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Abstract: Grain-oriented silicon steel (GO FeSi) laminations are vital components for efficient energy
conversion in electromagnetic devices. While traditionally optimized for power frequencies of
50/60 Hz, the pursuit of higher frequency operation (f ≥ 200 Hz) promises enhanced power density.
This paper introduces a model for estimating GO FeSi laminations’ magnetic behavior under these
elevated operational frequencies. The proposed model combines the Maxwell diffusion equation and
a material law derived from a fractional differential equation, capturing the viscoelastic characteristics
of the magnetization process. Remarkably, the model’s dynamical contribution, characterized by
only two parameters, achieves a notable 4.8% Euclidean relative distance error across the frequency
spectrum from 50 Hz to 1 kHz. The paper’s initial section offers an exhaustive description of the
model, featuring comprehensive comparisons between simulated and measured data. Subsequently,
a methodology is presented for the localized segregation of magnetic losses into three conventional
categories: hysteresis, classical, and excess, delineated across various tested frequencies. Further
leveraging the model’s predictive capabilities, the study extends to investigating the very high-
frequency regime, elucidating the spatial distribution of loss contributions. The application of
proportional–iterative learning control facilitates the model’s adaptation to standard characterization
conditions, employing sinusoidal imposed flux density. The paper deliberates on the implications of
GO FeSi behavior under extreme operational conditions, offering insights and reflections essential for
understanding and optimizing magnetic core performance in high-frequency applications.

Keywords: magnetic loss; fractional derivative; diffusion equation; frequency dependency; loss
contributions; loss distribution

1. Introduction

Soft magnetic materials are crucial components in electromagnetic devices, facilitating
the conversion of mechanical and electrical energies [1]. In power frequencies (f = 50/60 Hz),
electrical steel (FeSi 3%) laminations, typically ranging from ζ = 0.2 to 0.3 mm thick, prevail
as the preferred choice. These laminations are precisely designed to ensure a homogeneous
magnetization distribution, mitigate eddy current losses, and maintain requisite mechanical
properties [2]. At f = 50 Hz, the power density of the electromagnetic converter is limited,
necessitating bulky converters for high-power conversion. To address this limitation, two
primary strategies emerge: increasing induction levels (although electrical steel magneti-
zation saturation is already close to 2T, with minimal gain perspectives) or elevating the
working frequency at the cost of escalated losses [3–5].
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Despite the predominance of non-oriented (NO) electrical steel in mass production [6,7],
our focus in this study centers exclusively on the grain-oriented 3% silicon steels (GO
FeSi) renowned for their superior characteristics, particularly in the rolling direction (RD).
More specifically, we focus on the behavior of GO FeSi within the high-frequency range
(f > 200 Hz), where significant gains in power density are anticipated.

GO FeSi materials owe their exceptional magnetic properties to their Goss texture,
ensuring the alignment of grains along the crystallographic easy magnetization direction.
This alignment induces significant anisotropic behavior and privileged angles of very
easy magnetization [8].

The frequency dependence of GO FeSi’s magnetic behavior, marked by phenomena
such as the skin effect, defies simplistic representation through conventional modeling
approaches. Despite decades of research spanning seminal contributions [9–15], the quest
for a unified physical model capable of elucidating the dynamic B-H loop and power loss
mechanisms remains elusive [16]. According to Bertotti’s statistical theory of losses (STL),
the loss per magnetization cycle W at magnetizing frequency f and maximum flux density
Bm can commonly be expressed as the sum of the static hysteresis loss Whyst, the classical
eddy current loss Wclas, and the excess loss Wexc:

W = Whyst + Wclas + Wexc (1)

Expressions for all these terms can be found in the literature [2], such as specific
experimental conditions for applying STL [17]. As mentioned in [18], STL has been used
for years: “This three-term loss representation has found a wide range of applications due
to its simplicity and functionality”. However, in its Bertotti form, STL is limited to the
conventional frequency range, with a relatively homogeneous magnetization distribution.
Also, STL can only provide losses vs. frequency predictions and not simulate any quantity
in the time domain (B(t), H(t), etc.) or describe local information. This restriction is not in
effect in the other classical approaches, relying on the resolution of the one-dimensional
diffusion equation (where σ is the electrical conductivity [18]):

