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Abstract

We investigate the impact of dataset-specific hyperparameter, feature en-
coding, and architecture tuning on five recent model families for tabular
data generation through an extensive benchmark on 16 datasets. This study
addresses the practical need for a unified evaluation of models that fully
considers hyperparameter optimization. Additionally, we propose a reduced
search space for each model that allows for quick optimization, achieving
nearly equivalent performance at a significantly lower cost.

Our benchmark demonstrates that, for most models, large-scale dataset-
specific tuning substantially improves performance compared to the original
configurations. Furthermore, we confirm that diffusion-based models gener-
ally outperform other models on tabular data. However, this advantage is
not significant when the entire tuning and training process is restricted to
the same GPU budget for all models.

Keywords: Tabular data generation, Generative Models, Evaluation
Metrics, Deep Learning, Hyperparameter Tuning, Neural Architecture
Search

1. Introduction

The capability to develop generative models that generate realistic, safe,
and useful tabular data is crucial for industries where this type of data is
most prevalent. Among the direct applications of tabular data generation
we can cite data privacy, imputation, oversampling, explainability or sim-
ulation [1, 2]. Another significant application of generative models is their
ability to learn data representations that are valuable for pre-training and
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fine-tuning for various downstream tasks [3, 4, 5]. However, generating high-
quality tabular data presents several specific technical challenges that are
not encountered with text or images [6]. First, tabular columns are en-
coded through heterogeneous data types with distributions that are often
non-smooth with mixed (continuous/discrete) behaviours and various modal-
ities. There can also be complex dependencies between columns, and the
categorical features are often highly imbalanced. Finally, the wide variety
of problems represented in tabular form makes it challenging to establish a
universal data encoding and architecture suitable for pre-training across all
scenarios.

To handle these challenges, many models have been proposed in the lit-
erature, spanning over very diverse approaches that can be probabilistic,
gan-based, diffusion-based, or llm-based. These models are often evaluated
on different datasets with inconsistent metrics, tuning and training budgets.
Yet, the performance of the allegedly best tabular generation models pub-
lished seem very unstable from one dataset to another: these models seem
quite sensitive to the feature-encodings and hyperparameter-choices made by
the authors.

The main purpose of this work is to study the impact of dataset-specific
preprocessing and hyperparameter tuning on tabular data generation models.
For each model we want to answer the following questions: (i) is it worth
optimizing the hyperparameters/preprocessing specifically for each dataset?
(ii) can we propose a reduced search space that fits well for all datasets?
(iii) is there a clear trade-off between training/sampling costs, and synthetic
data quality? Another goal of this work is to address the practical need
for a unified model evaluation that explicitly incorporates hyperparameter
optimization

We hence benchmarked 5 model families that are representative of the
recent literature on 16 datasets with a strict 3-fold cross-validation proce-
dure. The datasets were chosen based on their size, purpose and diversity.
For each fold and dataset, we optimized the model’s hyperparameters, fea-
ture encoding, and architecture through hundreds of trials. We conducted
two benchmarks: the first involved a large-scale, nearly unconstrained opti-
mization, while the second employed a rapid optimization within a reduced
search space, all within an equal compute budget. This work extends surveys
like [2, 7] by covering recent diffusion-based models [8, 9] and by providing
a larger scale benchmark.

As detailed in section 3.1, we consider multiple facets of the tabular data
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generation problem. The key target of our study is the realism of data that
we mainly assess through the Classifier two-Sample Test (c2st), a metric
which quantifies the ability of a classifier to discriminate real from synthetic
data [10, 11]. We also consider other metrics such as, the Machine Learning
Efficacy (ml-efficacy) for utility, and the Distance to Closest Record Rate
(dcr-rate) for anonymity. We also measure or estimate the cost and car-
bon footprint at three stages: training (i.e. gradient descent), tuning, and
sampling.

In Section 4, we analyze the results of these benchmarks and derive some
intriguing insights about the models. For example, our experiments indicate
that while diffusion-based models like tabsyn and tabddpm [9] generally
outperform other models when left unconstrained, they do not significantly
surpass their simpler counterparts when tuning and training budgets are
limited. This is because models without Transformers have a smaller memory
footprint, allowing for more thorough optimization within the same GPU
budget.

In Section 2.1, we quickly review the state-of-the-art with a particular fo-
cus on the competitors that were compared in our benchmarks. This review
categorizes approaches as non-neural (e.g. smote [12]), non-iterative neural
models [11] (e.g. vae and gans), and finally, the most recent iterative gener-
ative models: diffusion [9] (e.g. tabddpm and tabsyn) and auto-regressive
ones (e.g. great [13]). Section 3 presents the datasets and the evaluation
metrics. Section 4 and Section 5 present respectively the large-scale and
limited-budget benchmark results. We conclude in Section 6.

2. Benchmark Challengers

Tabular data generation is a booming research field which gives birth
every month to a host of new data synthesis algorithms. In this section we
quickly survey the existing families of tabular data generation methods with
a specific focus on the models that we selected for our study. This includes
models already covered in [2] and [7] as well as more recent diffusion-based
models and llm-based ones [14]. We chose models known for their strong
performance, widespread usage, and availability of code that can be easily
adapted for both architecture and hyperparameter tuning.
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2.1. Tabular Data Generation Model’s Overview

Among the neural approaches for tabular data generation, we make a
distinction between the “push-forward” models which directly map noise into
data, and the iterative models which require a decoding phase. We also
consider a few non-neural approaches as baselines.

2.1.1. Non-iterative Neural Approaches

The most popular non-iterative or “push-forward” neural networks for
tabular data generation are Variational Auto-Encoders (vae) [15] and Gen-
erative Adversarial Networks (gan) [16]. A few papers also consider self-
normalizing flows [17]. One of the simplest vae architecture for tabular data
is tvae [18]. In its original implementation [19], it consists of a one-hot
encoding for categorical variables coupled with a Gaussian Mixture Model
normalization scheme (gmm) for continuous features. The encoder/decoder
architecture is a simple stack of linear layers. Several variants have been
proposed to improve from this baseline. In [20] the gmm normalization is
replaced by a two-step training that first fits the marginals then fits the
inter-dependencies. In [21, 11], several normalization schemes were tested as
a replacement for the gmm normalization. Other variants of vae use dif-
ferentiable oblivious trees to ensure privacy [22]. In [23] the vae is coupled
with a Graph Neural Network (GNN). For our benchmark, we followed [11]
and used a customized version of tvae which allows for an optimized choice
of the architecture and of the feature encoder.

The most popular method to generate tabular data is certainly adversarial
training [24, 25, 26, 27, 28, 18, 29, 21, 30, 7, 31]. It would not be exaggerated
to affirm that every exotic variant of gans has been tested on tabular data
generation, but the most successful architectures seem to be the ones based
on Wasserstein gans [32] such as ctgan [18]. ctgan is the base architecture
that we selected for our benchmark. As mentioned in [21, 11], the feature
encoding scheme is critical, especially for numerical features. For this reason
we customized the ctgan code as we did for tvae, to allow for a choice of
architecture and feature encoders.

2.2. Iterative models

It has been shown that iterative generative models (either auto-regressive
or by diffusion) almost systematically outperform push forward models when
it comes to raw text, sound, or image generation [33]. We confirm here that
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tabular data do not escape this rule. However, this performance comes with
a cost: the decoding phase is often slow and highly energy consuming.

2.2.1. Auto-regressive Language Models

After the recent breakthrough of large language models (llm) [34], the
usage of token-based language models to generate tabular data seems in-
evitable. Their main advantage against prior ad-hoc models is that they
come without specific feature encodings for numerical or categorical columns:
these values are directly fed to the model as raw sequences of tokens. Even
if there is no clear agreement yet on how tabular instances should be se-
rialized for llms, this general encoding ability opens the possibility for a
pretraining/finetuning paradigm on heterogeneous tabular datasets [3, 5].

In a recent preprint survey [14], the authors tried to map the exuberant
flow of preprint papers on tabular data and llms. Several of these preprints
present only prompt engineering tricks that generate small tables, nonetheless
some of the proposed models seem promising at a larger scale. To name a few
of them, great [13] (for ”Generation of Realistic Tabular data”) proposes
to fine-tunes gpt-2 [35] for tabular data generation. realtabformer [36]
extends great to multiple tables with shared indexes, and taptap [5] ex-
periments a pretraining of great on 450 open tabular datasets.

We made a few experiments with great and its variants and confirmed
the remarks of [9, 37], which state that they struggle to capture the joint
probability distribution on datasets where the categorical values names do
not carry semantic information. Given the prohibitive computational cost
of llms, the large number of hyperparameters and serialization schemes to
consider, as well as the problematic fact that some datasets are already cov-
ered (i.e. used in the training data) by the foundation models training sets,
we decided to postpone their evaluation for a future work.

2.2.2. Diffusion models

Another recent impressing breakthrough in generative modeling, espe-
cially in image generation, was the apparition of diffusion models [38, 39, 40,
41, 42]. The transposition of these models to tabular data gave rise to pow-
erful synthesizers: tablediffusion [43], stasy [44], codi [45], and tabddpm
[8]. In tabsyn [9], a more recent proposal, the authors transposed the idea
of [46, 47] to make use of a transformer-based vae in order to embed the
diffusion in a latent space. We selected both tabddpm and tabsyn for our
benchmark.
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2.2.3. Non-neural baselines

The most common statistical approaches are based on copulas and Prob-
abilistic Graphical Models (pgms). Copulas [48] are functions that join or
“couple” multivariate distribution functions to their one-dimensional marginals.
They have been widely adopted for tabular data generation because they al-
low modeling the marginals and the feature inter-dependencies separately [19,
49, 50, 51, 52]. Nevertheless, parametric copulas have been shown to perform
poorly on high-dimension data synthesis problems [18, 11].

On the other hand pgms can model variable dependencies in high-dimension
spaces [53, 54, 7, 55, 56, 57]. This approach has been shown to be quite ef-
ficient in the data privacy community [58, 59, 60, 37]. However, it often
requires a prior knowledge on the dependency graph because graph inference
from data is inefficient in high dimension, especially if the sample size is
small [61].

The fact that ensembles of trees remain state of the art for predictive tasks
on tabular data [6] motivated some interesting attempts to mimic the neural
generative approaches with decision trees. It gave rise to adversarial forests
[31], forest-fow, and forest-vp (a variance-preserving diffusion algorithm)
[62]. We tested forest-vp but we encountered a severe scalability issue:
contrary to neural diffusion models where the noise level is combined with
input as an auxiliary variable, the forest-vp algorithm trains a different
ensemble of trees for each level of noise.

Another simple, but quite efficient way to generate new tabular data is to
interpolate between existing instances. This geometric “nearest neighbors”
approach called Synthetic Minority Over-sampling Technique (smote) [12,
63, 64] is frequently used to resample instances before training predictive
models on unbalanced datasets. It proceeds by picking a random instance
with a fixed target value and finding its k nearest neighbors. New data points
are then generated by interpolation between these neighbors. Although very
simple, this model is a solid baseline for tabular data generation as shown in
[8]. As explained in section 3.2.1, we considered two variants: smote and
ucsmote (for unconditional smote).

2.3. Selected challengers

We finally selected five families for our benchmark, four of them neural:
tvae, ctgan, tabddpm, and tabsyn and one non-neural: smote (with its
variant ucsmote). As developed in Section 3, for each of these algorithms we
had to delve into the code in order to enable a large scale hyperparameters,
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features encoding, and architecture optimization. In order to calibrate the
metrics, we also reported the trivial baseline which consists in resampling
directly the train set. It appears as “Train Copy” in result tables.

3. Experimental Settings

In this section, we first present the various evaluation metrics that we
report from our experiments. We then present the optimization framework
that we developed and we discuss the choices made to wrap the different
challengers into this framework. We finally present the different datasets.

3.1. Evaluation Metrics

Our purpose is to assess the quality of tabular data generation though
multiple facets. These facets can be summarized with four questions: (i) is
synthetic data realistic? does it respect the original distribution’s traits?
(ii) is it useful? i.e. can it be used to train machine learning models? (iii) do
synthesis preserve training data anonymity? does it overfit? (iv) what are
the model’s costs and co2 impacts? Each of these questions is related to
specific metrics.

The first and most important question is the realism of the generated data.
We rely on Classifier Two Sample Test1 (c2st) [10] as a primary metric
to address it. This metric is also the one that we used for hyperparameter
optimization. It evaluates the performance of a classifier at discerning real
data from synthetic data2. To compute c2st we use the same protocol as
in [11] where the computed value is the mean roc-auc of xgboost [65] over
three folds. A c2st around 1/2 means that xgboost is unable to discern
the test set from the generated set. A high c2st means on the contrary
that xgboost is able to detect easily the fake data. The c2st calculation
procedure is summarized in Figure 1.

We also consider two other statistical metrics for data realism: column-
wise similarity and pair-wise correlation. To compute these metrics we used
the sdmetrics library [19]. The column-wise similarity measures how ac-
curately the synthetic data captures the shape of each column distribution

1Also mentioned as Detection test in SDMetrics https://docs.sdv.dev/sdmetrics
2This is similar to what is done in GANs but with a fresh dataset. An overfitted GAN

can indeed have a poor c2st on test set.
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Figure 1: c2st Metric calculation.

individually. It is reported as ”Shape” in the result tables. Pair-wise corre-
lation on the other hand captures how each column varies with each other.
Pair-wise correlation is reported as ”Pair” in the result tables. A naive gen-
erator that would assume independence of the columns might have a high
”Shape” score but it would have a low ”Pair” score.

The second important question is the utility of generated data. It is commonly
measured by ml-Efficacy which evaluates the performance of a predictive
model trained on synthetic data. To compute ml-Efficacy we use the same
protocol as in [8] where CatBoost [66] is used as a predictor. We report the F1
score for classification tasks and the normalized R2 score for regression tasks.
The procedure is summarized in Figure 2. It is important to evaluate the
degradation of these scores against the ones obtained when training directly
on real data (via Train Copy): a large degradation means a low utility.

Figure 2: ml-Efficacy Metric calculation.

The third question is anonymity. We want to make sure that our generative
model will not leak sensitive information by recopying or over-fitting the
training instances. To do so we measure respectively the minimum distances
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of each generated instance to the train and test sets. The Distance to Closest
Record Rate (dcr-rate) counts the proportion of generated instances that
are closer to train set than test set [67]. The procedure is summarized in
Figure 3.

A synthetic dataset is considered safe if it has a dcr-rate that is close to
1/2. On the other hand, a plain copy of the train set, as Train Copy baseline
does, would have a dcr-rate of 1. This metric does not guarantee against all
privacy breaches, but it provides a reasonable safeguard and ranking criterion
for the models. It is also informative about overfitting, as an overfitted model
would have samples that are systematically closer to the train set than a
model with more generalization capabilities.

