥∥∥Pµ∇ log
dµ

dπ

∥∥∥∥2
H
.

Therefore,
d

dt
F(ρt) = −

∥∥∥∥Pµ∇ log
dµ

dπ

∥∥∥∥2
H
− λ

∥∥∥∥∇ log
dµ

dπ

∥∥∥∥2
ρt

.

In other words,
d

dt
KL(ρt||π) = −Istein(ρt||π)− λI(ρt||π),

and we can conclude by integrating between t1 > 0 and t2 > 0.
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E.2 Proof of Prop. 3

In this subsection, we let Assumptions 2 and 3 hold. Moreover, we assume λ > 0.

We consider ρ ∈ V2. Moreover, we define two reels 0 < t1 < t2.

Let

vt(x) := −
∫

(K(x, y)∇F (y)−∇2K(x, y)dρt(y))− λ∇F (x)− λ∇ log ϱ(t, x) . (19)

By Prop 5, with Lem. 8, we obtain∫
ψ(t2, x)dρt2(x)−

∫
ψ(t1, x)dρt1(x)

=

∫ t2

t1

∫
∂tψ(t, x)dρt(x)dt+

∫ t2

t1

∫
⟨∇ψ(t, x), vt(x)⟩dρt(x)dt . (20)

Note that the latter quantity is well-defined, since
∫ t2
t1

∫
∥vt(x)∥ dρt(x)dt by Lem. 8. Define a smooth,

compactly supported, even function η : Rd → R+ such that
∫
η(x)dx = 1, and define ηε(x) :=

ε−dη(x/ε) for every ε > 0. For every t > 0, we introduce the density ϱε(t, ·) := ηε ∗ ρε(t, ·), and
we denote by ρεt (dx) = ϱε(t, x)dx the corresponding probability measure. Finally, we define:

vεt :=
ηε ∗ (vtϱ(t, ·))

ϱε(t, ·)
.

With these definitions at hand, it is straightforward to check that Eq. (20) holds when ρt, vt are
replaced by ρεt , v

ε
t . More specifically, we shall apply Eq. (20) using a specific smooth function

ψ = ψε,δ,R, which we will define hereafter for fixed values of δ,R > 0, yielding our main equation:∫
ψε,δ,R(t2, x)ϱε(t2, x)dx−

∫
ψε,δ,R(t1, x)ϱε(t1, x)dx =∫ t2

t1

∫
(∂tψε,δ,R(t, x) + ⟨∇ψε,δ,R(t, x), vεt (x)⟩)ϱε(t, x)dxdt . (21)

Let θ ∈ C∞
c (R,R) be a nonnegative function supported by the interval [−t1, t1] and satisfying∫

θ(t)dt = 1. For every δ ∈ (0, 1), define θδ(t) = θ(t/δ)/δ. We define ϱε,δ(·, x) := θδ ∗ ϱε(·, x).
The map t 7→ ϱε,δ(t, )̇ is well-defined on [t1, t2], non negative, and smooth in both variables t, x. In
addition, we define Fε := ηε ∗ F . Finally, we introduce a smooth function χ on Rd equal to one on
the unit ball and to zero outside the ball of radius 2, and we define χR(x) := χ(x/R). For every
(t, x) ∈ [t1, t2]× R, we define:

ψε,δ,R(t, x) := (log ϱε,δ(t, x) + Fε(x))χR(x) . (22)

We extend ψε,δ,R to a smooth compactly supported function on R+ × Rd. We define U(x, ρt) :=∫
(K(x, y)∇F (y)−∇2K(x, y)dρt(y). Applying Eq. (21) with ψε,δ,R,∫
ψε,δ,R(t2, x)dρt2(x)−

∫
ψε,δ,R(t1, x)dρt1(x)

=

∫ t2

t1

∫
(∂tψε,δ,R(t, x) + ⟨∇ψε,δ,R(t, x), vεt (x)⟩)dρεt (x)dt

=

∫ t2

t1

∫
∂tϱε,δ(t, x)

ϱε(t, x)