σ
∂B
∂t

=
∂2H
∂x2 (2)

Multiple models have been developed by solving Equation (2) and a time-dependent
material law. In [19], this law took the form of a first-order differential equation and yielded
satisfactory results for frequencies up to f = 1 kHz, albeit with an excessive number of
parameters. Similar outcomes were later achieved in [20] with a reduced, though still
substantial, parameter count.

According to [18], solving Equation (2) in the case of GO FeSi inevitably leads to
inaccurate results. The origin of this discrepancy is attributed to the limited proportion of
classical eddy currents in the total loss. Better results over a broad frequency bandwidth
are obtained in [18,21] using the so-called thin sheet model (TSM). TSM is derived from
STL, expressed in its magnetic field separation form [21]:

H = Hhyst + Heddy + Hexc (3)

Here, the instantaneous magnetic field strength tangent to the lamination surface
is separated into hysteresis, eddy current, and excess fields. Equation (4) is the TSM
fundamental equation:

H = Hhyst(B) + kclas

(
dB
dt

)
+ gexc(B)δ

(
dB
dt

)αexc(B)
(4)

Hhyst(B), also called Hstat(B) later in this paper, is a static contribution obtained from a
static hysteresis model (Jiles-Atherton (J-A) model [22], Preisach model [23,24], etc.) in their
B-input form. kclas is a constant depending on the specimen conductivity and geometry, δ is a
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directional parameter (±1), and gexc(B) and αexc(B) are two B-dependent functions that have to
be defined for each frequency tested. The comparison simulations/measurements available
in [18,21] reveal an excellent behavior of the TSM. Still, the number of parameters to be
adjusted for each frequency level (>10 in [21]) is overwhelming, and the predictive capability
of TSM is minimal. Eventually, just like STL, TSM does not provide local information.

Recent advancements in fractional calculus present novel avenues for overcoming
traditional limitations [25,26], offering precise simulations across considerable frequency
bandwidths while providing detailed insights into the local evolution of magnetic quanti-
ties. Our study builds upon these advancements, proposing a methodology that combines
fractional derivatives with established modeling frameworks to accurately predict loss
contributions across diverse frequency regimes. More precisely, this manuscript presents a
comprehensive model that encapsulates the nuanced interplay between fractional calculus
and magnetic losses. We outline our methodology, experimental setup, validation proce-
dures, and critical findings, underscoring the novelty and significance of our research in
advancing the understanding and predictive capabilities of soft magnetic materials.

2. Simulation Method Description

The simulation technique described in this manuscript is built based on the method ini-
tially introduced in [27], which consists of resolving simultaneously the diffusion equation
(Equation (2)) and a hysteretic dynamic material law.

The specific dimensions of the tested specimens (ζ << width and length) allow us to
solve the diffusion equation in one dimension (1D) using finite differences while conserving
accurate results. For the material law, the simplest way would be a quasi-static hysteresis
model Hstat(B). Still, it will ineluctably lead to inaccurate results as the excess loss contri-
bution will not be considered. In [27], a first-order differential equation equivalent to a
viscous behavior was proposed to improve the accuracy of the material law (Equation (5)):

ρ
dB
dt

= H − Hstat(B) (5)

Like this, the local flux density Bi became frequency dependent, and ρ was the unique
parameter accounting for this effect. Still, this dependency was inaccurate, and the domain
of validity of the resulting method was restrained to a narrow frequency bandwidth. Later
in [19], an improvement in the frequency bandwidth was proposed, but at the cost of
B-dependent additional parameters. Equation (6) was first introduced as a generalized
equation in which g(B) was one of these parameters:

H = Hstat(B) + δ

∣∣∣∣g(B)
dB
dt

∣∣∣∣1/α

(6)