Figure 3: dcr-rate Metric calculation.

The fourth question is the models’ costs and their carbon impacts. It requires
an accurate estimate of three cost values: time, energy consumption, and
CO2 impact. Ideally, these values should be estimated for the three phases of
(i) training (gradient descent) (ii) sampling, and (iii) hyperparameters search.
For each dataset, each fold and each optimized model architecture, we ran
the training and sampling phases on the exact same hardware and software
architecture, a single Tesla v100 32 gb, and we measured accurately the cost
values with the CodeCarbon library3. However, due to the massive nature of
the experiments, we could not perform the whole hyperparameter search and
training phases on such a uniform hardware and software architecture. We
hence estimated the global search costs from the tuning logs by rescaling the
training cost measures according to the effective number of steps performed

3https://codecarbon.io/
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Figure 4: Hyperparameters trial optimization loop.

and the number of gpu used (c.f. equation (1)).

total-gpu-cost ≃
∑

t∈trials

init-costt + avg-cost-per-step× num-stepst
trials-per-gpu

(1)

This is slightly overestimated since: (i) CodeCarbon assumes a 100% gpus
load while ours was roughly around 95%; and (ii) we measured the step
costs on already optimized models which are usually slower because they
often count more layers and parameters. Note that the number of trials that
can be parallelized on a single gpu depends on the memory footprint of the
model4.

3.2. Large Scale Optimization Framework and Implementation details

Providing a fair and reliable comparison of the different tabular gener-
ative models is a tough technical challenge. For this reason most existing
benchmarks like [13, 9] only report the performance of models with their
default hyperparameters. A few benchmarks like [8, 37] perform hyperpa-
rameters search for all models, but with a simple train/validation/test split,
a reduced search space, and a small number of trials (usually from 20 to 50).

We wanted our experiment to be more extensive and more robust, so
we decided to deploy it at a large scale on a super-computer equipped with

4For instance we could safely run 10 tvae trials on the same v100 gpu while only 4
TabSyn’s trials could fit because of the vae transformer’s footprint.
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several nodes with 4 gpus v100 32gb each5.
For this purpose, we used the Ray tune library [68] coupled with Hyperopt

[69] and a median elimination scheduler [70] to optimize hyperparameters
and architecture efficiently. Depending on the model’s memory footprints,
each gpu could host from four to twelve concurrent tuning trials. For each
dataset and each model we performed a strict 3-fold cross validation, which
means that for each tuple (dataset, fold, model) we performed an extensive
hyperparameters search with 300 trials (except for tabsyn where we reduced
this number to 100 for technical reasons explained in Section 3.2.2). We
hence obtained a different optimized architecture for each (dataset, fold,
model) tuple.

In [8] the parameters were optimized for ML-efficacy, in [37] the parame-
ters were optimized for an equal combination of realism, utility and privacy.
We chose to optimize for realism as in [11] through XGBoost-based c2st
metric (c.f. Section 3.1). To obtain reliable evaluations with variance esti-
mates, for each dataset we evaluated the models by averaging all the metrics
on the three folds test sets with five synthetic samples for each fold.

As described in Figure 4, in order to work with our framework each algo-
rithm has to be wrapped into a generic Synthesizer class that provides three
methods: prepare fit which prepares the dataset and the model according
to the hyperparameters, train step which performs a training step roughly
equivalent to one or a few epochs, and sample which generates synthetic data.
After each train step, the model trial was evaluated and it was canceled out
by early stopping or by the ray-tune scheduler if it performed too poorly or
if the time budget was depleted.

3.2.1. The importance of feature encoding

Table 1 presents the encoding schemes that we used for the different
benchmark challengers. As pointed out in [6, 21, 11], categorical variables
are not the main weakness of neural networks but numerical feature encoding
is critical. Most recent neural models use a Quantile-based numerical feature
encoding and seem to work well with it. However, the original versions of
tvae and ctgan rely on a specific Cluster-Based normalization [18]. We
hence explored several encoding policies for these two models through hyper-

5Complementary experiments were also performed on a workstation with two rtx
4090.
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parameters optimization (see Tables A.6 and A.7 in the appendix section).

Model Num. Encoder Cat. Encoder Num. Target
tvae base Cluster-Based 6 One hot -
ctgan base Cluster-Based6 One hot -

tvae Optimized One hot -
ctgan Optimized One hot -

tabddpm Quantile One Hot Standardize
tabsyn Quantile Embedding -
smote - One hot Median cut
ucsmote - One hot Dummy

Table 1: Encoding schemes applied to the benchmark challengers during data
preprocessing. We experimented with various encoding schemes on tvae and
ctgan during hyperparameter search.

We kept the native Cluster-Based6 encoder as described in [18], along with
the ones proposed in [11], namely: prototype encoding (ptp) [11], piece-wise
linear encoder (ple) [71], continuously distributed residuals (cdf) [72, 11],
hybrid (ple cdf) [11]. We also added some standard scikit-learn transform-
ers: MinMaxScaler and QuantileTransformer.

Contrary to QuantileTransformer which maps values deterministically,
the cdf encoding uses randomization to produce continuously distributed
residuals even when the original distribution is discrete or partially discrete
[72]. The ple encoder [71] performs a feature binning and normalizes each
numerical value depending on the bin it belongs to. The ple cdf applies
a cdf to the output of a ple encoding. The ptp encoding, inspired by
prototypical networks [73], encodes the input as a weighted average of fixed
prototypes.

3.2.2. Model-specific implementation details

Wrapping heterogeneous models within a Synthesizer class required some
implementation choices from our part, and despite all our efforts to keep a
fair comparison, these choices had some impact on the compute time and
performance of the models.

6https://docs.sdv.dev/rdt/transformers-glossary/numerical/clusterbasednormalizer
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The first issue is the discrepancy of the training step’s costs. The usual
training step unit for most models is the epoch which corresponds to a sin-
gle pass on all instances of the training set. However, depending on the
hyperparameters some models like ctgan perform both one pass through
the generator and several passes through the discriminator at each training
step. Other models such as tabddpm are randomized and require several
quick passes (almost one for each level of noise) for each instance. We hence
had to caliber our wrapper’s train step functions to perform a compute effort
that is roughly equivalent to an epoch.

Another issue is the fact that tabsyn [9] combines two models and was
not designed for hyperparameters tuning. According to the authors the
model does not need hyperparameters tuning7. We decided to train a new
transformer-based vae for each trial because it hosts most of the parameters,
compute-time and hyperparameters of tabsyn. Training a diffusion model
on an unstable latent space would not be meaningful. We thus considered
three technical options: (i) optimize first the vae on a proxy metric (for
instance the ability of its decoder to generate realistic data from a standard
Gaussian), then optimize the denoiser in the latent space; (ii) wrap the vae
training steps into the train step function and retrain a new denoiser from
scratch at each step; (iii) wrap the vae training phase into the prepare fit
function and loose the ability to prune its training steps. The first option
is the cheapest and it is probably recommended for most practical applica-
tions, but it may be sub-optimal due to the proxy metric. The second option
is extremely costly. We hence opted for the third option although it had a
non-negligible cost. Indeed, we followed the recommendation of [9] to train
the vae through 4000 epochs which turns out to be huge knowing that most
other models only utilized 400 epochs in our benchmark.

We also reduced the number of parallel trials per gpu because of the large
memory footprint of the vae’s transformers. As a consequence, for tabsyn
we had both to reduce the number of trials to 100, and to work on a sample
of the largest dataset (Covertype) to get the results in a reasonable amount of
time. It is worth noting that despite these handicaps, the optimized tabsyn
remained better than its non-optimized version. To avoid this experimental

7Our experiment show however (c.f. Section 4), that even if the non-optimized tabsyn
is quite good on most datasets, the hyperparameter tuning clearly improves the quality of
the data it generates.
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bias for the second experiment in Section 5.2, we constrained tabsyn’s vae
to use only 10 minutes for training. On Adult dataset, for instance, it resulted
in roughly 560 epochs.

Finally, the last issue was the different ways the models deal with the
target columns. A model conditioned on the target column may improve its
ML-efficacy. tabddpm and smote implementations are natively conditioned
on classification targets, while tvae, ctgan and tabsyn are not.

We did not modify tabddpm, but we considered two variants in our
experiment for smote: the first, that we call smote, follows the design of
[8], it uses the train target distribution for classification datasets and a rough
median split for regression targets (see Table 1). The second, that we call
ucsmote (for unconditional smote), adds a dummy target filled with zeros
to the data before calling the smote oversampling library. By doing so, all
columns, including the original target, are considered equally.

3.3. Datasets

To evaluate the models, we picked datasets with various characteristics
to assess their performances under different scenarios. The experiments were
done with a 3-fold cross-validation procedure. Datasets were chosen in order
to cover various sizes and dimensions, different types of tasks (regression,
binary, and multi-class classification), various types of features (numerical,
categorical, or mixed). We also added Moons a well known scikitlearn syn-
thetic dataset. The complete list of datasets and their characteristics is
presented in Table 2.

8https://www.openml.org
9https://www.kaggle.com/datasets
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Name Train Validation Test Num Categ. Task

Abalone8 2088 696 1393 7 2 Binclass
Adult8 24420 8141 16281 6 9 Binclass

Bank Marketing8 22605 7535 15071 7 10 Regression
Black Friday8 83410 27804 55607 6 4 Regression
Bike Sharing8 8689 2897 5793 9 4 Regression
Covertype8 290505 96836 193671 10 45 Multiclass
Cardio9 34999 11667 23334 11 1 Binclass

Churn Modelling9 4999 1667 3334 8 4 Binclass
Diamonds8 26970 8990 17980 7 3 Regression
HELOC9 5229 1743 3487 23 1 Binclass
Higgs8 49024 16342 32684 28 1 Binclass

House 16H8 11391 3798 7595 17 0 Regression
Insurance9 669 223 446 4 3 Regression

King9 10806 3602 7205 19 1 Regression
MiniBooNE8 65031 21678 43355 50 1 Binclass
Two Moons 19999 6667 13334 2 1 Binclass

Table 2: List of datasets. Direct links to exact versions of datasets used can be
found in Appendix B. The Covertype dataset size was reduced for tabsyn tuning
as follows: 27500 in the training set, 18333 in the validation set, and 9167 in the
test set.

4. Extensive Experiment Results

As mentioned in Section 3.1, the evaluation and comparison of tabu-
lar generative models is based mainly on four criteria: realism, usefulness,
anonymity, and cost. After a global multi-criteria overview of the results,
we study and compare the model’s behaviour according to each criterion
individually.

4.1. Multi-criteria Overview

Figure 5 shows the average ranking over all datasets and folds of seven
model variants over eight metrics (c.f. Section 3.1). To complete these rank-
ings, Table 3 and Table 4 summarize respectively the quality metric and cost
distributions among all datasets and folds. Recall that the best scores for
the c2st are around 0.50 (as it means poor auc for the classifier at telling
synthetic data apart from holdout data).

Overall, no model provides the best performance over all considered cri-
teria. We observe, as expected, a strong correlation between energy and
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Figure 5: Radar chart of the extensive experiment showing optimized model’s
average ranking on all datasets according to c2st, dcr-rate, ml-Efficacy, column-
wise similarity (‘Shape”), pair-wise correlation (“Pair”), training and sampling
time and energy costs. For all models except ”tabsyn base”, which refers to the
model using its default hyperparameters, the training costs include both tuning
and gradient descent.

gpu time as well as a strong correlation among “quality metrics” (i.e. c2st,
Shape, and Pair). On the one hand, the diffusion models achieve the best per-
formance in terms of quality metrics, especially the tuned version of tabsyn.
As shown in Table 3, this model has a median c2st value of 0.64. However,
tabsyn is also one of the most expensive models in term of training costs
(Train-Energy as well as Train and Sample Times), as it requires to train
both a transformer-based vae and a denoiser model for each dataset.

On the other hand, the smote baselines obtain the poorest quality and
privacy ranking with a high dcr-rate. The median dcr-rate score for
smote and ucsmote is at 0.97 which means that most of the samples from
these models are very similar to the training set. However, they achieve
strong utility in terms of ml-Efficacy with quartiles very close to Train Copy
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and the same median value of 0.73. As expected for neighborhood-based
algorithms, their training cost is negligible, but their deployment requires a
neighborhood search which can be costly on large datasets. Finally the tuned
neural push-forward models (ctgan and tvae) achieve mitigated results in
term of both quality and utility but their deployment is clearly the cheapest.
We also note that all neural models achieve reasonable results in term of
privacy preservation. Although tabddpm is clearly the slowest algorithm for
deployment, it is fast at training and it obtains homogeneous results over all
other metrics. We note that the tuned version of tabddpm is performing
better than the base version of tabsyn.

For this extensive experiment we only limited mildly the time budget
and the number of epochs. However, some models like tabsyn and ctgan
consumed much more gpu time than others, especially tabddpm which was
very quick at performing an equivalent number of epochs (c.f. Section 3.2.2).
It is also important to compare these algorithms with a fair allocation of gpu
resource as we do in Section 5.

4.2. Detailed Analysis

In this section we study and compare the model’s behaviour according
to each criterion taken individually. For each dataset we computed the per-
formance metrics over 3 folds and 5 synthetic samples per fold to provide a
stable central tendency and dispersion estimate. The full dataset-level results
are provided in Appendix Table C.12. We summarize these results among all
datasets and folds in Table 3 and Table 4. For quality metrics we compare
the models through critical difference diagrams.

4.2.1. Are synthetic data realistic ?

We show in Figure 6 the critical difference diagrams [74] of all tuned
models respectively for c2st, pair-wise correlation and column-wise similar-
ity. These diagrams were obtained by aggregating the ranks of the seven
models over all datasets and folds. A thick horizontal line groups the set
of models for which the pairwise “no significant difference” test hypothesis
could not be rejected.