ϱε,δ(t, x)
χR(x)dxdt

− λ

∫ t2

t1

∫
⟨∇Fε(x) +∇ log ϱε,δ(t, x),

ηϵ ∗ (∇F (·)ϱ(t, ·))(x)
ϱε(t, x)

+∇ log ϱε(t, x)⟩χR(x)dρεt (x)dt

−
∫ t2

t1

∫
⟨∇Fε(x) +∇ log ϱε,δ(t, x),

ηϵ ∗ (U(·, ρt)ϱ(t, ·))(x)
ϱε(t, x)

⟩χR(x)dρεt (x)dt

+

∫ t2

t1

∫
(log ϱε,δ(t, x) + Fε(x))⟨∇χR(x), vεt (x)⟩dρεt (x)dt
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We define, for every t ∈ [t1, t2],

Π1(t) :=

∫
ψε,δ,R(t, x)dρ

ε
t (x),

Π2 :=

∫ t2

t1

∫
∂tϱε,δ(t, x)

ϱε(t, x)

ϱε,δ(t, x)
χR(x)dxdt,

Π3 :=

∫ t2

t1

∫
⟨∇Fε(x) +∇ log ϱε,δ(t, x), ηϵ ∗ (∇F (·)ϱ(t, ·))(x) +∇ϱε(t, x)⟩χR(x)dxdt,

Π4 :=

∫ t2

t1

∫
⟨∇Fε(x) +∇ log ϱε,δ(t, x), ηϵ ∗ (U(·, ρt)ϱ(t, ·))(x)⟩χR(x)dxdt,

Π5 :=

∫ t2

t1

∫
(log ϱε,δ(t, x) + Fε(x))⟨∇χR(x), vεt (x)⟩ϱε(t, x)dxdt .

And, it holds:
Π1(t2)−Π1(t1) = Π2 − λΠ3 −Π4 +Π5 . (23)

We now investigate successively the limit of each term in Eq. (23) as δ, ε, R successively tend to
0, 0,∞.

We state a technical result proven at the end of the subsection.

Lemma 9. For every ε, x ∈ Rd, t 7→ ρε(x, t) and t 7→ ∇ϱε(t, x) are absolute continuous functions.
Moreover,

sup
t∈[t1,t2],x∈Rd

|∂tϱε(t, x)| ≤ Cε ,

for a constant Cε > 0.

Since, by Lem. 8, the mappings t 7→ ϱε(t, x), x 7→ F (x) and x 7→ ϱ(t, x) are continuous, and by
Eq (12), we obtain

lim
R→∞

lim
ε→0

lim
δ→0

ψε,δ,R(t, x) = log ϱ(t, x) + F (x) . (24)

By Lem. 8, we obtain
ψε,δ,Rϱε(t, x) ≤ CRχR(x) ,

for a constantCR independent of δ, ε, x. Hence, we can apply the dominated convergence theorem and
we obtain limε→0 limδ→0 Π1(t) =

∫
log(ϱ(t, x) + F (x))χR(x)dρt(x). Since ρt admits moments

of order 2, we obtain

lim
R→∞

lim
ε→0

lim
δ→0

Π1(t) = KL(ρt||π)−
∫

exp(−F (x))dx ,

for every t > 0.

In the following, we will obtain the convergence of Π2. We obtain

Π2 =

∫ t2

t1

∫
∂tϱε,δ(t, x)χR(x)dxdt+

∫ t2

t1

∫
∂tϱε,δ(t, x)

(
ϱε(t, x)

ϱε,δ(t, x)
− 1

)
χR(x)dxdt .

By Lem. 9, and a convergence dominated argument, we obtain

lim
δ→0

∫ t2

t1

∫
∂tϱε,δ(t, x)

(
ϱε(t, x)

ϱε,δ(t, x)
− 1

)
χR(x)dxdt = 0 .

Moreover,∫ t2

t1

∫
∂tϱε,δ(t, x)χR(x)dxdt =

∫
ϱε,δ(t2, x)χR(x)dx−

∫
ϱε,δ(t1, x)χR(x)dx .