Then, Equation (7) was proposed in the specific case of ζ = 0.5 mm FeSi (2%) steel [16]:

dB
dt

=
δ

g
|H − Hstat(B)|α(B) +

4·10−7δ

g

(
B

Bmax

)2

|H − Hstat(B)|β(B) (7)

Here, α(B) and β(B) were the B-dependent parameters. Unfortunately, in [16], nothing
was proposed for adapting these parameters to new materials. Using multiple B-dependent
parameters leads to excellent simulation results, as the method turns out to be close to a
fitting process. Still, very accurate experimental data are required for implementation. The
model’s predictive ability is minimal, such as the simulation setting transposability. This
model was discarded for the specific case of GO FeSi [18] a few years later by the same
group and replaced with the TSM.
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The solution we propose to use is different and consists of a fractional derivative
version of the differential Equation (5):

ρ′
dnB
dtn = H − Hstat(B) (8)

2.1. Fractional Differential Equation: Physical Interpretation and Resolution

Fractional calculus was first mentioned at the end of the seventeenth century [28].
Compared to classical derivatives, fractional derivative operators balance the dynamic effect
distinctly. They provide the simulation method with additional freedom, resulting in precise
simulations across broad frequency ranges. Fractional derivatives are intrinsically nonlocal,
i.e., where classical time derivatives can only describe changes in the neighborhood of
current time t, fractional ones can represent changes in a whole simulated time interval.
Time fractional derivatives are recommended for long-time heavy tail decays involving the
entire history. They suit ferromagnetic hysteresis, where real time behavior is significantly
history dependent. In [27], Equation (5) is introduced to simulate suitably magnetic
materials characterized by a homogeneous distribution of the domain wall motions and
associated microscopic eddy currents. However, the diffusion related to these motions is not
considered, and the domain wall motions are simulated as viscous elements. Viscoelasticity
is achieved by replacing Equation (5) with Equation (8), meaning that magnetization is
no longer solely dissipative but elastic, too. In mechanics, viscoelastic models employ
combinations of springs and dashpots arranged in series and/or parallel [29]. Springs
depict the response of an elastic solid, where stress is proportional to strain (0th-order
derivative term). Dashpots represent the response of a viscous fluid, where stress is
proportional to the strain rate (1st-order derivative). Using a fractional derivative of order
α, where 0 < α < 1, to model a viscoelastic behavior is grounded in the notion that the
actual response lies between that of a 0th and 1st-order derivative, somewhere between
an elastic solid and a viscous fluid [29]. The forward Grünwald–Letnikov expression for
fractional derivative respects the causality principle [25,30,31]. Therefore, it was used in
this study: 

Dn
f f (t) = lim

h→0+
h−n·∑∞

m=0
(−n)m

m! · f (t − mh)

(n)m = Γ(n+m)
Γ(n) = m·(m + 1)· . . . (n + m − 1)

(m)0 = 1

(9)

Here, (n)m is the Pochhammer symbol and Γ the gamma function [29].

2.2. Combining Equation (8) and Equation (2) for a Simultaneous Resolution

In [15], we solved the loss problem by introducing the original concept of anomalous
diffusion. In Equation (2), the time derivative term dB/dt was replaced by a fractional one,
dnB/dtn, and σ by σ’, equivalent to a pseudo conductivity:

σ′ ∂
nB

∂tn =
∂2H
∂x2 (10)

Simultaneous resolution of Equations (8) and (10) was possible through the concatena-
tion in a unique expression (Equation (11)), similar to Equation (5) in [27] and constituted
of H terms exclusively:

∂2H
∂x2 =

σ′

ρ′
(H − Hstat(B)) (11)

Finite differences were used to solve Equation (11), leading to a matrix system, in-
cluding a stiff matrix, possibly set in post-processing. The model outputs were the av-
erage and local magnetic quantities (Hi(t), Bi(t), and B(t)). This simulation method was
straightforward, and the simulation times were limited; a correct combination of ρ’ and σ’
yielded accurate results on a broad frequency bandwidth. Still, the physical meaning of the
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anomalous diffusion and σ’ the pseudo conductivity was unclear. The only way to derive
Equation (10) was through fractional Maxwell equations. Such equations have already
been mentioned in the scientific literature [32,33] but remain complex to justify physically.
Therefore, this solution was discarded in this new study.