If we except the trivial Train Copy policy which is by construction the
most realistic generator, we note that tabsyn is significantly better in terms
of c2st than all other models except tabddpm. On the other side, the
smote baselines are significantly worse than tabddpm and tabsyn. The
absolute c2st values in Table 3 corroborate these ranking results with three
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Model Percentiles C2ST ↓ DCR-R ↓ ML-EF ↑ Shape ↑ Pair ↑

Train Copy

75% 0.50 1.00 0.90 0.99 0.99
50% 0.50 1.00 0.73 0.99 0.98
25% 0.50 1.00 0.63 0.99 0.91

TVAE

75% 0.88 0.65 0.79 0.96 0.95
50% 0.81 0.63 0.71 0.95 0.92
25% 0.74 0.61 0.50 0.94 0.85

TVAE base

75% 1.00 0.62 0.70 0.92 0.90
50% 0.98 0.61 0.65 0.91 0.80
25% 0.96 0.60 0.44 0.87 0.74

CTGAN

75% 0.90 0.64 0.71 0.98 0.96
50% 0.83 0.63 0.69 0.97 0.91
25% 0.71 0.61 0.47 0.96 0.85

CTGAN base

75% 1.00 0.62 0.63 0.92 0.93
50% 0.99 0.60 0.47 0.88 0.83
25% 0.93 0.60 0.30 0.87 0.76

TabDDPM

75% 0.78 0.64 0.80 0.98 0.98
50% 0.67 0.62 0.69 0.98 0.93
25% 0.63 0.61 0.58 0.95 0.84

TabDDPM base

75% 0.86 0.64 0.75 0.99 0.96
50% 0.77 0.62 0.68 0.98 0.92
25% 0.65 0.61 0.44 0.94 0.74

TabSyn

75% 0.80 0.63 0.76 0.99 0.97
50% 0.64 0.62 0.68 0.97 0.93
25% 0.59 0.61 0.46 0.96 0.74

TabSyn base

75% 0.86 0.64 0.75 0.98 0.97
50% 0.71 0.62 0.57 0.97 0.95
25% 0.63 0.61 0.29 0.95 0.88

SMOTE

75% 0.97 0.98 0.86 0.97 0.99
50% 0.90 0.97 0.73 0.95 0.95
25% 0.80 0.86 0.60 0.93 0.85

UC-SMOTE

75% 0.95 0.98 0.87 0.97 0.98
50% 0.88 0.97 0.73 0.95 0.95
25% 0.81 0.91 0.59 0.93 0.87

Table 3: Summary results from the extensive experiment and the base models
(using default hyperparameters). We provide performance dispersion at the 25th,
50th, and 75th percentiles over all datasets and folds. To save space, we respec-
tively shortened dcr-rate to dcr-r and ml-efficacy to ml-ef.
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(a) C2ST

(b) Column-wise shape similarity

(c) Pair-wise correlation

Figure 6: Models ranking with critical difference diagrams respectively for c2st,
pair-wise correlations, and column-wise shape similarity metrics over all datasets.

sets of models: (i) diffusion-based models tabsyn and tabddpm with a c2st
lower than 0.80 on most datasets and median around 0.65; (ii) push-forward
models ctgan and tvae with a median c2st around 0.82; (iii) smote
algorithms with a c2st higher than 0.80 on most datasets.

The rankings obtained according to the column-wise similarity are broadly
the same as the one obtained for c2st. In addition to the rank shown in Fig-
ure 6(b), we can see that all the models obtain good scores (usually around
0.96) as compared to the Train Copy baseline (0.99). This result suggests
that all the models succeed at capturing univariate distributions. For pair-
wise correlation, we note surprisingly high values for smote and ucsmote

19



baselines while the neural network models obtain broadly the same ranking
as for c2st but the gaps between models are less marked.

A side takeaway from this result is that xgboost-based c2st provides
a stronger discriminative power than column-wise similarity and pair-wise
correlation metrics.

4.2.2. Can the synthetic data be used to train a machine learning model ?

Figure 7: Models ranking with critical difference diagram for Catboost ml-
Efficacy over all datasets.

According to themachine learning efficacy metric (ml-Efficacy), the most
useful generators are the ones that are conditioned on their targets (namely
smote and tabddpm) with median values respectively at 0.73 and 0.69
(against 0.73 for Train Copy).

tabddpm outperforms both base and tuned versions of tabsyn for this
metric. It is also safer than smote and it performs its training iterations
faster than the other evaluated models. If ml-Efficacy is of importance, it
is advisable to use this model. As expected, all models are far from the
performance obtained on real data (Train Copy).

4.2.3. Does synthetic data preserve anonymity?

Figure 8: Models ranking with a critical difference diagram for the dcr-rate
metric over all datasets.

20



A data synthesizer that would only copy its training set would be of little
value. If it generates new instances that are too close to its training set, it
would obtain a good c2st score, but it would be prone to over-fitting and it
would leak private information from the training set. We assess the ability of
a model to generate new data through the dcr-rate metric (c.f. Section 3.1).

On Figure 8 we observe two significantly distinct groups of models. On
the left-hand side a ”leaky” group that contains both smote and ucsmote,
and on the right-hand side, a ”safe” group that contains all neural algorithms.
The poor performance of smote is mainly due to the way it generates new
data points by interpolating between existing ones. Therefore, these models
cannot be considered safe concerning data protection. By taking a look at
Table 3, the dcr-rate of the two smote variants is almost always above
0.86. On the other hand, if we exclude the tiny ”Insurance” dataset where
ctgan and tvae overfitted, the dcr-rate values of the ”safe” group are
quite uniform around 0.62 and almost always below 0.65: these models can
be considered safe.

4.2.4. What are the models’ costs?

Model training, optimization, and data sampling have a cost and an
environmental impact that varies greatly from one model to another. We
hence measured and estimated time, energy consumption, and CO2 impact
for each model during three phases: (i) training (measured), (ii) hyperpa-
rameters search (estimated), and (iii) sampling (measured). These results
are reported fully in Appendix D. We summarize the tuning and training
process cost distributions over all datasets and fold in Table 4. As mentioned
in Section 3.1, these values are estimated from the tuning logs by taking into
account the effective number of training steps, the number of trials, and the
average gpu resource usage per training step as reported in Table D.13.

With a median tuning time around 18 minutes as shown in Table 4,
tabddpm is the fastest neural model. As a result, it also consumes less
energy and it has less emissions at the training stage. As shown in Figure 5,
considering its other performance metrics, it is a suitable choice to achieve
good results at a relatively low training cost.

As expected, Figure 5 shows that the push models ctgan and tvae
are the fastest at sampling stage. We notice that although ctgan achieves
slightly better quality results than tvae, it is also one of the costliest models
at the training stage as shown in Table 4. In order to achieve reasonable per-
formance while reducing training costs, tvae is hence an option to consider
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Model Percentiles
Duration
(HH:MM)

↓ Emission
(Kg)

↓ Energy
(kWh)

↓

TVAE

75% 01:00 1.05 15.57
50% 00:24 0.42 6.22
25% 00:12 0.21 3.08

CTGAN

75% 02:20 2.45 36.36
50% 01:37 1.67 24.84
25% 01:06 1.16 17.14

TabDDPM

75% 00:26 0.36 5.30
50% 00:18 0.29 4.37
25% 00:12 0.19 2.82

TabSyn

75% 03:25 1.92 22.65
50% 01:59 1.03 14.20
25% 01:29 0.72 9.09

SMOTE

75% 00:02 0.00 0.01
50% 00:00 0.00 0.00
25% 00:00 0.00 0.00

UC-SMOTE

75% 00:03 0.00 0.01
50% 00:00 0.00 0.00
25% 00:00 0.00 0.00

Table 4: Summary of the costs of the extensive experiment. We provide costs
dispersion at the 25th, 50th, and 75th percentiles over all datasets and folds. The
values are aggregated from the tuning costs estimated per dataset in Table D.14.
More information about the estimation process can be found in Section 3.1.
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prior to ctgan.
The training and tuning of tabsyn is one of the most demanding (with a

median time of of 2 hours for tuning). In the end, however, it delivers the best
performance in terms of quality metrics. This model also has the advantage
of providing a set of default hyperparameters that can have a reasonable
performance although, if we follow the author’s recommendation of 4000 vae
epochs, its training remains costly by comparison to other models. Indeed,
Figure 5 show that, even if we consider the whole tuning+training pipeline
tabddpm and tvae remain cheaper to train than tabsyn base.

In terms of sampling cost, tabddpm is the worst-performing model. It
takes longer than the other models (c.f. Figure 5) and hence consumes more
energy with more CO2 emissions at this step. tabsyn reduces the number
of denoising steps by using vae embedding and linear noises to reduce its
sampling time [9]. It hence achieves better performance at inference than
tabddpm.

The two baselines smote and ucsmote being based on neighbourhood
interpolation their training and tuning cost is negligible. However, as shown
in Appendix Table C.12, their sampling process requiring a nearest neighbor
search, it is slower on large datasets than push-forward models like tvae or
ctgan.

4.3. Is it worth optimizing the hyperparameters for all models ?

As mentioned in the previous section, even with the help of sophisticated
search algorithms, hyperparameter tuning is costly and the performance-
versus-tuning-budget curve is following a diminishing returns law. We were
hence interested in comparing heavily tuned models against non-tuned mod-
els.

To assess this, we trained the neural models using the hyperparameters
provided by the authors in the original papers. These results are detailed in
Appendix E.

In Figure 9(a) we can see a, sometimes huge, c2st performance improve-
ment of all models when tuned. This improvement is statistically significant
between optimized tvae and ctgan and their base versions. Looking at the
absolute c2st values in Table 3, it confirms that these models should not be
used with their default hyperparameters.

For tabddpm and tabsyn, we also notice a 10 points improvement on
the median c2st but this gap is not large enough to provide statistical guar-
antees.
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(a) C2ST

(b) DCR-Rate

(c) ML-Efficacy

Figure 9: Models’ ranking with critical difference diagrams on c2st, dcr-rate,
and ml-efficacy metrics over all datasets: base models (using default hyperparam-
eters) versus models obtained after an extensive hyperparameter tuning.

Although it was not the main target for tuning, we also observe an ml-
Efficacy gain for all models. This gain is marked at the 25th percentile (i.e.
for the hardest datasets).

We can therefore conclude that for all neural tabular generative models
that we considered (including tabsyn), it is worth optimizing the hyperpa-
rameters specifically for each dataset if we want to improve performance.
But the trade-off between the optimization cost and the performance gain is
highly correlated to the size and design of the hyperparameter’s space (c.f.
Appendix A). In the next section we propose a reduced search space and
study the impact of a “light” hyperparameters optimization with a limited
budget.
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5. Limited-Budget Experiment Results

As underlined in Section 4.3, optimizing the hyperparameters for each
dataset can significantly improve the quality of the generators. But a large-
scale optimization like the one we performed is technically difficult, costly,
and it has a non-negligible carbon impact (c.f. Table 4). Researchers and
practitioners may hence be interested in reducing this cost without deterio-
rating too much the model’s performance.

In this section, we leverage the results of our extensive tuning experiment
to: (i) suggest reduced search spaces achieving reasonable performance at
a much lower cost; (ii) assess and compare the performance of the models
when tuned and trained with the same limited budget. By comparing the
model’s performance after this ”light” tuning/training with our previous re-
sults (respectively with heavy tuning or without tuning at all), we gain new
insights into the models.

5.1. Hyperparameters Search Space Reduction

We carried out this experiment for the most hyperparameter-heavy mod-
els, namely: tvae, ctgan, tabddpm, and tabsyn. To reduce their search
space, we independently considered each hyperparameter/architecture con-
figuration variable and kept only the values that were the most frequently
selected during the large-scale tuning phase. For discrete variables we kept
the 80% most frequent values, and for continuous variables we kept the value
ranging between the 10th and 90th percentiles.

For instance, on ctgan the large-scale tuning included six encoder op-
tions: cdf, ple cdf, ptp, Quantile, MinMax, and cbn. But only cdf and
ple cf were selected on most datasets. We could also drastically reduce
tabsyn vae’s learning rate range from (10−5, 10−2) to (10−3, 7 · 10−3). We
present all these reduced search spaces in Appendix A.

5.2. Putting the Reduced Search Spaces to the Test

To evaluate the reduced search spaces, we ran a new tuning on all datasets
with only 50 trials and a strict limit of 20 minutes per trial. Since tabsyn’s
training is done in two steps, we allocated 10 minutes for the vae training
and 10 minutes for the denoiser. Each hyperparameter search was performed
with the same 3-fold splits and the same methodology as in the extensive
experiment.
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Figure 10: Average c2st performance of the models under various setups. We
show the performance of the base models (appended with ” B”), the models ob-
tained from the light experiment described in this section (appended with ” L”),
and the ones from the extensive experiment (appended with ” E”). The c2st axis
is reversed to show the best models at the top. The dot diameter indicates the
complexity of the search space. The duration axis and dot diameters are log-scaled
for better visualization.

5.2.1. A Cost-Performance Trade-off

In Figure 10 we summarize the performance of the models after this light
hyperparameter search against the ones obtained with the base models and
the ones obtained after the extensive tuning of Section 3.2. On the x-axis
we display the total gpu-time (search+optimization) needed to obtain the
corresponding model and on the y-axis we show the c2st performance. The
diameters of the dots represents the number of possible configurations of the
hyperparameter search space as described in Appendix A.

If we compare against the non-tuned base models, the c2st performance
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of all models except tabsyn is clearly improved by the light hyperparameter
tuning. For ctgan, and tvae the gain is huge: after only a few minutes of
tuning with the reduced search space we reach the same performance as the
one obtained after hours of heavy tuning. For tabddpm, we also improved
the base performance by running the light hyperparameter tuning. However,
we did not reach the same performance as we did with an extensive search.

In the light experiment, the tabsyn’s performance degradation against
the base model reveals the importance of a well-trained vae which leads
to better samples from the diffusion process. Indeed, on Adult dataset for
instance, within its 10 minutes budget, it was trained with less than 600
epochs against 4000 for the base model. This suggests to increase the number
of epochs or the training time for tabsyn’s vae in further experiments.

Finally, as shown in Figure 10, the costs induced by the heavily optimized
tabsyn model are high compared to the base one. The performance gain and
the gap in cost should be considered depending on the task and constraints
as the base model already delivers decent performance.

It is worth noting that, due to its quick implementation, tabddpm per-
formed sometimes more training steps within its 20 minutes time budget on
the light experiment than it did on the extensive search where the number of
steps was bounded. But on the other hand, its performance was also affected
by the reduced number of trials (50 instead of 300).

5.2.2. Multi-criteria Analysis of Light Tuning

In Figure 11 we summarize the model’s relative performances according
to the five metrics for the light tuning experiment. To complete this point of
view, Table 5 summarizes the quality metric distributions among all datasets
and folds. The full results are detailed in Appendix F.

A first remark about Figure 11 is that it is more balanced than Figure 5:
with a fair and limited gpu budget allocation, the models tends to perform
similarly among all criteria.

There is no more clear leading model although tabddpm obtains the best
c2st performance and tabsyn slightly dominates in terms of privacy (dcr-
rate). We however have a safe median dcr-rate score of about 0.63 for this
experiment on all neural models (against 0.62 for the extensive experiment).
For ml-Efficacy, tabddpm remains slightly the best but there is no clear
leader either.