Since supx∈Rd,t>0 ϱ(t, x) ≤ C, we obtain the by dominated convergence theorem

lim
R→∞

lim
ε→0

lim
δ→0

∫
ϱε,δ(t2, x)χR(x)dx−

∫
ϱε,δ(t1, x)χR(x)dx =

∫
dρt2 −

∫
dρt1 = 0 .
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Hence,
lim
R→∞

lim
ε→0

lim
δ→0

Π2 = 0 .

Next, we will obtain the convergence of Π3. By Lem. 8 and 9, we obtain

lim
ε→0

lim
δ→0

Π3 =

∫ t2

t1

∫
∥∇F (x) +∇ log ϱ(t, x)∥2 χR(x)ρt(x)dt .

And by the monotone convergence theorem, we obtain the limit in R:

lim
R→∞

lim
ε→0

lim
δ→0

Π3 =

∫ t2

t1

∫
∥∇F (x) +∇ log ϱ(t, x)∥2 dρt(x)dt .

Now, we will obtain the convergence of Π4. We recall that the kernel K is bounded by Assumption 2.
First, remark that an integration by parts yields,

U(x, ρt) =

∫
K(x, y) (∇F (y) +∇ log ϱ(t, y)) dρt(y) ,

for every x ∈ Rd, which is possible by Lem. 8. Hence, taking the limit in δ, ε, we obtain

lim
ε→0

lim
δ→0

Π4

=

∫ t2

t1

∫∫
K(x, y)⟨∇F (x) +∇ log ϱ(t, x),∇F (y) +∇ log ϱ(t, y)⟩χR(x)dρt(x)dρt(y)dt .

Since, by Lem. 8, supt∈[t1,t2]

∫
∥∇ϱ(t, x)∥ dx <∞ , we obtain

sup
t∈[t1,t2]

∫
∥∇F (y) +∇ϱ(t, y)∥ dρt(y) <∞ .

Hence, taking the limit in R,

lim
R→∞

lim
ε→0

lim
δ→0

Π4

=

∫ t2

t1

∫∫
K(x, y)⟨∇F (x) +∇ log ϱ(t, x),∇F (y) +∇ log ϱ(t, y)⟩dρt(x)dρt(y)dt .

It remains to study a last term: Π5. And, we obtain by Lem. 8 and 9,

lim
ε→0

lim
δ→0

Π5 =

∫ t2

t1

∫
(log ϱ(t, x) + F (x))⟨∇χR(x), vt(x)⟩dρt(x) .

By Eq. (18) and (14),

sup
t∈[t1,t2]

∫
∥(log ϱ(t, x) + F (x))∇ϱ(t, x)∥ dx <∞ .

Now, we remark that ∥∇χR(x)∥ ≤ C
∥x∥ . Then,

sup
t∈[t1,t2],x∈Rd

∥∇χR(x)∥ ∥U(x, ρt) +∇F (x)∥ <∞.

Consequently, by the two above equations, we can apply a dominated convergence theorem:

lim
R→∞

lim
ε→0

lim
δ→0

Π5 = 0.

Going back to Eq. (23), we have shown

KL(ρt2 ||π)−KL(ρt1 ||π) = −
∫ t2

t1

Istein(ρt||π) + λI(ρt||π)dt .
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Proof of Lem. 9 Using Eq. (21) and integration by parts,

ϱε(t2, x)− ϱε(t1, x)

= −
∫ t2

t1

∫
⟨∇ηε(x− y), b(y, ρs)⟩dρs(y)ds+ λ

∫ t2

t1

∫
∆ηε(x− y)dρs(y)ds .