Just as Equations (8) and (10) were concatenated in [15], Equations (2) and (8) can be
reformulated the same way; for this, dB/dt in Equation (8) has to be isolated:

dnB
dtn =

H − Hstat(B)
ρ′

∂B
∂t

=
d1−n

(
H−Hstat(B)

ρ′

)
dt1−n (12)

This concatenation leads to Equation (13):

∂2H
∂x2 = σ·

d1−n
(

H−Hstat(B)
ρ′

)
dt1−n (13)

Here, again, finite differences can be applied to the left part of Equation (13) and
Grünwald–Letnikov’s definition to the right part. The resulting Equation (14) is exclusively
constituted of terms equivalent to magnetic fields H:

H(x − r, t)− 2H(x, t) + H(x + r, t)
r2 = σ· lim

h→0+
hn−1·∑∞

m=0
(n − 1)m

m!
·
(

H(x, t − mh)− Hstat(B(x, t − mh))
ρ′

)
(14)

Since H(x,t) and B(x,t) are symmetric about the plane x = ζ/2, a resolution of
Equation (13) on the segment [0, ζ/2] is enough, and a Neumann condition can be ap-
plied for the x = ζ/2 node (see Figure 1 for illustration). In this condition, r, the space
discretization in Equation (14), is worth ζ/[2(N − 1)], where N is the number of nodes.
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Equation (14) can be rewritten as below to be solved as a matrix system (Equation (15)):φ.(H(x − r, t)− 2H(x, t) + H(x + r, t)) = lim
h→0+

hn−1·∑∞
m=0

(n−1)m
m! ·(H(x, t − mh)− Hstat(B(x, t − mh)))

φ = ρ′

r2σ
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{
φ.(H(x−r,t)−2H(x,t)+H(x+r,t))− lim

h→0+
hn−1·H(x,t)= lim

h→0+
hn−1·∑∞

m=1
(n−1)m

m! ·H(x,t−mh)− lim
h→0+

hn−1·∑∞
m=0

(n−1)m
m! ·H

stat
(B(x,t−mh))

φ = ρ′

r2σ

(15)

[A]× [H] = [S] (16)

where:

[H] =


H1(t)
H2(t)

H3(t)
...

H10(t)

 [S] =



lim
h→0+

hn−1·
∞
∑

m=1

(n−1)m
m! ·H1(x, t − mh)− lim

h→0+
hn−1·

∞
∑

m=0

(n−1)m
m! ·Hstat1(B1(x, t − mh))

lim
h→0+

hn−1·
∞
∑

m=1

(n−1)m
m! ·H2(x, t − mh)− lim

h→0+
hn−1·

∞
∑

m=0

(n−1)m
m! ·Hstat2(B2(x, t − mh))

lim
h→0+

hn−1·
∞
∑

m=1

(n−1)m
m! ·H3(x, t − mh)− lim

h→0+
hn−1·

∞
∑

m=0

(n−1)m
m! ·Hstat3(B3(x, t − mh))

...

lim
h→0+

hn−1·
∞
∑

m=1

(n−1)m
m! ·H10(x, t − mh)− lim

h→0+
hn−1·

∞
∑

m=0

(n−1)m
m! ·Hstat10(B10(x, t − mh))


And [A] is the stiffness matrix:

[A]=



−2 − lim
h→0+

hn−1 1 0

1 − 2 − lim
h→0+

hn−1 1 0

0 1 − 2 − lim
h→0+

hn−1 1 0

. . .