The reduced search space that we provide is hence a good starting point
to perform a quick dataset-specific hyperparameters optimization that will
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Model Percentiles C2ST ↓ DCR-R ↓ ML-EF ↑ Shape ↑ Pair ↑

Train Copy

75% 0.50 1.00 0.90 0.99 0.99
50% 0.50 1.00 0.73 0.99 0.98
25% 0.50 1.00 0.63 0.99 0.91

TVAE

75% 0.92 0.65 0.80 0.96 0.95
50% 0.80 0.63 0.70 0.95 0.93
25% 0.70 0.61 0.51 0.94 0.87

CTGAN

75% 0.89 0.64 0.71 0.98 0.96
50% 0.85 0.63 0.68 0.97 0.92
25% 0.70 0.62 0.45 0.95 0.85

TabDDPM

75% 0.83 0.67 0.83 0.97 0.95
50% 0.72 0.63 0.69 0.96 0.91
25% 0.63 0.62 0.50 0.95 0.81

TabSyn

75% 0.88 0.63 0.71 0.97 0.96
50% 0.81 0.62 0.65 0.95 0.93
25% 0.72 0.61 0.34 0.94 0.82

Table 5: Results from the light experiment: performance dispersion at the 25th,
50th, and 75th percentiles across all models. These results are obtained by ag-
gregating the scores across all datasets. To save space, we respectively shortened
dcr-rate to dcr-r and ml-efficacy to ml-ef.

fit on a medium-size workstation.
The relatively balanced results of this new experiment confirms that the

superiority of a tabular data generator is not only due to its model but also
to the whole tuning and training compute effort.

Overall, tabddpm provides a good balance between realism, privacy, util-
ity, and cost. tvae is a viable alternative if the utility constraint can be
relaxed. It can be tuned using the light experiment search space to quickly
achieve good performance. If resources are available and cost is not a prior-
ity, it is advisable to tune tabsyn, which achieves good realism results but
at a higher cost. Finally, for quick results when privacy is not a concern and
when the main focus is utility, smote is the recommended approach.
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Figure 11: Radar chart of the optimized models under the light experiment ac-
cording to c2st, dcr-rate, ml-Efficacy, column-wise similarity (named ”Shape”),
and pair-wise correlation (named ”Pair”). We take the ranks of the models to ob-
tain normalized metrics. The models were trained with a maximum time budget
of 20 minutes and tuned with 50 trials per fold.

6. Conclusion

We benchmarked extensively recent tabular data generation models on
16 datasets with a strict 3-fold cross-validation procedure. We first per-
formed both a large-scale tuning experiment on a super computer from
which we derived a reduced search-space. We then performed a quick tun-
ing experiment that fits on a medium-size workstation. Leveraging these
experiments we were able to provide several insights on the models while
answering to three technical questions: (i) is it worth optimizing the hyper-
parameters/preprocessing specifically for each dataset? (ii) can we propose
a reduced search space that fits well for all datasets? (iii) is there a clear
trade-off between training/sampling costs, and synthetic data quality?

For the two first questions, Figure 10 is certainly the best summary: most
models, including tabsyn, benefit greatly from a dataset-specific tuning. But
the whole tuning process is costly (time, money, energy, CO2 emissions) and
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there is clearly a ”diminishing return” effect. We conclude that, even for
tabsyn, a quick dataset-specific model tuning on a carefully designed search
space as we did in Section 5 is enough to get most of the performance at the
scale of a medium-size workstation.

Regarding the trade-off question on the multiple considered criteria: re-
alism, privacy, utility and costs, Figure 5 and Figure 11 confirm that if we do
not limit the compute power, the two diffusion-based models tabddpm and
tabsyn are the most recommended solutions for tabular data generation. But
with a fairly limited compute power, the performance gaps between models
become quite narrow.
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Appendix A. Benchmark challengers Hyperparameters

Hyperparameters search space of tvae is in Table A.6, for ctgan in
A.7, for tabsyn’s vae and mlp in A.8, for tabddpm in A.9, for smote
and ucsmote in A.10. These tables also present the reduced search spaces
suggested and applied for the experiment of Section 5.
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Parameter
Possible values

Extensive Reduced
Learning rate qLogUniform(1e-4, 1e-2, 1e-4) qLogUniform(1e-4, 7.3e-03, 1e-4)
Batch size [100, 500, 2000] [100]
Embedding dim. [16, 32, 64, 128, 256, 512] [16, 32, 64]
Encoder dim. [64, 128, 256, 512] [256, 512]
Encoder depth [2, 3, 4] [2]
Decoder dim. [64, 128, 256, 512] [256, 512]
Decoder depth [2, 3, 4] [2, 4]
Loss factor [3, 2, 1, 0.5] [3, 2]
L2 scale qLogUniform(1e-5, 1e-4, 1e-5) qLogUniform(1e-5, 6.3e-5, 1e-6)

Numerical encoder
[CDF, PLE CDF, PTP,

QuantileTransformer, MinMaxScaler, CBN10]
[CDF]

Categorical encoder [one-hot-encoder] [one-hot-encoder]
Epochs [400] ∞
Number of trials per fold 300 50

Table A.6: Hyperparameter search spaces of tvae: extensive and reduced. ”Ex-
tensive” refers to the search space used during the extensive tuning done in this
paper and ”Reduced” refers to the reduced experiment performed in Section 5. for
the extensive and reduced tuning experiments. For the reduced experiment the
number of epochs was bounded by the time budget. A description of numerical
encoders can be found in Section 3.2.1 and [11].

Parameter
Possible values

Extensive Reduced
Discriminator learning rate qLogUniform(5e-5, 1e-2, 5e-5) qLogUniform(4e-4, 2.1e-03, 5e-5)
Generator learning rate qLogUniform(5e-5, 1e-2, 5e-5) qLogUniform(5e-5, 1.3e-3, 5e-5)
Batch size [50, 100, 250, 500, 1000] [100, 500, 1000]
Embedding dim. [32, 64, 128, 256] [32, 128]
Generator dim. [128, 256] [128]
Generator depth [2, 3, 4] [3, 4]
Discriminator dim. [128, 256] [256]
Discriminator depth [2, 3] [2, 3]
Generator decay qLogUniform(1e-6, 1e-5, 1e-6) qLogUniform(1e-6, 6.4e-6, 1e-7)
Discriminator decay qLogUniform(1e-6,1e-5, 1e-6) qLogUniform(1e-6, 8e-6, 1e-6)
Log frequency [False, True] [False, True]

Numerical encoder
[CDF, PLE CDF, PTP,

QuantileTransformer, MinMaxScaler, CBN10]
[CDF, PLE CDF]

Categorical encoder [one-hot-encoder] [one-hot-encoder]
Epochs [400] ∞
Number of trials per fold 300 50

Table A.7: Hyperparameter search spaces of ctgan for the extensive and re-
duced tuning experiments. For the reduced experiment the number of epochs was
bounded by the time budget.
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Model Parameter
Possible values

Extensive Reduced

VAE
Learning rate qLogUniform(5e-5, 1e-2, 5e-5) qLogUniform(1.1e-3, 7.2e-3, 5e-5)
Batch size [1024, 2048, 4096] [1024, 2048]
Weight decay qLogUniform(1e-6, 1e-5, 1e-6) qLogUniform(1e-6, 5e-6, 1e-6)
Token dim. [2, 4] [4]
Number of head [1, 2] [1, 2]
Factor [8, 16, 32, 64] [8, 16, 64]
Number of layers [1, 2, 3, 4] [1, 2, 4]
Max. beta [1e-2] [1e-2]
Min. beta [1e-5] [1e-5]
Lambda [0.7, 0.8, 0.85, 0.9, 0.95] [0.8, 0.85, 0.9, 0.95]
Epochs [4000] ∞

MLP
Learning Rate qLogUniform(5e-5, 1e-2, 5e-5) qLogUniform(7.7e-4, 2.5e-3, 1e-5)
Weight Decay qLogUniform(1e-6, 1e-5, 1e-6) qLogUniform(1e-6, 3.3e-6, 1e-7)
Batch size [1024, 2048, 4096] [1024, 4096]
MLP’s hidden dimension [512, 1024] [1024]
Epochs [2000] ∞

Number of trials per fold 100 50

Table A.8: Hyperparameter search spaces of tabsyn’s vae and mlp for the
extensive and reduced tuning experiments. For the reduced experiment the number
of epochs was bounded by a time budget (10 minutes for the vae, 10 minutes for
the denoiser).

Parameter
Possible values

Extensive Reduced
Batch size [256, 4096] [4096]
Dropout [0.0] [0.0]
Number of timesteps [1000] [1000]
Learning rate qLogUniform(1e-5, 1e-3, 1e-5) qLogUniform(3.5e-4, 9.2e-4, 1e-5)
Number of layers [2, 4, 6, 8] [2, 4, 6]
First layer’s dim. [128, 256, 512, 1024] [256, 512, 1024]
Middle layer’s dim. [128, 256, 512, 1024] [512, 1024]
Last layer’s dim. [128, 256, 512, 1024] [256, 512, 1024]
Training iterations [20000] ∞
Number of trials per fold 300 50

Table A.9: Hyperparameter search spaces of tabddpm for the extensive and
reduced tuning experiments.

Parameter Possible values
K-Neighbors Grid search in range [2, 20]

Number of trials per fold 38

Table A.10: Hyperparameter search space of smote and ucsmote.
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Appendix B. Datasets Links

We provide the list of links toward the datasets that were used in this
paper in Table B.11 below.

Dataset URL
Abalone www.openml.org/d/183

Adult www.openml.org/d/1590

Bank www.openml.org/d/1461

Black Friday www.openml.org/d/41540

Bike Sharing www.openml.org/d/42712

Covertype www.openml.org/d/150

Cardio www.kaggle.com/sulianova/datasets

Churn www.kaggle.com/datasets/shrutimechlearn

Diamonds www.openml.org/d/42225

HELOC www.kaggle.com/averkiyoliabev/datasets

Higgs www.openml.org/d/4532

House 16H www.openml.org/d/574

Insurance www.kaggle.com/datasets/mirichoi0218/insurance

King www.kaggle.com/datasets/harlfoxem/housesalesprediction

MiniBooNE www.openml.org/d/41150

Moons scikit-learn.org/stable/modules/classes.html

Table B.11: Links to the datasets

Appendix C. Dataset-Level Results for Large-Scale Experiment

Table C.12 present the per-dataset performance according to the metrics
described in Section 3.1 averaged on 3-folds with 5 samples per-fold.

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑ Train time ↓ Sample time ↓

Abalone

Train Copy 0.51 ± 0.00 1.00 ± 0.00 0.23 ± 0.01 0.96 ± 0.01 0.88 ± 0.01 - -

CTGAN 0.73 ± 0.03 0.63 ± 0.02 0.17 ± 0.01 0.93 ± 0.01 0.86 ± 0.03 685 ± 398.05 00 ± 0.01

TVAE 0.75 ± 0.07 0.64 ± 0.05 0.23 ± 0.02 0.91 ± 0.02 0.86 ± 0.04 113 ± 3.57 00 ± 0.00

TabDDPM 0.78 ± 0.01 0.67 ± 0.01 0.23 ± 0.01 0.94 ± 0.00 0.85 ± 0.03 169 ± 28.82 03 ± 0.62

TabSyn 0.78 ± 0.01 0.63 ± 0.01 0.22 ± 0.01 0.94 ± 0.02 0.87 ± 0.00 1056 ± 183.20 00 ± 0.08

SMOTE 1.00 ± 0.00 0.85 ± 0.02 0.50 ± 0.02 0.85 ± 0.01 0.72 ± 0.01 - 00 ± 0.01

UC-SMOTE 0.89 ± 0.01 0.92 ± 0.02 0.51 ± 0.03 0.95 ± 0.01 0.88 ± 0.03 - 00 ± 0.00
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Results per datasets and models under diverse metrics for the extensive search
(continued).

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑ Train time ↓ Sample time ↓

Adult

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.71 ± 0.01 0.99 ± 0.00 0.98 ± 0.00 - -

CTGAN 0.74 ± 0.02 0.72 ± 0.00 0.67 ± 0.01 0.97 ± 0.00 0.88 ± 0.01 2755 ± 920.97 00 ± 0.01

TVAE 0.77 ± 0.01 0.72 ± 0.00 0.63 ± 0.03 0.96 ± 0.00 0.91 ± 0.02 1404 ± 2.70 00 ± 0.00

TabDDPM 0.65 ± 0.00 0.62 ± 0.01 0.67 ± 0.01 0.98 ± 0.00 0.95 ± 0.01 443 ± 44.97 10 ± 2.22

TabSyn 0.64 ± 0.01 0.62 ± 0.00 0.66 ± 0.01 0.98 ± 0.00 0.96 ± 0.01 5042 ± 2119.47 01 ± 1.06

SMOTE 0.93 ± 0.00 0.85 ± 0.00 0.69 ± 0.01 0.95 ± 0.00 0.90 ± 0.01 - 06 ± 0.11

UC-SMOTE 0.93 ± 0.00 0.86 ± 0.01 0.67 ± 0.01 0.95 ± 0.00 0.90 ± 0.01 - 10 ± 0.03

Bank
marketing

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.54 ± 0.01 0.99 ± 0.00 0.98 ± 0.01 - -

CTGAN 0.72 ± 0.01 0.63 ± 0.00 0.47 ± 0.02 0.98 ± 0.00 0.95 ± 0.01 3159 ± 65.25 00 ± 0.01

TVAE 0.81 ± 0.04 0.63 ± 0.00 0.45 ± 0.08 0.96 ± 0.01 0.92 ± 0.02 1089 ± 628.11 00 ± 0.02

TabDDPM 0.65 ± 0.01 0.61 ± 0.00 0.52 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 461 ± 42.63 10 ± 1.98

TabSyn 0.61 ± 0.02 0.62 ± 0.01 0.49 ± 0.02 0.99 ± 0.01 0.97 ± 0.01 2783 ± 471.56 02 ± 0.03

SMOTE 0.79 ± 0.01 0.98 ± 0.00 0.53 ± 0.02 0.97 ± 0.00 0.95 ± 0.00 - 09 ± 0.16

UC-SMOTE 0.79 ± 0.00 0.98 ± 0.00 0.46 ± 0.02 0.97 ± 0.00 0.95 ± 0.00 - 09 ± 0.03

Bike
sharing

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.53 ± 0.00 - -

CTGAN 0.90 ± 0.01 0.61 ± 0.00 0.68 ± 0.02 0.97 ± 0.01 0.53 ± 0.00 3772 ± 2301.33 00 ± 0.05

TVAE 0.81 ± 0.01 0.61 ± 0.00 0.78 ± 0.03 0.96 ± 0.01 0.53 ± 0.00 540 ± 15.46 00 ± 0.00

TabDDPM 0.81 ± 0.01 0.62 ± 0.00 0.79 ± 0.01 0.97 ± 0.01 0.53 ± 0.00 332 ± 13.26 07 ± 0.90

TabSyn 0.86 ± 0.02 0.62 ± 0.01 0.51 ± 0.07 0.96 ± 0.00 0.53 ± 0.00 1843 ± 556.82 00 ± 0.01