Since ρ ∈ P2(C), supt∈[t1,t2] ∥b(y, ρt)∥ ≤ C(1 + ∥y∥) + C
∫
supt∈[t1,t2] ∥xt∥ dρ(x). As a con-

sequence, supt∈[1,T ] ∥b(y, ρt)∥ ≤ C(1 + ∥y∥) . Along with the observation that, for any fixed ε,
∇ηε and ∆ηε are bounded, it follows that t 7→ ϱε(t, x) is Lipschitz continuous on [t1, t2], and that
its derivative almost everywhere is given by: ∂tϱε(t, x) =

∫
(⟨∇ηε(x − y), b(y, ρt)⟩ + λ∆ηε(x −

y))dρt(y). Thus, there exists a constant Cε > 0, such that:

sup
t∈[t1,t2],x∈Rd

∂tϱ
ε(t, x) ≤ Cε .

t 7→ ∇ϱε(t, x) is also absolutely continuous by the same reasoning.

E.3 Proof of Prop. 4

First, we introduce the Talagrand inequality T2.
Definition 6. The distribution π satisfies the Talagrand inequality T2, if there exists α > 0 such that
for every µ ∈ P2(Rd)

W2(µ, π) ≤
√

2

α
KL(µ||π) .

According to [25, Th. 1], LSI implies T2 with the same constant α.

In this subsection, we let Assumptions 2, 3 and Assumption 4 hold. Moreover, we assume λ > 0.

Let ρ ∈ V2. By Prop. 3 and Assumption 4, we obtain

KL(ρt2 ||π)−KL(ρt1 ||π) ≤ −2αλ

∫ t2

t1

KL(ρt||π)dt ,

for every t2 > t1 > 0. By Grönwall’s lemma, we obtain KL(ρt2 ||π) ≤ e−2αλ(t2−t1)KL(ρt1 ||π).
Using the Talagrand inequality T2, we obtain

W2(ρt2 , π) ≤
√

2

α
KL(ρt1 ||π)e−αλ(t2−t1)W2(ρt1 , π) ,

for every t2 > t1 > 0. Using Eq. (15), the proof is finished.

F Proof of convergence results

In this section, we let Assumptions 1, 2, and 3 hold. Moreover, we assume λ > 0.

First, we show the stronger ergodic convegergence result:
Proposition 6. For every sequence (φn, ψn) → (∞,∞), we obtain

lim
n→∞

P

(∑
i∈[ψn]

γiW2(µ
φn

i , π)∑
i∈[ψn]

γi
≥ ε

)
= 0 ,

for every ε > 0. The latter still holds when we replace W2(·, ·) by W2(·, ·)2.

Proof. By Lem. 1, it is straightforward to check that [3, Cor. 1] holds under Assumptions 1 and 2.
The proof consists in identifying the Birkhoff center BC2, defined hereafter.

We define the translation Θt : x ∈ C → x(t + ·). We say that a point ρ ∈ V2 is recurrent if there
exists a sequence (tn) such that limn→∞(Θtn)#ρ = ρ. The Birkhoff center BC2 is the closure of all
recurrent points.

Let Λ ⊂ V2. Let F : V2 → R be a l.s.c. function such that t 7→ F((Θt)#ρ) is strictly decreasing
when ρ /∈ Λ and constant when ρ ∈ V2. We say that a function F defined as above is a Lyapunov
function for a set Λ.
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Lemma 10. Let F be a Lyapunov function for a set Λ. Every recurrent points belongs to Λ.

Proof. The limit ℓ := limt→∞ F((Θt)#ρ) is well-defined because F((Θt)#ρ) is non increasing.
Consider a recurrent point ρ ∈ V2, say ρ = limn(Θtn)#ρ. Clearly F(ρ) ≥ F((Θtn)#ρ) ≥ ℓ.
Moreover, by lower semi-continuity of F , ℓ = limn F((Θtn)#ρ) ≥ F(ρ). Therefore, ℓ is finite, and
F(ρ) = ℓ. This implies that t 7→ F((Θt)#ρ) is constant. By definition, this in turn implies ρ ∈ Λ,
which concludes the proof.

We define the l.s.c. function Fε : ρ ∈ V2 → KL(ρε||π). By Prop. 3, this is a Lyapunov function for
the set

Λε := {ρ ∈ V2 : Istein(ρt||π) = I(ρ||π) = 0, ∀t ≥ ε a.e.} .
For µ ∈ P2(C), I(µ||π) = 0 implies µ = π, and therefore KL(µ||π) = 0. Moreover, t 7→ KL(ρt||π)
is constant for t ≥ ε. Consequently,

Λε = {ρ ∈ V2 : ρt = π, ∀t ≥ ε}.