1 − 2 − lim
h→0+

hn−1 1

0 2 − 2 − lim
h→0+

hn−1



Similar to [15], matrix [A] can be calculated in pre-processing and conserved through-
out the simulation. In contrast, the matrix system has to be solved for each simulation step;
it gives the local excitation field Hi(t) and is followed by a local resolution of Equation (8),
leading to the local Bi(t). In the last stage, the cross-section flux density B is calculated by
averaging the local induction:

B =
∑N

i=1 Bi

N
(17)

Plotted as a function of the surface field Hsurf(B), the resulting simulated hysteresis
cycle can be compared to the experimental one. To limit both the discretization and the
memory management, such as saving simulation time, we opted for a static contribution
Hstat(B) obtained with the derivative static hysteresis model (DSHM), described in [34,35].
This simulation method relies on a 2D interpolation matrix constructed with the columns
and rows denoting the discrete values of H and B, and whose terms stand for the dB/dH
slope at the corresponding point. As recalled in [34], DSHM can easily switch from H to
B-imposed input conditions. To fill the DSHM matrix, experimental first-order reversal
curves are promoted, but getting such experimental data is always complex. In this
work, we replaced them with simulated first-order reversal curves obtained with the J–A
model [36,37]. The J–A model was identified using the limited experimental data available
(a saturated and symmetrical quasi-static hysteresis cycle). Additional details about the
J–A and the DSHM models can be found elsewhere [34–37]. The next section describes the
experimental setup.

3. Experimental Setup Description

Experimental works were conducted on standard Epstein-size laminations (30 mm× 305 mm)
of CGO 3% SiFe, commercialized as M105-30P. The specimens have a thickness of 0.3 mm
and a measured electrical conductivity of σ = 2.169 106 S·m−1. The grains’ size (2 to 5 mm)
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and homogeneity are conventional for GO FeSi [38]. Electrical steel samples were magne-
tized using a standard double yoke single strip tester (SST) under controlled sinusoidal
induction for a frequency range from 50 Hz to 1 kHz and peak flux densities of 1.0 T to
1.7 T. This measuring system complies with the British standard BS EN 10280:2007 [39].
In depth uncertainty analysis for this measuring system was performed in line with the
recommendations given in UKAS M3003 [40]. Type A and B uncertainties were estimated
at ± 0.30% and 0.63%, respectively. Magnetic characteristics of the steel laminations, in-
cluding dynamic hysteresis loop (DHL) and bulk power loss in W·kg−1, were measured
and recorded for the range of magnetizing frequency and peak induction. More details
about the experimental setup are available in [41]. The following section outlines the model
validation process, involving comparisons between simulations and measurements, as well
as the developed method for assessing the loss contribution and distribution.

4. Simulation Method Settings and Validation up to 1 kHz and 1.7 T

The simulation method described in detail in Section 2 works with seven parameters.
Five are associated with the quasi-static behavior (Hstat(B): DSHM + J–A models), while
the other two are for the frequency-dependent contribution. The quasi-static contribution
parameters Ms = 1.36 × 106 A·m−1, a = 1.5 A·m−1, k = 11.5 A·m−1, c = 0.06, and α = 7 × 10−6

were determined based on the optimization of the relative Euclidean difference criteria
(red(%), Equation (18)) comparing measured and simulated quasi-static saturated hysteresis
loops (f = 1 Hz, Bm = 1.7 T).

red(%) = 100·

√√√√∫
[meas(t)− sim(t)]2dt∫

meas(t)2dt
(18)

The frequency-dependent parameters were obtained in the same way, but the experi-
mental reference was measured at f = 1 kHz. The quasi-static contribution parameters were
kept identical to the previous case at 1 Hz, and the red (%) optimization process was run to
determine the two last parameters. n was obtained equal to 0.98 and ρ’ to 0.0065. Figure 2
depicts the resulting comparisons simulations/measurements in quasi-static (f = 1 Hz,
Figure 2a) and f = 1 kHz (Figure 2b) conditions. N was set to 10, representing the minimum
value of N that yields unvarying simulation results.
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4.1. Comparisons Simulation/Measurement, Model Validation