SMOTE 0.98 ± 0.00 0.99 ± 0.01 0.85 ± 0.00 0.95 ± 0.00 0.67 ± 0.08 - 01 ± 0.06

UC-SMOTE 0.98 ± 0.00 0.98 ± 0.00 0.86 ± 0.01 0.95 ± 0.01 0.67 ± 0.08 - 00 ± 0.09

Black
friday

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 - -

CTGAN 0.82 ± 0.02 0.66 ± 0.01 0.46 ± 0.02 0.97 ± 0.01 0.87 ± 0.00 10111 ± 8081.87 00 ± 0.12

TVAE 0.87 ± 0.01 0.68 ± 0.01 0.42 ± 0.02 0.95 ± 0.01 0.91 ± 0.02 4978 ± 1.32 00 ± 0.02

TabDDPM 0.87 ± 0.01 0.64 ± 0.00 0.47 ± 0.02 0.99 ± 0.01 0.98 ± 0.01 366 ± 13.15 39 ± 14.32

TabSyn 0.87 ± 0.01 0.68 ± 0.00 0.17 ± 0.01 0.99 ± 0.00 0.46 ± 0.00 7533 ± 563.20 06 ± 3.54

SMOTE 0.80 ± 0.00 0.97 ± 0.00 0.50 ± 0.01 0.95 ± 0.00 0.94 ± 0.00 - 31 ± 0.16

UC-SMOTE 0.81 ± 0.01 0.97 ± 0.00 0.49 ± 0.01 0.94 ± 0.00 0.93 ± 0.00 - 106 ± 0.07

Cardio

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.72 ± 0.01 1.00 ± 0.00 0.98 ± 0.01 - -

CTGAN 0.62 ± 0.01 0.64 ± 0.00 0.70 ± 0.02 0.99 ± 0.01 0.96 ± 0.01 4678 ± 59.79 00 ± 0.01

TVAE 0.72 ± 0.02 0.64 ± 0.01 0.72 ± 0.01 0.97 ± 0.01 0.95 ± 0.02 1708 ± 984.53 00 ± 0.02

TabDDPM 0.55 ± 0.01 0.62 ± 0.00 0.72 ± 0.01 0.99 ± 0.00 0.98 ± 0.01 185 ± 73.66 13 ± 8.85

TabSyn 0.56 ± 0.00 0.64 ± 0.00 0.72 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 2960 ± 578.82 03 ± 0.01

SMOTE 0.95 ± 0.00 0.98 ± 0.00 0.73 ± 0.00 0.93 ± 0.00 0.97 ± 0.01 - 00 ± 0.02

UC-SMOTE 0.94 ± 0.00 0.98 ± 0.00 0.72 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 - 01 ± 0.05

Churn

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.59 ± 0.02 0.95 ± 0.00 0.87 ± 0.01 - -

CTGAN 0.63 ± 0.02 0.64 ± 0.01 0.36 ± 0.03 0.93 ± 0.01 0.84 ± 0.02 2505 ± 953.49 00 ± 0.03

TVAE 0.64 ± 0.01 0.63 ± 0.00 0.51 ± 0.00 0.92 ± 0.01 0.84 ± 0.01 294 ± 6.20 00 ± 0.01

TabDDPM 0.66 ± 0.07 0.64 ± 0.05 0.50 ± 0.05 0.89 ± 0.06 0.82 ± 0.06 618 ± 35.47 25 ± 2.36

TabSyn 0.58 ± 0.02 0.61 ± 0.01 0.56 ± 0.03 0.93 ± 0.01 0.48 ± 0.00 1627 ± 340.95 00 ± 0.22

SMOTE 0.76 ± 0.01 0.86 ± 0.03 0.50 ± 0.02 0.87 ± 0.01 0.81 ± 0.02 - 01 ± 0.06

UC-SMOTE 0.78 ± 0.02 0.93 ± 0.02 0.12 ± 0.09 0.87 ± 0.01 0.80 ± 0.02 - 00 ± 0.05
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Results per datasets and models under diverse metrics for the extensive search
(continued).

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑ Train time ↓ Sample time ↓

Covertype

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 - -

CTGAN 0.97 ± 0.01 0.60 ± 0.01 0.70 ± 0.01 0.98 ± 0.00 0.96 ± 0.01 51644 ± 17257.41 04 ± 0.60

TVAE 0.90 ± 0.01 0.60 ± 0.00 0.77 ± 0.01 0.98 ± 0.00 0.96 ± 0.01 23219 ± 18238.02 01 ± 0.44

TabDDPM 0.94 ± 0.01 0.59 ± 0.04 0.66 ± 0.04 0.95 ± 0.01 0.91 ± 0.01 868 ± 30.61 249 ± 25.67

TabSyn 0.63 ± 0.02 0.62 ± 0.01 0.75 ± 0.02 0.99 ± 0.00 0.69 ± 0.00 4937 ± 1556.02 03 ± 0.05

SMOTE 0.97 ± 0.00 0.97 ± 0.00 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 - 125 ± 0.69

UC-SMOTE 0.97 ± 0.00 0.97 ± 0.00 0.90 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 - 138 ± 0.71

Diamonds

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.77 ± 0.01 - -

CTGAN 0.86 ± 0.01 0.65 ± 0.01 0.94 ± 0.01 0.97 ± 0.01 0.80 ± 0.04 3389 ± 2.57 00 ± 0.01

TVAE 0.79 ± 0.03 0.64 ± 0.00 0.96 ± 0.01 0.94 ± 0.01 0.74 ± 0.04 1104 ± 637.85 00 ± 0.02

TabDDPM 0.71 ± 0.01 0.61 ± 0.00 0.97 ± 0.00 0.98 ± 0.01 0.70 ± 0.02 374 ± 13.27 16 ± 6.28

TabSyn 0.87 ± 0.01 0.65 ± 0.00 0.79 ± 0.10 0.98 ± 0.01 0.76 ± 0.04 3255 ± 360.89 02 ± 1.12

SMOTE 0.97 ± 0.00 0.93 ± 0.01 0.92 ± 0.01 0.97 ± 0.00 0.77 ± 0.02 - 03 ± 0.02

UC-SMOTE 0.97 ± 0.00 0.94 ± 0.01 0.93 ± 0.01 0.97 ± 0.00 0.80 ± 0.04 - 01 ± 0.04

Heloc

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.70 ± 0.01 0.99 ± 0.00 0.97 ± 0.01 - -

CTGAN 0.92 ± 0.01 0.64 ± 0.01 0.66 ± 0.05 0.97 ± 0.01 0.94 ± 0.02 4330 ± 3393.17 00 ± 0.10

TVAE 0.87 ± 0.00 0.66 ± 0.01 0.70 ± 0.01 0.95 ± 0.00 0.94 ± 0.01 421 ± 249.85 00 ± 0.00

TabDDPM 0.72 ± 0.01 0.64 ± 0.01 0.70 ± 0.01 0.97 ± 0.00 0.95 ± 0.01 80 ± 9.69 01 ± 0.53

TabSyn 0.70 ± 0.02 0.66 ± 0.01 0.70 ± 0.02 0.97 ± 0.00 0.95 ± 0.01 1870 ± 302.36 00 ± 0.00

SMOTE 0.92 ± 0.01 1.00 ± 0.00 0.69 ± 0.01 0.94 ± 0.00 0.95 ± 0.01 - 00 ± 0.04

UC-SMOTE 0.92 ± 0.01 1.00 ± 0.00 0.69 ± 0.01 0.94 ± 0.00 0.95 ± 0.02 - 00 ± 0.02

Higgs

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.74 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 - -

CTGAN 0.85 ± 0.02 0.60 ± 0.00 0.70 ± 0.01 0.99 ± 0.01 0.98 ± 0.00 12696 ± 4197.49 00 ± 0.13

TVAE 0.92 ± 0.01 0.60 ± 0.00 0.70 ± 0.02 0.94 ± 0.01 0.98 ± 0.01 5752 ± 116.50 00 ± 0.08

TabDDPM 0.57 ± 0.00 0.63 ± 0.00 0.73 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 223 ± 10.78 22 ± 2.25

TabSyn 0.57 ± 0.01 0.61 ± 0.00 0.73 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 7503 ± 2581.02 04 ± 2.17

SMOTE 0.84 ± 0.00 1.00 ± 0.00 0.73 ± 0.00 0.96 ± 0.00 0.98 ± 0.01 - 00 ± 0.05

UC-SMOTE 0.83 ± 0.00 1.00 ± 0.00 0.73 ± 0.00 0.96 ± 0.00 0.98 ± 0.01 - 01 ± 0.04

House
16h

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.64 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 - -

CTGAN 0.84 ± 0.01 0.62 ± 0.00 0.47 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 983 ± 559.75 00 ± 0.01

TVAE 0.82 ± 0.03 0.61 ± 0.01 0.48 ± 0.06 0.95 ± 0.01 0.98 ± 0.01 922 ± 6.68 00 ± 0.01

TabDDPM 0.60 ± 0.01 0.61 ± 0.00 0.61 ± 0.02 0.98 ± 0.00 0.99 ± 0.01 95 ± 21.99 02 ± 0.88

TabSyn 0.74 ± 0.01 0.62 ± 0.01 0.40 ± 0.02 0.97 ± 0.00 0.99 ± 0.00 2370 ± 810.03 01 ± 0.01

SMOTE 0.87 ± 0.00 0.86 ± 0.05 0.62 ± 0.01 0.92 ± 0.01 0.99 ± 0.00 - 00 ± 0.03

UC-SMOTE 0.87 ± 0.01 0.83 ± 0.05 0.62 ± 0.02 0.92 ± 0.01 0.99 ± 0.00 - 00 ± 0.02

Insurance

Train Copy 0.48 ± 0.01 1.00 ± 0.00 0.85 ± 0.03 0.96 ± 0.01 0.91 ± 0.01 - -

CTGAN 0.67 ± 0.03 0.92 ± 0.01 0.71 ± 0.01 0.94 ± 0.00 0.87 ± 0.02 265 ± 23.11 00 ± 0.00

TVAE 0.67 ± 0.02 0.92 ± 0.01 0.77 ± 0.01 0.91 ± 0.01 0.86 ± 0.02 32 ± 4.50 00 ± 0.00

TabDDPM 0.68 ± 0.02 0.62 ± 0.01 0.83 ± 0.03 0.93 ± 0.02 0.89 ± 0.02 181 ± 18.27 03 ± 1.01

TabSyn 0.60 ± 0.02 0.61 ± 0.02 0.82 ± 0.00 0.94 ± 0.01 0.88 ± 0.00 1156 ± 74.54 00 ± 0.03

SMOTE 0.68 ± 0.01 0.80 ± 0.03 0.81 ± 0.01 0.94 ± 0.01 0.87 ± 0.01 - 00 ± 0.01

UC-SMOTE 0.67 ± 0.01 0.85 ± 0.02 0.80 ± 0.02 0.93 ± 0.02 0.87 ± 0.02 - 00 ± 0.00
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Results per datasets and models under diverse metrics for the extensive search
(continued).

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑ Train time ↓ Sample time ↓

King

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.87 ± 0.00 0.98 ± 0.01 0.97 ± 0.01 - -

CTGAN 0.93 ± 0.01 0.62 ± 0.00 0.72 ± 0.04 0.97 ± 0.01 0.94 ± 0.01 1805 ± 8.66 00 ± 0.01

TVAE 0.94 ± 0.01 0.61 ± 0.01 0.81 ± 0.02 0.94 ± 0.01 0.94 ± 0.01 990 ± 6.97 00 ± 0.00

TabDDPM 0.97 ± 0.01 0.73 ± 0.06 0.64 ± 0.20 0.71 ± 0.06 0.83 ± 0.01 244 ± 14.03 06 ± 0.61

TabSyn 0.93 ± 0.01 0.62 ± 0.00 0.12 ± 0.03 0.96 ± 0.01 0.94 ± 0.00 2717 ± 648.93 01 ± 0.01

SMOTE 0.98 ± 0.00 0.97 ± 0.00 0.83 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 - 02 ± 0.23

UC-SMOTE 0.98 ± 0.00 0.96 ± 0.01 0.82 ± 0.03 0.92 ± 0.01 0.96 ± 0.01 - 00 ± 0.03

Miniboo
ne

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.89 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 - -

CTGAN 0.91 ± 0.02 0.60 ± 0.01 0.83 ± 0.03 0.96 ± 0.02 0.58 ± 0.01 6879 ± 2388.04 00 ± 0.06

TVAE 0.95 ± 0.03 0.60 ± 0.00 0.86 ± 0.00 0.93 ± 0.01 0.59 ± 0.01 4876 ± 4730.59 00 ± 0.05

TabDDPM 0.64 ± 0.02 0.61 ± 0.01 0.89 ± 0.00 0.99 ± 0.00 0.91 ± 0.03 193 ± 46.01 23 ± 8.73

TabSyn 0.61 ± 0.01 0.61 ± 0.00 0.89 ± 0.00 0.99 ± 0.01 0.91 ± 0.03 7861 ± 1700.48 07 ± 0.08

SMOTE 0.83 ± 0.00 1.00 ± 0.00 0.89 ± 0.00 0.97 ± 0.01 0.99 ± 0.01 - 01 ± 0.10

UC-SMOTE 0.83 ± 0.00 1.00 ± 0.00 0.89 ± 0.00 0.97 ± 0.01 0.98 ± 0.01 - 03 ± 0.04

Moons

Train Copy 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 - -

CTGAN 0.68 ± 0.01 0.61 ± 0.01 1.00 ± 0.00 0.96 ± 0.01 0.97 ± 0.01 2571 ± 967.05 00 ± 0.02

TVAE 0.63 ± 0.01 0.61 ± 0.02 1.00 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 752 ± 51.10 00 ± 0.01

TabDDPM 0.52 ± 0.01 0.61 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 183 ± 92.44 09 ± 6.74

TabSyn 0.54 ± 0.01 0.61 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 2647 ± 656.79 01 ± 0.81

SMOTE 0.54 ± 0.00 0.84 ± 0.05 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 - 00 ± 0.02

UC-SMOTE 0.54 ± 0.01 0.80 ± 0.03 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 - 00 ± 0.03

Table C.12: Results per dataset and model under diverse metrics. The training
times (gradient descent) and sampling times are given in seconds. The sampling
times are given for 5 samples. The best values per metric are formatted in bold
green and the worse values are in red.

Appendix D. Training and Sampling Impact

We performed large-scale experiments including a quite costly hyperpa-
rameter tuning step. Note that the term ”costs” in this section refers to the
duration, energy consumption, and CO2 emissions. We evaluate the training
and sampling costs of the models with their optimized hyperparameters, as
well as the full hyperparameter tuning costs.

Appendix D.1. Training and Sampling Costs

Due to the massive nature of the experiments, the hyperparameter search
could not all be run on the same hardware. We hence estimated the training
(gradient descent) cost by running all models on a single Tesla V100-SXM2 32
gb. Table D.13 provides the raw training and sampling energy consumption
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and emissions for reference. All of the tabsyn costs shown are a combination
of the vae cost and the denoiser cost, which are estimated separately and
then added together. Also, all tabsyn costs on the Covertype dataset are
estimated considering the complete dataset size.