Let ρ ∈ V2 a recurrent point, say limn→∞(Θtn)#ρ = ρ. By continuity of the projection (π0)#, we
obtain limn→∞ ρtn = ρ0 = π.

Let ρ ∈ BC2. It is a limit of recurrent points ρ satisfying ρ0 = π. Hence, still by continuity of the
mapping (π0)#, ρ0 = π. This finishes the proof of the fist claim of Prop 6.

The second claim holds by redoing [3, Prop. 1] with W2(·, ·)2 instead of W2(·, ·)2.

Next, we state a stronger convergence result.

Proposition 7. For every sequence (φn, ψn) → (∞,∞), we obtain

lim
n→∞

P
(
W2(µ

φn

ψn
, π) ≥ ε

)
= 0 ,

for every ε ≥ 0.

Proof. By Prop. 4, we obtain
lim
t→∞

sup
ρ∈K

W2(ρt, π) = 0 , (25)

for every compact K of P2(C). Recall that the collection of random variables {mn
t } is tight in

P2(C) by Lem. 6. Let (tn, φn) be a sequence such that (tn, φn) →n (∞,∞) and such that (mφn

tn )n
converges in distribution to M . To prove Cor. 7, it will be enough to show that

∀δ, ε > 0,∃T > 0, lim sup
n

P
(
W2

(
(π0)#m

φn

tn+T
, π
)
≥ δ
)
≤ ε.

This shows indeed that
W2 ((π0)#m

n
t , π)

P−−−−−−−−−→
(t,n)→(∞,∞)

0,

and by taking t = τk and by recalling that (π0)#mn
τk

= µnk , we obtain our theorem.

Fix δ and ε. By the tightness of the family of random variables {mn
t }, there exists a compact

set D ⊂ P2(C) such that P(mn
t ∈ D) ≥ 1 − ε/2 for each couple (t, n). This implies that

M(D) ≥ 1− ε/2 by the Portmanteau theorem. Since V2 is closed by Lem. 7, the set K = D ∩ V2

is compact in P2(C), and by consequence, it is compact in V2 for the trace topology. By the same
proposition, M(V2) = 1, therefore, M(K) ≥ 1− ε/2.

Since P2(C) is Polish, we can apply Skorokhod’s representation theorem [4, Th. 6.7] to the sequence
(mφn

tn ), yielding the existence of a probability space (Ω̃, F̃ , P̃), a sequence of P2(C)–valued random
variables (ρn) on Ω̃ and a P2(C)–valued random variable ρ∞ on Ω̃ such that (ρn)#P̃ = (mφn

tn )#P,
(ρ∞)#P̃ = M , and ρn → ρ∞ pointwise on Ω̃. Noting that (π0)#m

φn

tn+T
and ρnT have the same

probability distribution as P2(Rd)–valued random variables, we show that

∃T > 0, lim sup
n

P̃ (W2 (ρ
n
T , π) ≥ δ) ≤ ε, (26)
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to establish our theorem. Applying Eq. (25) to the compact K, we set T > 0 in such a way that

sup
ρ∈K

W2(ρT , π) ≤ δ/2.

By the triangular inequality, we have

W2 (ρ
n
T , π) ≤W2 (ρ

n
T , ρ

∞
T ) +W2 (ρ

∞
T , π) .

The first term at the right hand side converges to zero for each ω̃ ∈ Ω̃ by the continuity of the function
ρ 7→ ρT , thus, this convergence takes place in probability. We also know that for P̃–almost all ω̃ ∈ Ω̃,
it holds that ρ∞ ∈ V2. Thus, regarding the second term, we can write

P̃ (W2 (ρ
∞
T , π) ≥ δ) ≤ P̃ (ρ∞ ̸∈ K) + P̃ ((W2 (ρ

∞
T , π) ≥ δ) ∩ (ρ∞ ∈ K)) .