This subsection is dedicated to the validation of the simulation method; a comparison
between the simulation and measurement is depicted in Figure 3. Experimental measure-
ments were undertaken under controlled sinusoidal magnetization for the frequency range
of 50 Hz to 1 kHz and peak flux density from 1.0 T to 1.7 T. This range was determined
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based on the magnetic flux density at which the material can potentially operate when
converting electrical energy to mechanical energy, or vice versa, in typical electromagnetic
devices such as transformers, electric motors, and generators [7].
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The accuracy and conformity of the simulation results in Figure 3 were calculated
based on the red(%) and form factor (FF(%)) criteria (Equation (19) [42]), which has to be
lower than 0.5 to be valid; the results are shown in Table 1.

FF(%) = 100·|FF(dBmes/dt)− FF(dBtheo/dt)| =
∣∣∣∣ RMS(dBmes/dt)

AVG(|dBmes/dt|) −
RMS(dBtheo/dt)

AVG(|dBtheo/dt|)

∣∣∣∣ (19)

As observed in the first column of Table 1, the error of the J–A model is significant
(red(%) ≈ 13%) and reduces the overall accuracy of higher frequency simulations. Therefore,
to have a better view of the accuracy of the dynamic contribution only, Equations (20) and (21)
resolution has been applied to f
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Wdyn = Wclas + Wexc (21)

This method is not exact, as the space distribution of the loss contributions will change
as a function of the frequency and eventually modify those percentages (this observation is
especially true in the very high-frequency range). Still, it estimates the dynamic contribution
accuracy closely, which in the case of the GO FeSi reaches, on average (Equation (22)), a
remarkable 4.8%:

Av.red (%) =

∫ 1000
50 red( f )d f∫ 1000

50 d f
(22)

All FF(%) results shown in Table 1 are below 0.5%, so we can confidently assert that all
simulations depicted in Figures 2 and 3 were conducted in accordance with the standard
testing conditions.

Table 1. Quantitative comparison (uncertainty) based on the red(%) and the FF(%) criterion for all
Figure 3 simulation results (in black, the red is calculated for all contributions; in red, just the dynamic
contribution) (Top table: Bm = 1.7 T; bottom table: f = 1 kHz).

Quasi-Static f = 50 Hz f = 100 Hz f = 200 Hz f = 400 Hz f = 800 Hz f = 1000 Hz Av.

red(%) 13.1 7.3 10.1 9.6 8 2.7 1 7.4
red(%)—dyn.

cont. - 2.4 8.6 8.6 7.2 1.8 0.2 4.8

FF(%) 0.22 0.118 0.111 0.068 0.028 0.003 0.005 0.0875

Bm = 1 T Bm = 1.3 T Bm = 1.5 T Bm = 1.7 T Av.

red (%) 2.4 6 5 1 3.6
FF(%) 0.002 0.002 0.004 0.005 0.0033

4.2. Model Exploitation, Spatial Losses Distribution

The simulation method described in this manuscript relies on the combination of
the diffusion equation (Equation (2)) and a viscoelastic frequency-dependent material law
(Equation (8)). An excellent property of this method comes from the space discretization
associated with the finite difference resolution of Equation (2), giving access to local
information. Together with the fractional differential equation material law, they lead
to local static Bi(Hi stat) and dynamic Bi(Hi) hysteresis cycles. Figure 4 shows those cycles
for nodes 1–10 in the case of Figure 2b, where f = 1 kHz and Bm = 1.7 T.

Those cycles are rich in information; their areas can be associated with local energy
losses. The static loops can be used to return the local hysteresis loss (Equation (23)).
This contribution is frequency-independent. Then, the dynamic loops are used to return
the excess loss (Equation (24)), corresponding to the additional loss associated with the
frequency dependency of the domain wall motions.