Dataset Model Emissions Training ↓ Energy Training ↓ Emissions Sampling ↓ Energy Sampling ↓

Abalone

CTGAN 3.05±1.77 · 10−3 4.53±2.62 · 10−2 9.74±2.37 · 10−8 1.45±0.35 · 10−6

TabDDPM 9.16±1.42 · 10−6 1.36±0.21 · 10−4 2.90±0.50 · 10−5 4.31±0.74 · 10−4

TabSyn 3.18±0.32 · 10−4 4.27±0.32 · 10−3 1.49±0.78 · 10−6 2.21±1.16 · 10−5

TVAE 5.06±0.13 · 10−4 7.51±0.19 · 10−3 6.23±2.14 · 10−8 9.24±3.17 · 10−7

SMOTE - - 4.04±0.35 · 10−7 5.99±0.51 · 10−6

UC-SMOTE - - 1.37±0.07 · 10−7 2.03±0.11 · 10−6

Adult

CTGAN 1.24±0.41 · 10−2 1.84±0.61 · 10−1 9.67±0.41 · 10−7 1.43±0.06 · 10−5

TabDDPM 2.68±0.35 · 10−4 3.98±0.51 · 10−3 8.41±2.01 · 10−5 1.25±0.30 · 10−3

TabSyn 1.68±0.72 · 10−3 1.42±0.36 · 10−2 1.56±0.85 · 10−5 2.31±1.26 · 10−4

TVAE 6.30±0.01 · 10−3 9.34±0.01 · 10−2 3.54±0.07 · 10−7 5.25±0.11 · 10−6

SMOTE - - 2.46±0.04 · 10−5 3.66±0.06 · 10−4

UC-SMOTE - - 3.82±0.01 · 10−5 5.67±0.01 · 10−4

Bank
marketing

CTGAN 1.41±0.03 · 10−2 2.09±0.04 · 10−1 8.88±0.32 · 10−7 1.32±0.05 · 10−5

TabDDPM 2.50±0.22 · 10−4 3.71±0.33 · 10−3 7.81±1.91 · 10−5 1.16±0.28 · 10−3

TabSyn 1.06±0.08 · 10−3 1.46±0.04 · 10−2 1.80±0.02 · 10−5 2.67±0.03 · 10−4

TVAE 4.90±2.83 · 10−3 7.27±4.19 · 10−2 2.84±0.47 · 10−7 4.22±0.69 · 10−6

SMOTE - - 3.46±0.05 · 10−5 5.13±0.08 · 10−4

UC-SMOTE - - 3.32±0.01 · 10−5 4.92±0.02 · 10−4

Bike
sharing

CTGAN 1.68±1.03 · 10−2 2.50±1.52 · 10−1 5.79±2.48 · 10−7 8.59±3.68 · 10−6

TabDDPM 8.73±0.70 · 10−5 1.30±0.10 · 10−3 6.04±0.72 · 10−5 8.96±1.07 · 10−4

TabSyn 6.29±1.72 · 10−4 8.11±0.27 · 10−3 7.02±0.03 · 10−6 1.04±0.00 · 10−4

TVAE 2.42±0.07 · 10−3 3.59±0.11 · 10−2 1.37±0.27 · 10−7 2.03±0.40 · 10−6

SMOTE - - 4.53±0.22 · 10−6 6.72±0.33 · 10−5

UC-SMOTE - - 1.48±0.32 · 10−6 2.20±0.48 · 10−5

Black
friday

CTGAN 4.55±3.60 · 10−2 6.75±5.34 · 10−1 2.70±0.56 · 10−6 4.01±0.83 · 10−5

TabDDPM 8.97±1.75 · 10−4 1.33±0.26 · 10−2 2.98±1.09 · 10−4 4.42±1.62 · 10−3

TabSyn 2.78±0.26 · 10−3 2.58±0.90 · 10−2 5.18±2.81 · 10−5 7.69±4.17 · 10−4

TVAE 2.23±0.01 · 10−2 3.31±0.01 · 10−1 8.59±0.65 · 10−7 1.27±0.10 · 10−5

SMOTE - - 1.14±0.01 · 10−4 1.68±0.01 · 10−3

UC-SMOTE - - 3.84±0.02 · 10−4 5.70±0.03 · 10−3

Cardio

CTGAN 2.11±0.03 · 10−2 3.13±0.04 · 10−1 1.30±0.03 · 10−6 1.93±0.04 · 10−5

TabDDPM 2.22±1.13 · 10−4 3.30±1.68 · 10−3 1.05±0.70 · 10−4 1.56±1.04 · 10−3

TabSyn 1.15±0.16 · 10−3 1.67±0.03 · 10−2 2.89±0.01 · 10−5 4.29±0.02 · 10−4

TVAE 7.64±4.39 · 10−3 1.13±0.65 · 10−1 2.70±0.94 · 10−7 4.00±1.40 · 10−6

SMOTE - - 2.27±0.05 · 10−6 3.37±0.07 · 10−5

UC-SMOTE - - 4.27±0.16 · 10−6 6.34±0.24 · 10−5

Churn

CTGAN 1.15±0.43 · 10−2 1.71±0.63 · 10−1 6.61±1.15 · 10−7 9.81±1.71 · 10−6

TabDDPM 1.10±0.07 · 10−4 1.63±0.10 · 10−3 1.96±0.17 · 10−4 2.90±0.25 · 10−3

TabSyn 4.97±0.79 · 10−4 6.25±0.62 · 10−3 3.43±1.81 · 10−6 5.09±2.68 · 10−5

TVAE 1.34±0.03 · 10−3 1.98±0.05 · 10−2 3.08±0.29 · 10−7 4.57±0.42 · 10−6

SMOTE - - 4.13±0.20 · 10−6 6.12±0.29 · 10−5

UC-SMOTE - - 3.53±0.19 · 10−6 5.24±0.28 · 10−5
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Tuning costs estimation for the best models (continued).

Dataset Model Emissions Training ↓ Energy Training ↓ Emissions Sampling ↓ Energy Sampling ↓

Covertype

CTGAN 2.33±0.78 · 10−1 3.46±1.15 1.92±0.27 · 10−5 2.85±0.41 · 10−4

TabDDPM 6.22±0.35 · 10−3 9.23±0.53 · 10−2 1.80±0.26 · 10−3 2.67±0.38 · 10−2

TabSyn 1.82±0.68 · 10−3 1.26±0.72 · 10−2 2.37±0.04 · 10−5 3.52±0.06 · 10−4

TVAE 1.04±0.81 · 10−1 1.54±1.21 8.00±1.93 · 10−6 1.19±0.29 · 10−4

SMOTE - - 4.52±0.02 · 10−4 6.71±0.04 · 10−3

UC-SMOTE - - 5.01±0.03 · 10−4 7.43±0.04 · 10−3

Diamonds

CTGAN 1.52±0.00 · 10−2 2.26±0.01 · 10−1 8.44±0.13 · 10−7 1.25±0.02 · 10−5

TabDDPM 3.33±0.71 · 10−4 4.93±1.06 · 10−3 1.30±0.47 · 10−4 1.92±0.70 · 10−3

TabSyn 1.21±0.18 · 10−3 1.36±0.49 · 10−2 1.67±0.89 · 10−5 2.48±1.32 · 10−4

TVAE 4.93±2.84 · 10−3 7.31±4.21 · 10−2 2.42±0.76 · 10−7 3.59±1.12 · 10−6

SMOTE - - 1.32±0.01 · 10−5 1.96±0.01 · 10−4

UC-SMOTE - - 3.67±0.14 · 10−6 5.44±0.21 · 10−5

Heloc

CTGAN 1.93±1.51 · 10−2 2.87±2.24 · 10−1 6.03±4.19 · 10−7 8.95±6.22 · 10−6

TabDDPM 1.21±0.29 · 10−5 1.80±0.43 · 10−4 1.50±0.42 · 10−5 2.23±0.63 · 10−4

TabSyn 5.78±0.66 · 10−4 6.91±0.18 · 10−3 4.60±0.11 · 10−6 6.83±0.16 · 10−5

TVAE 1.88±1.11 · 10−3 2.80±1.65 · 10−2 1.15±0.43 · 10−7 1.71±0.63 · 10−6

SMOTE - - 9.32±1.28 · 10−7 1.38±0.19 · 10−5

UC-SMOTE - - 2.02±0.07 · 10−6 3.00±0.10 · 10−5

Higgs

CTGAN 5.71±1.88 · 10−2 8.47±2.79 · 10−1 2.92±0.56 · 10−6 4.33±0.84 · 10−5

TabDDPM 4.01±0.25 · 10−4 5.96±0.37 · 10−3 1.77±0.18 · 10−4 2.63±0.27 · 10−3

TabSyn 2.88±1.12 · 10−3 2.07±0.74 · 10−2 3.20±1.72 · 10−5 4.75±2.55 · 10−4

TVAE 2.57±0.05 · 10−2 3.81±0.08 · 10−1 1.06±0.34 · 10−6 1.58±0.51 · 10−5

SMOTE - - 2.01±0.19 · 10−6 2.98±0.28 · 10−5

UC-SMOTE - - 6.19±0.13 · 10−6 9.18±0.20 · 10−5

House
16h

CTGAN 4.42±2.48 · 10−3 6.55±3.68 · 10−2 1.24±0.16 · 10−7 1.85±0.24 · 10−6

TabDDPM 3.81±1.14 · 10−5 5.66±1.69 · 10−4 2.03±0.70 · 10−5 3.01±1.04 · 10−4

TabSyn 8.56±2.73 · 10−4 9.40±1.12 · 10−3 9.68±0.08 · 10−6 1.44±0.01 · 10−4

TVAE 4.12±0.02 · 10−3 6.11±0.03 · 10−2 1.40±0.17 · 10−7 2.08±0.26 · 10−6

SMOTE - - 2.92±1.19 · 10−7 4.34±1.77 · 10−6

UC-SMOTE - - 4.04±0.48 · 10−7 5.99±0.72 · 10−6

Insurance

CTGAN 1.18±0.10 · 10−3 1.75±0.15 · 10−2 7.40±1.62 · 10−8 1.10±0.24 · 10−6

TabDDPM 2.83±0.29 · 10−6 4.20±0.43 · 10−5 2.65±0.94 · 10−5 3.93±1.40 · 10−4

TabSyn 3.45±0.04 · 10−4 4.64±0.36 · 10−3 5.87±2.03 · 10−7 8.71±3.01 · 10−6

TVAE 1.44±0.20 · 10−4 2.14±0.29 · 10−3 4.70±1.02 · 10−8 6.98±1.51 · 10−7

SMOTE - - 1.83±0.26 · 10−7 2.71±0.39 · 10−6

UC-SMOTE - - 1.02±0.04 · 10−7 1.51±0.06 · 10−6

King

CTGAN 8.15±0.04 · 10−3 1.21±0.01 · 10−1 5.72±0.34 · 10−7 8.49±0.50 · 10−6

TabDDPM 9.27±0.56 · 10−5 1.38±0.08 · 10−3 5.08±0.49 · 10−5 7.55±0.73 · 10−4

TabSyn 9.40±1.26 · 10−4 9.57±0.35 · 10−3 9.15±0.02 · 10−6 1.36±0.00 · 10−4

TVAE 4.43±0.04 · 10−3 6.57±0.07 · 10−2 2.59±0.18 · 10−7 3.85±0.26 · 10−6

SMOTE - - 8.77±0.84 · 10−6 1.30±0.12 · 10−4

UC-SMOTE - - 2.25±0.10 · 10−6 3.34±0.14 · 10−5
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Tuning costs estimation for the best models (continued).

Dataset Model Emissions Training ↓ Energy Training ↓ Emissions Sampling ↓ Energy Sampling ↓

Miniboo
ne

CTGAN 3.16±1.09 · 10−2 4.69±1.62 · 10−1 3.50±0.24 · 10−6 5.20±0.35 · 10−5

TabDDPM 4.50±1.33 · 10−4 6.68±1.97 · 10−3 1.84±0.69 · 10−4 2.74±1.03 · 10−3

TabSyn 3.41±0.61 · 10−3 3.18±0.79 · 10−2 5.57±0.07 · 10−5 8.26±0.11 · 10−4

TVAE 2.18±2.12 · 10−2 3.24±3.14 · 10−1 1.94±0.22 · 10−6 2.88±0.32 · 10−5

SMOTE - - 4.39±0.34 · 10−6 6.51±0.51 · 10−5

UC-SMOTE - - 1.32±0.01 · 10−5 1.95±0.02 · 10−4

Moons

CTGAN 1.15±0.43 · 10−2 1.71±0.64 · 10−1 5.02±1.07 · 10−7 7.45±1.59 · 10−6

TabDDPM 1.31±0.77 · 10−4 1.94±1.14 · 10−3 7.39±5.33 · 10−5 1.10±0.79 · 10−3

TabSyn 9.26±2.41 · 10−4 1.14±0.36 · 10−2 1.22±0.65 · 10−5 1.81±0.96 · 10−4

TVAE 3.37±0.24 · 10−3 5.00±0.36 · 10−2 1.78±0.43 · 10−7 2.65±0.64 · 10−6

SMOTE - - 2.44±0.52 · 10−7 3.63±0.78 · 10−6

UC-SMOTE - - 1.03±0.12 · 10−6 1.53±0.18 · 10−5

Table D.13: CO2 emissions (in Kg) and Energy Consumption (in kWh) of the
benchmark challengers. The energy consumption is obtained by summing the
CPU, GPU and RAM energy. Training costs are given for all models on the same
basis of 400 epochs. Sampling costs are given for 5 samples. The best values are
formatted in bold green and the worse are in red.

Appendix D.2. Whole Tuning Cost Estimation

As mentioned in Section 3.1 we could not perform the hyperparameter
search and training phases on a uniform hardware and software architecture
and we estimated the tuning cost with Equation (1).

Each trial can be stopped based on three conditions: an early stopping
decided by the model, a poor c2st performance or a time limit. Therefore,
to get an accurate estimate of the init-cost and the cost-per-step from the
single-gpu mentioned in Appendix D.1, we needed to extract from our logs
the effective number of training steps performed per trial.

In addition, we also considered the parallelization scheme applied during
the tuning procedure. One issue with tabsyn was that we observed a general
slowdown when the model was parallelized too heavily. This issue was even
more marked on datasets with a large number of columns. We hence reduced
the number trials per gpu and the global number of trials to 100 to fall back
to a reasonable time for this model.

Finally, we measured cost on a typical configuration used during our
tuning experiment: 8 Tesla V100-SXM2 32 gb. Considering those 8 gpus,
we used the following parallel allocation of trials: 64 for tvae and ctgan,
40 for tabddpm, and 16 for tabsyn. A model that can be easily parallelized
during the hyperparameter tuning phase offers a cost advantage. It is hence
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important to consider this aspect during the evaluation process. The results
are presented in Table D.14.