When ρ∞ ∈ K, it holds thatW2 (ρ
∞
T , π) ≤ δ/2, thus, the second term at the right hand side of the last

inequality is zero. The first term satisfies P̃ (ρ∞ ̸∈ K) = 1−M(K) ≤ ε/2, and the statement (26)
follows. Cor. 7 is proven.

F.1 Proof of Th. 2

Instead of seeing L̄ n as set of random variable on P2(Rd), we see it as a set of measures in
P(P2(Rd)). We denote such a set as L̄n.

Let ε > 0. By contradiction, there exists δ > 0, a subsequence φn → ∞ and a sequence of measures
νn ∈ L̄φn satisfying ∫

1W2(µ,π)>εdν
n(µ) ≥ δ .

As shown in the proof of Th. 1, the sequence of random variable (µ̄nk : k, n ∈ N∗) is tight. Hence,
there exists a measure ν∞ ∈ P2(Rd) such that (νn) converges to ν∞ along a subsequence. To keep
the notations simple, we say that νn → ν∞. Since, µ ∈ P2(Rd) 7→ 1W2(µ,π) is continuous bounded,
we obtain ∫

1W2(µ,π)>εdν
∞(µ) ≥ δ .

Let (ψnk )k be a sequence diverging to ∞ such that µ̄nψn
k
→k ν

n, for every n ∈ N∗.

Let ε′ > 0, there exists n0 such that,∣∣∣∣∫ 1W2(µ,π)>εdν
∞(µ)−

∫
1W2(µ,π)>εdν

n0(µ)

∣∣∣∣ ≤ ε′

2
.

Moreover, there exists k0 such that∣∣∣∣P(W2(µ̄
n0

ψ
n0
k0

, π) > ε)−
∫
1W2(µ,π)>εdν

n0(µ)

∣∣∣∣ ≤ ε′

2
.

Consequently, there exists a subsequence (φ̃n, ψ̃n) → (∞,∞) such that

lim
n→∞

P(W2(µ̄
φ̃n

ψ̃n
, π) ≥ ε) =

∫
1W2(µ,π)>εdν

∞(µ) ≥ δ .

By Jensen’s inequality, we obtain

W2(µ̄
φ̃n

ψ̃n
, π)2 ≤

∑
k∈[ψ̃n]

γkW2(µ
φ̃n

k , π)2∑
k∈[ψ̃n]

γk
.

Consequently,

lim
n→∞

P

(∑
k∈[ψ̃n]

γkW2(µ
φ̃n

k , π)2∑
k∈[ψ̃n]

γk
≥ ε2

)
≥ δ .

The latter contradicts the second claim of Prop. 6. Thus, the proof is finished.
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F.2 Proof of Th. 3

This is the same proof as Th. 2. But this time, we use Prop. 7.

F.3 Proof of Cor. 1

By contradiction, assume that there exists δ > 0 and a subsequence φn, such that for every n,
lim supk→∞ P(W2(µ̄

φn

k , π) ≥ ε) > δ. Assume φn = n to simplify the notations. For any n, this
implies that one can extract a subsequence, say (ψnk : k ∈ N), such that for every k, P(W2(µ̄

n
ψn

k
, π) ≥

ε) > δ/2. By Th. 1, the sequence (µ̄nψn
k
: k ∈ N) is tight, so that there exists νn ∈ L̄ n, such that

µ̄nψn
k

converges in distribution to νn as k → ∞, along some subsequence which we still denote by
ψnk to keep the notations simple. By the Portmanteau theorem,

lim sup
k→∞

P(W2(µ̄
n
ψn

k
, π) ≥ ε) ≤ P(W2(ν

n, π) ≥ ε) . (27)

By Th. 2, νn converges in probability to π in P2(Rd) as n→ ∞. Therefore, P(W2(ν
n, π) ≥ ε) <

δ/3 for all n large enough. Using Eq. (27), it follows that P(W2(µ̄
n
ψn

k
, π) ≥ ε) < δ/2 along some

subsequence, hence a contradiction. This proves the first point. The second point follows the same
arguments.
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