Dataset Model
Metrics

Energy

(kWh)
↓

Emissions

(Kg)
↓

Duration

(HH:MM)
↓

Abalone

TVAE 0.00 0.01 00:02

CTGAN 0.01 0.08 00:19

TabDDPM 0.00 0.05 00:10

TabSyn 0.03 0.40 01:31

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:00

Adult

TVAE 0.01 0.17 00:42

CTGAN 0.02 0.30 01:15

TabDDPM 0.01 0.12 00:25

TabSyn 0.08 0.91 03:27

SMOTE 0.00 0.01 00:04

UC-SMOTE 0.00 0.02 00:06

Bank
marketing

TVAE 0.01 0.10 00:25

CTGAN 0.03 0.38 01:35

TabDDPM 0.01 0.13 00:29

TabSyn 0.08 0.96 03:27

SMOTE 0.00 0.02 00:06

UC-SMOTE 0.00 0.02 00:05

Bike
sharing

TVAE 0.00 0.05 00:12

CTGAN 0.03 0.40 01:41

TabDDPM 0.01 0.12 00:22

TabSyn 0.05 0.61 02:18

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:00

Black friday

TVAE 0.03 0.46 01:55

CTGAN 0.08 1.18 04:54

TabDDPM 0.01 0.13 00:23

TabSyn 0.21 2.40 09:19

SMOTE 0.00 0.06 00:19

UC-SMOTE 0.01 0.22 01:07

Cardio

TVAE 0.01 0.16 00:41

CTGAN 0.03 0.51 02:07

TabDDPM 0.01 0.08 00:12

TabSyn 0.10 1.38 04:13

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:00

Churn

TVAE 0.00 0.03 00:07

CTGAN 0.02 0.29 01:11

TabDDPM 0.02 0.31 00:48

TabSyn 0.04 0.53 02:02

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:00
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Tuning costs estimation (continued).

Dataset Model
Metrics

Energy

(kWh)
↓

Emissions

(Kg)
↓

Duration

(HH:MM)
↓

Covertype

TVAE 0.19 2.77 11:34

CTGAN 0.54 8.04 33:17

TabDDPM 0.03 0.49 01:48

TabSyn 0.19 1.53 07:54

SMOTE 0.02 0.26 01:19

UC-SMOTE 0.02 0.28 01:27

Diamonds

TVAE 0.01 0.10 00:25

CTGAN 0.03 0.40 01:39

TabDDPM 0.01 0.15 00:24

TabSyn 0.08 1.01 03:22

SMOTE 0.00 0.01 00:02

UC-SMOTE 0.00 0.00 00:00

Heloc

TVAE 0.00 0.04 00:10

CTGAN 0.03 0.49 02:02

TabDDPM 0.00 0.03 00:05

TabSyn 0.04 0.54 02:08

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:00

Higgs

TVAE 0.04 0.53 02:13

CTGAN 0.11 1.61 06:42

TabDDPM 0.01 0.10 00:15

TabSyn 0.18 1.58 07:50

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:01

House
16h

TVAE 0.01 0.09 00:23

CTGAN 0.01 0.10 00:25

TabDDPM 0.00 0.04 00:06

TabSyn 0.05 0.58 02:16

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:00

Insurance

TVAE 0.00 0.00 00:00

CTGAN 0.00 0.03 00:06

TabDDPM 0.00 0.05 00:12

TabSyn 0.03 0.35 01:25

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:00

King

TVAE 0.01 0.09 00:23

CTGAN 0.01 0.21 00:51

TabDDPM 0.01 0.17 00:27

TabSyn 0.05 0.66 02:26

SMOTE 0.00 0.00 00:01

UC-SMOTE 0.00 0.00 00:00
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Tuning costs estimation (continued).

Dataset Model
Metrics

Energy

(kWh)
↓

Emissions

(Kg)
↓

Duration

(HH:MM)
↓

Miniboo
ne

TVAE 0.04 0.56 02:19

CTGAN 0.05 0.73 02:59

TabDDPM 0.01 0.10 00:14

TabSyn 0.31 2.02 11:44

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.01 00:02

Moons

TVAE 0.01 0.08 00:20

CTGAN 0.02 0.29 01:12

TabDDPM 0.01 0.08 00:12

TabSyn 0.05 0.87 02:35

SMOTE 0.00 0.00 00:00

UC-SMOTE 0.00 0.00 00:00

Table D.14: Estimated hyperparameter search cost based on the estimated train-
ing cost of the best models presented in Table D.13. All costs associated with
tabsyn include those incurred by the vae and the denoiser. The energy and emis-
sions values are rounded to two decimals and take into account the number of trials
we could run in parallel per model. The best values per metric are formatted in
bold green and the worse are in red.

Appendix E. Base Models and their Tuned Versions

We also trained the models using their native codes and hyperparameters
to provide an additional reference for comparison with their tuned versions.
Table E.15 presents the results as evaluated under the same procedure as
the tuned models for c2st, dcr-rate, ml-Efficacy, column-wise similarity
(named ”Shape”), and pair-wise correlation (named ”Pair”). For tabddpm,
since there is no default hyperparameters provided [8], we fixed one based on
the base configuration provided in the authors’ GitHub repository.

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑

Abalone

Train Copy 0.51 ± 0.00 1.00 ± 0.00 0.23 ± 0.01 0.96 ± 0.01 0.88 ± 0.01

CTGAN 0.99 ± 0.01 0.60 ± 0.01 0.12 ± 0.03 0.87 ± 0.02 0.76 ± 0.01

TVAE 0.96 ± 0.00 0.61 ± 0.02 0.22 ± 0.02 0.91 ± 0.02 0.83 ± 0.03

TabDDPM 1.00 ± 0.00 0.64 ± 0.01 0.00 ± 0.00 0.85 ± 0.01 0.70 ± 0.01

TabSyn 0.78 ± 0.02 0.64 ± 0.01 0.22 ± 0.01 0.95 ± 0.01 0.88 ± 0.01

Adult

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.71 ± 0.01 0.99 ± 0.00 0.98 ± 0.00

CTGAN 0.96 ± 0.01 0.61 ± 0.01 0.61 ± 0.05 0.88 ± 0.02 0.82 ± 0.02

TVAE 0.94 ± 0.01 0.61 ± 0.00 0.63 ± 0.03 0.92 ± 0.00 0.85 ± 0.01

TabDDPM 0.66 ± 0.01 0.62 ± 0.00 0.67 ± 0.00 0.98 ± 0.00 0.95 ± 0.00

50



Results per datasets and models under diverse metrics for the base models (con-
tinued).

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑

TabSyn 0.71 ± 0.06 0.62 ± 0.00 0.66 ± 0.01 0.98 ± 0.01 0.95 ± 0.02

Bank
marketing

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.54 ± 0.01 0.99 ± 0.00 0.98 ± 0.01

CTGAN 0.89 ± 0.01 0.62 ± 0.01 0.33 ± 0.05 0.92 ± 0.00 0.86 ± 0.01

TVAE 0.95 ± 0.00 0.62 ± 0.00 0.52 ± 0.02 0.91 ± 0.01 0.84 ± 0.02

TabDDPM 0.68 ± 0.01 0.63 ± 0.01 0.48 ± 0.02 0.99 ± 0.01 0.96 ± 0.00

TabSyn 0.65 ± 0.04 0.63 ± 0.01 0.47 ± 0.01 0.98 ± 0.01 0.96 ± 0.00

Bike
sharing

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.53 ± 0.00

CTGAN 1.00 ± 0.00 0.61 ± 0.00 0.37 ± 0.03 0.93 ± 0.01 0.51 ± 0.01

TVAE 1.00 ± 0.00 0.61 ± 0.01 0.42 ± 0.08 0.91 ± 0.01 0.51 ± 0.01

TabDDPM 0.85 ± 0.01 0.61 ± 0.00 0.67 ± 0.03 0.98 ± 0.00 0.53 ± 0.00

TabSyn 0.94 ± 0.03 0.61 ± 0.00 0.31 ± 0.04 0.95 ± 0.01 0.52 ± 0.01

Black
friday

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00 0.99 ± 0.00

CTGAN 0.92 ± 0.01 0.66 ± 0.01 0.40 ± 0.01 0.94 ± 0.01 0.84 ± 0.01

TVAE 0.98 ± 0.00 0.67 ± 0.01 0.29 ± 0.08 0.83 ± 0.01 0.73 ± 0.01

TabDDPM 0.92 ± 0.00 0.67 ± 0.01 0.31 ± 0.03 0.99 ± 0.00 0.98 ± 0.00

TabSyn 0.91 ± 0.01 0.68 ± 0.00 0.13 ± 0.03 0.98 ± 0.00 0.96 ± 0.01

Cardio

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.72 ± 0.01 1.00 ± 0.00 0.98 ± 0.01

CTGAN 1.00 ± 0.01 0.62 ± 0.01 0.67 ± 0.02 0.93 ± 0.01 0.93 ± 0.01

TVAE 1.00 ± 0.00 0.63 ± 0.00 0.67 ± 0.04 0.88 ± 0.01 0.90 ± 0.02

TabDDPM 0.59 ± 0.00 0.64 ± 0.00 0.72 ± 0.01 0.99 ± 0.00 0.96 ± 0.02

TabSyn 0.58 ± 0.01 0.64 ± 0.01 0.72 ± 0.01 0.99 ± 0.01 0.97 ± 0.01

Churn

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.59 ± 0.02 0.95 ± 0.00 0.87 ± 0.01

CTGAN 0.87 ± 0.02 0.60 ± 0.00 0.19 ± 0.10 0.85 ± 0.02 0.79 ± 0.00

TVAE 0.98 ± 0.01 0.60 ± 0.01 0.45 ± 0.10 0.75 ± 0.03 0.63 ± 0.03

TabDDPM 1.00 ± 0.00 0.65 ± 0.40 0.00 ± 0.00 0.59 ± 0.02 0.56 ± 0.02

TabSyn 0.64 ± 0.03 0.61 ± 0.01 0.43 ± 0.13 0.92 ± 0.01 0.85 ± 0.00

Covertype

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.01

CTGAN 1.00 ± 0.00 0.60 ± 0.00 0.66 ± 0.01 0.97 ± 0.00 0.94 ± 0.01

TVAE 1.00 ± 0.00 0.60 ± 0.00 0.72 ± 0.01 0.98 ± 0.00 0.95 ± 0.01

TabDDPM 0.82 ± 0.01 0.60 ± 0.00 0.73 ± 0.01 1.00 ± 0.00 0.99 ± 0.00

TabSyn 0.72 ± 0.04 0.60 ± 0.00 0.79 ± 0.03 0.99 ± 0.00 0.99 ± 0.00

Diamonds

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.77 ± 0.01

CTGAN 0.98 ± 0.00 0.60 ± 0.00 0.87 ± 0.01 0.91 ± 0.01 0.75 ± 0.04

TVAE 0.97 ± 0.01 0.60 ± 0.01 0.91 ± 0.01 0.92 ± 0.02 0.76 ± 0.03

TabDDPM 0.76 ± 0.01 0.61 ± 0.00 0.97 ± 0.00 0.99 ± 0.01 0.71 ± 0.01

TabSyn 0.95 ± 0.02 0.64 ± 0.00 0.19 ± 0.06 0.96 ± 0.00 0.72 ± 0.01

Heloc

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.70 ± 0.01 0.99 ± 0.00 0.97 ± 0.01

CTGAN 1.00 ± 0.00 0.63 ± 0.00 0.40 ± 0.14 0.87 ± 0.05 0.87 ± 0.07

TVAE 0.98 ± 0.01 0.63 ± 0.02 0.69 ± 0.01 0.90 ± 0.00 0.75 ± 0.01

TabDDPM 0.71 ± 0.01 0.64 ± 0.02 0.70 ± 0.01 0.97 ± 0.00 0.94 ± 0.01

TabSyn 0.75 ± 0.01 0.65 ± 0.01 0.69 ± 0.01 0.97 ± 0.00 0.96 ± 0.01

Higgs

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.74 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

CTGAN 1.00 ± 0.00 0.60 ± 0.00 0.61 ± 0.08 0.87 ± 0.02 0.95 ± 0.00

TVAE 1.00 ± 0.00 0.61 ± 0.02 0.68 ± 0.02 0.78 ± 0.00 0.94 ± 0.01

TabDDPM 0.79 ± 0.02 0.60 ± 0.01 0.72 ± 0.01 0.98 ± 0.01 0.93 ± 0.02

TabSyn 0.59 ± 0.01 0.61 ± 0.00 0.73 ± 0.00 0.94 ± 0.00 0.99 ± 0.00
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Results per datasets and models under diverse metrics for the base models (con-
tinued).

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑

House
16h

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.64 ± 0.01 0.99 ± 0.01 0.99 ± 0.00

CTGAN 1.00 ± 0.00 0.61 ± 0.02 0.20 ± 0.05 0.86 ± 0.01 0.95 ± 0.01

TVAE 0.98 ± 0.00 0.61 ± 0.01 0.36 ± 0.02 0.89 ± 0.00 0.96 ± 0.01

TabDDPM 0.63 ± 0.01 0.61 ± 0.01 0.57 ± 0.01 0.98 ± 0.00 0.97 ± 0.01

TabSyn 0.84 ± 0.03 0.62 ± 0.00 0.33 ± 0.06 0.96 ± 0.01 0.98 ± 0.01

Insurance

Train Copy 0.48 ± 0.01 1.00 ± 0.00 0.85 ± 0.03 0.96 ± 0.01 0.91 ± 0.01

CTGAN 0.92 ± 0.01 0.67 ± 0.06 −0.18 ± 0.05 0.84 ± 0.00 0.81 ± 0.01

TVAE 0.87 ± 0.02 0.62 ± 0.02 0.61 ± 0.03 0.85 ± 0.03 0.77 ± 0.03

TabDDPM 0.58 ± 0.01 0.60 ± 0.02 0.83 ± 0.02 0.95 ± 0.01 0.90 ± 0.01

TabSyn 0.60 ± 0.03 0.61 ± 0.02 0.83 ± 0.01 0.94 ± 0.01 0.89 ± 0.01

King

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.87 ± 0.00 0.98 ± 0.01 0.97 ± 0.01

CTGAN 1.00 ± 0.00 0.60 ± 0.01 0.54 ± 0.04 0.89 ± 0.01 0.93 ± 0.00

TVAE 0.99 ± 0.01 0.60 ± 0.00 0.70 ± 0.02 0.92 ± 0.01 0.91 ± 0.01

TabDDPM 1.00 ± 0.00 0.91 ± 0.14 −192.96 ± 153.37 0.33 ± 0.03 0.74 ± 0.02

TabSyn 0.97 ± 0.01 0.62 ± 0.01 0.05 ± 0.04 0.96 ± 0.01 0.94 ± 0.00

Miniboo
ne

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.89 ± 0.01 0.99 ± 0.00 0.99 ± 0.01

CTGAN 1.00 ± 0.00 0.60 ± 0.00 0.54 ± 0.05 0.80 ± 0.03 0.56 ± 0.01

TVAE 1.00 ± 0.00 0.60 ± 0.00 0.82 ± 0.01 0.91 ± 0.02 0.56 ± 0.00

TabDDPM 0.82 ± 0.01 0.63 ± 0.01 0.88 ± 0.00 0.95 ± 0.02 0.83 ± 0.03

TabSyn 0.71 ± 0.09 0.60 ± 0.00 0.89 ± 0.01 0.98 ± 0.01 0.89 ± 0.05

Moons

Train Copy 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

CTGAN 0.93 ± 0.01 0.60 ± 0.05 1.00 ± 0.00 0.94 ± 0.01 0.70 ± 0.03

TVAE 0.82 ± 0.02 0.61 ± 0.03 1.00 ± 0.00 0.97 ± 0.01 0.76 ± 0.02

TabDDPM 0.61 ± 0.16 0.53 ± 0.15 0.97 ± 0.06 0.93 ± 0.10 0.90 ± 0.16

TabSyn 0.58 ± 0.03 0.61 ± 0.01 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.01

Table E.15: Results for base models. Models are trained using their default
hyperparameters as provided by the authors in their papers. The best values per
metric are formatted in bold green and the worse values are in red.
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Appendix F. Quick Search on Reduced Hyperparameter Space

With the reduced hyperparameters search spaces presented in Appendix
A, we ran a light hyperparameter tuning described in Section 5. The experi-
ment was done on all dataset (Table 2). We performed 50 trials per fold with
3 fold, meaning we ran a total of 150 trials for this light experiment. The
results par datasets are shown in Table F.16.

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑ Sampling time ↓

Abalone

Train Copy 0.51 ± 0.00 1.00 ± 0.00 0.23 ± 0.01 0.96 ± 0.01 0.88 ± 0.01 -

CTGAN 0.71 ± 0.03 0.63 ± 0.00 0.17 ± 0.01 0.93 ± 0.02 0.86 ± 0.04 00 ± 0.01

TVAE 0.64 ± 0.02 0.67 ± 0.00 0.23 ± 0.01 0.93 ± 0.02 0.89 ± 0.03 00 ± 0.00

TabDDPM 0.78 ± 0.01 0.69 ± 0.03 0.23 ± 0.01 0.95 ± 0.00 0.88 ± 0.02 03 ± 0.88

TabSyn 0.80 ± 0.00 0.62 ± 0.01 0.19 ± 0.03 0.93 ± 0.01 0.85 ± 0.01 00 ± 0.01

Adult

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.71 ± 0.01 0.99 ± 0.00 0.98 ± 0.00 -

CTGAN 0.77 ± 0.01 0.72 ± 0.00 0.65 ± 0.00 0.96 ± 0.01 0.89 ± 0.02 00 ± 0.02

TVAE 0.77 ± 0.01 0.72 ± 0.01 0.65 ± 0.02 0.96 ± 0.01 0.93 ± 0.00 00 ± 0.00

TabDDPM 0.67 ± 0.01 0.62 ± 0.00 0.67 ± 0.01 0.97 ± 0.01 0.94 ± 0.01 11 ± 0.63

TabSyn 0.73 ± 0.01 0.62 ± 0.00 0.66 ± 0.01 0.97 ± 0.01 0.94 ± 0.01 02 ± 0.01

Bank
marketing

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.54 ± 0.01 0.99 ± 0.00 0.98 ± 0.01 -

CTGAN 0.72 ± 0.01 0.63 ± 0.00 0.45 ± 0.04 0.98 ± 0.00 0.94 ± 0.01 00 ± 0.01

TVAE 0.78 ± 0.02 0.63 ± 0.00 0.47 ± 0.03 0.97 ± 0.01 0.94 ± 0.00 00 ± 0.00

TabDDPM 0.68 ± 0.00 0.63 ± 0.01 0.52 ± 0.03 0.97 ± 0.00 0.95 ± 0.01 16 ± 2.18

TabSyn 0.75 ± 0.00 0.62 ± 0.00 0.42 ± 0.04 0.97 ± 0.01 0.95 ± 0.00 02 ± 0.01

Bike
sharing

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.94 ± 0.00 0.99 ± 0.00 0.53 ± 0.00 -

CTGAN 0.89 ± 0.01 0.61 ± 0.01 0.71 ± 0.01 0.98 ± 0.01 0.53 ± 0.00 00 ± 0.00

TVAE 0.81 ± 0.01 0.61 ± 0.01 0.69 ± 0.03 0.96 ± 0.00 0.53 ± 0.00 00 ± 0.00

TabDDPM 0.80 ± 0.02 0.63 ± 0.01 0.83 ± 0.01 0.96 ± 0.02 0.53 ± 0.01 06 ± 1.34

TabSyn 0.91 ± 0.01 0.61 ± 0.01 0.32 ± 0.06 0.95 ± 0.01 0.52 ± 0.00 00 ± 0.01

Black
friday

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 -

CTGAN 0.87 ± 0.01 0.68 ± 0.00 0.36 ± 0.01 0.97 ± 0.01 0.91 ± 0.02 01 ± 0.17

TVAE 0.95 ± 0.01 0.68 ± 0.00 0.27 ± 0.02 0.97 ± 0.00 0.95 ± 0.00 00 ± 0.02

TabDDPM 0.89 ± 0.01 0.67 ± 0.00 0.44 ± 0.02 0.97 ± 0.01 0.96 ± 0.01 50 ± 17.19

TabSyn 0.89 ± 0.01 0.68 ± 0.00 0.16 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 07 ± 0.01

Cardio

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.72 ± 0.01 1.00 ± 0.00 0.98 ± 0.01 -

CTGAN 0.64 ± 0.01 0.64 ± 0.01 0.72 ± 0.01 0.99 ± 0.00 0.96 ± 0.00 00 ± 0.06

TVAE 0.71 ± 0.01 0.64 ± 0.01 0.73 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 00 ± 0.01

TabDDPM 0.57 ± 0.01 0.64 ± 0.00 0.72 ± 0.01 0.99 ± 0.00 0.98 ± 0.01 12 ± 4.58

TabSyn 0.59 ± 0.01 0.64 ± 0.00 0.72 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 03 ± 0.01

Churn

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.59 ± 0.02 0.95 ± 0.00 0.87 ± 0.01 -

CTGAN 0.63 ± 0.01 0.63 ± 0.01 0.39 ± 0.01 0.93 ± 0.00 0.84 ± 0.01 00 ± 0.01

TVAE 0.64 ± 0.00 0.63 ± 0.01 0.53 ± 0.01 0.92 ± 0.00 0.84 ± 0.00 00 ± 0.00

TabDDPM 0.98 ± 0.03 0.67 ± 0.18 0.02 ± 0.03 0.59 ± 0.05 0.55 ± 0.02 18 ± 1.06

TabSyn 0.68 ± 0.06 0.61 ± 0.00 0.46 ± 0.03 0.91 ± 0.01 0.84 ± 0.01 00 ± 0.01
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Results per datasets and models under diverse metrics for the light search (con-
tinued).

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑ Sampling time ↓

Covertype

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.90 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 -

CTGAN 0.98 ± 0.00 0.60 ± 0.00 0.69 ± 0.00 0.98 ± 0.00 0.95 ± 0.01 06 ± 1.58

TVAE 0.90 ± 0.01 0.60 ± 0.00 0.77 ± 0.01 0.98 ± 0.00 0.96 ± 0.00 02 ± 0.07

TabDDPM 0.97 ± 0.01 0.64 ± 0.02 0.69 ± 0.00 0.94 ± 0.02 0.89 ± 0.03 355 ± 10.90

TabSyn 0.87 ± 0.00 0.61 ± 0.01 0.65 ± 0.03 0.98 ± 0.00 0.68 ± 0.00 02 ± 0.02

Diamonds

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.77 ± 0.01 -

CTGAN 0.89 ± 0.01 0.64 ± 0.01 0.94 ± 0.00 0.95 ± 0.00 0.74 ± 0.02 00 ± 0.08

TVAE 0.76 ± 0.02 0.64 ± 0.00 0.96 ± 0.01 0.95 ± 0.01 0.73 ± 0.01 00 ± 0.01

TabDDPM 0.75 ± 0.01 0.61 ± 0.01 0.97 ± 0.00 0.97 ± 0.01 0.70 ± 0.02 10 ± 1.26

TabSyn 0.92 ± 0.01 0.64 ± 0.01 0.65 ± 0.09 0.95 ± 0.01 0.72 ± 0.02 02 ± 0.01

Heloc

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.70 ± 0.01 0.99 ± 0.00 0.97 ± 0.01 -

CTGAN 0.93 ± 0.02 0.64 ± 0.01 0.70 ± 0.01 0.97 ± 0.00 0.93 ± 0.01 00 ± 0.02

TVAE 0.92 ± 0.01 0.63 ± 0.01 0.69 ± 0.02 0.94 ± 0.00 0.88 ± 0.01 00 ± 0.00

TabDDPM 0.71 ± 0.02 0.67 ± 0.01 0.69 ± 0.02 0.95 ± 0.01 0.92 ± 0.03 03 ± 1.99

TabSyn 0.82 ± 0.01 0.65 ± 0.01 0.69 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 00 ± 0.01

Higgs

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.74 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 -

CTGAN 0.87 ± 0.00 0.60 ± 0.01 0.70 ± 0.01 0.98 ± 0.00 0.98 ± 0.00 00 ± 0.09

TVAE 0.92 ± 0.01 0.60 ± 0.01 0.71 ± 0.02 0.94 ± 0.01 0.97 ± 0.00 00 ± 0.03

TabDDPM 0.61 ± 0.02 0.62 ± 0.01 0.73 ± 0.00 0.98 ± 0.01 0.95 ± 0.01 08 ± 1.00

TabSyn 0.76 ± 0.05 0.60 ± 0.01 0.71 ± 0.02 0.92 ± 0.01 0.98 ± 0.00 04 ± 0.01

House
16h

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.64 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 -

CTGAN 0.84 ± 0.02 0.62 ± 0.00 0.45 ± 0.02 0.97 ± 0.01 0.97 ± 0.01 00 ± 0.01

TVAE 0.84 ± 0.00 0.62 ± 0.01 0.46 ± 0.03 0.94 ± 0.00 0.98 ± 0.00 00 ± 0.00

TabDDPM 0.64 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.96 ± 0.01 0.94 ± 0.03 02 ± 0.75

TabSyn 0.83 ± 0.03 0.62 ± 0.01 0.35 ± 0.01 0.95 ± 0.01 0.99 ± 0.01 01 ± 0.01

Insurance

Train Copy 0.48 ± 0.01 1.00 ± 0.00 0.85 ± 0.03 0.96 ± 0.01 0.91 ± 0.01 -

CTGAN 0.67 ± 0.02 0.92 ± 0.01 0.66 ± 0.04 0.94 ± 0.01 0.85 ± 0.02 00 ± 0.01

TVAE 0.65 ± 0.02 0.91 ± 0.02 0.80 ± 0.03 0.93 ± 0.01 0.88 ± 0.01 00 ± 0.00

TabDDPM 0.61 ± 0.02 0.62 ± 0.02 0.83 ± 0.03 0.94 ± 0.01 0.89 ± 0.02 06 ± 2.76

TabSyn 0.63 ± 0.02 0.60 ± 0.03 0.80 ± 0.01 0.93 ± 0.01 0.88 ± 0.02 00 ± 0.01

King

Train Copy 0.50 ± 0.01 1.00 ± 0.00 0.87 ± 0.00 0.98 ± 0.01 0.97 ± 0.01 -

CTGAN 0.96 ± 0.01 0.62 ± 0.00 0.66 ± 0.03 0.97 ± 0.00 0.94 ± 0.01 00 ± 0.13

TVAE 0.95 ± 0.01 0.61 ± 0.01 0.80 ± 0.01 0.95 ± 0.01 0.94 ± 0.00 00 ± 0.01

TabDDPM 1.00 ± 0.00 0.70 ± 0.46 0.03 ± 0.68 0.28 ± 0.07 0.76 ± 0.00 05 ± 0.43

TabSyn 0.98 ± 0.01 0.62 ± 0.01 −0.01 ± 0.01 0.94 ± 0.01 0.93 ± 0.00 01 ± 0.01

Miniboo
ne

Train Copy 0.50 ± 0.00 1.00 ± 0.00 0.89 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 -

CTGAN 0.90 ± 0.01 0.60 ± 0.01 0.87 ± 0.01 0.93 ± 0.01 0.58 ± 0.01 01 ± 0.03

TVAE 0.94 ± 0.01 0.60 ± 0.00 0.87 ± 0.00 0.94 ± 0.00 0.59 ± 0.01 00 ± 0.03

TabDDPM 0.73 ± 0.01 0.62 ± 0.00 0.89 ± 0.01 0.96 ± 0.01 0.83 ± 0.05 12 ± 1.35

TabSyn 0.87 ± 0.01 0.60 ± 0.01 0.87 ± 0.00 0.96 ± 0.00 0.76 ± 0.14 06 ± 0.08
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Results per datasets and models under diverse metrics for the light search (con-
tinued).

Dataset Model
Metrics

C2ST ↓ DCR-Rate ↓ ML-Efficacy ↑ Shape ↑ Pair ↑ Sampling time ↓

Moons

Train Copy 0.50 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 -

CTGAN 0.70 ± 0.02 0.62 ± 0.02 1.00 ± 0.00 0.96 ± 0.01 0.96 ± 0.01 00 ± 0.02

TVAE 0.69 ± 0.01 0.62 ± 0.01 1.00 ± 0.00 0.96 ± 0.01 0.93 ± 0.02 00 ± 0.00

TabDDPM 0.53 ± 0.01 0.61 ± 0.01 1.00 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 08 ± 2.13

TabSyn 0.59 ± 0.01 0.61 ± 0.01 1.00 ± 0.00 0.98 ± 0.01 0.97 ± 0.01 01 ± 0.00

Table F.16: Light experiment results under various metrics. Results are averaged
over 3 folds with 5 synthetic samples per fold as done in the extensive hyperpa-
rameter tuning. The best values per metric are formatted in bold green and the
worse values are in red.
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(a) C2ST

(b) Column-wise similarity

(c) Pair-wise correlation

(d) DCR-Rate

(e) ML-Efficacy

Figure F.12: Models’ ranking under the light experiment setup with critical
difference diagrams on c2st, column-wise similarity, pair-wise correlation, dcr-
rate, and ml-Efficacy metrics over all datasets.
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