Whysti
=

∫ T

0
Hstati ·dBi (23)

Wexci =
∫ T

0
Hi·dBi − Whysti

(24)

The computation of the local classic loss contribution is less straightforward and needs
to undergo successive steps. It starts with the calculation of the total loss:

Wtot =
∫ T

0
H·dB (25)
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The next step consists of the computation of the local hysteresis Whysti (Equation (23))
and excess losses Wexci (Equation (24)). Then, starting from node 1, the local classic losses
Wclasi are calculated from the difference between Wtot and a virtual Wtot N=2–10 that would
consider only nodes 2 to 10 for the average induction and H1 for the excitation field. The
difference between Wtot and Wtot N=2–10 corresponds to Wtot1, the total loss at node 1; Wclas1
is obtained by subtracting Whyst1 and Wexc1:

Wclas1 = Wtot1 − Whyst1
− Wexc1 (26)

This whole process is repeated in an incremental way up to node 10. Figure 5 gives
the three loss contribution spatial distribution for f
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[50–1000] Hz. In this frequency
range, the hysteresis loss is homogeneously distributed; both the classic and the excess loss
contribution increase drastically with the frequency. Figure 6 shows the loss contributions
averaged through the specimen thickness vs. frequency and the comparison with the
experimental results. The large proportion of the classic loss contribution is worth noting,
even if the amount of the excess loss in the total loss increases with frequency. As observed
in Figure 5, the excess loss is relatively homogeneously distributed in space, unlike the
classic loss, which decreases quasi-linearly. Figure 5 spatial loss distributions are impossible
to confirm experimentally. The two-frequency loss separation technique is limited to the
hysteresis losses (f − dependent losses) and the eddy current losses (f 2 − dependent losses);
this method does not provide any local information, nor can it be used to discriminate the
classic and the excess losses. It was therefore discarded from the validation process.

Similarly, a computational method based on commonly known formulas such as
STL could have been used as a validation method but was discarded due to its restricted
frequency range of validity (f < 200 Hz, [2]).
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5. Model Predictions

This section aims to leverage the predictive capability of the proposed simulation
method and provide insights into the behavior at very high frequencies, where improve-
ments in power density are anticipated. No experimental results will be provided to
validate the simulation predictions. Under such operating conditions (f > 1 kHz), our
experimental setup cannot yield reliable results while adhering to the standard characteri-
zation conditions.

5.1. Sinus B-Imposed Simulation

The characterization standards must be followed to obtain reproducible and compa-
rable measurements and simulations. The characterization standards for ferromagnetic
hysteresis measurement require working under sinusoidal induction. The simulation
method described in this manuscript gives the magnetic response of a ferromagnetic lam-
ination as a function of the excitation field. Simulation results shown in Figures 2 and 3
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were obtained by driving the model with the excitation waveforms monitored during the
experimental campaign. Still, for the predictive simulations, the model has to be inversed to
match the standard testing conditions. The nonhomogeneous space distribution of the flux
density makes direct inversion impossible. One solution is proposed in [25] and consists of
testing, for each step time, a window of field (+/− 3 A·m−1) centered around the value
of H at t = t − dt. The H value that leads to the targeted B is conserved and becomes H(t).
Then, the process is rerun for the next H(t + x.dt). This method only converges for minimal
discretization steps, increasing the simulation time inevitably.

Therefore, in this study, we opted for an alternative and faster solution consisting of an
iterative method similar to the ones used for waveform control in magnetic measurement
systems. More precisely, we used the proportional−iterative learning control (P−ILC)
method described in [42]. P−ILC is derived from the classical real-time proportional
integral derivative (PID) technique:

x(t) = KP· ϵ(t) + KI ·
∫ t

0
ϵ(s) ds + KD·

dϵ

dt
(27)

Figure 7 gives the PID feedback structure, where yM(t) is the measured output (at
time t), ϵ(t) = yG(t) − yM(t) is the error, and x(t) is the system input. Kp, KI, and KD are the
proportional, integral, and derivative gains, respectively.
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The iterative PID method has been described by several authors [43] and consists of
the following:

x(t, j + 1) = x(t, j) + ∆x(t, j) (28)

∆x(t, j) = KP· ϵ(t, j) + KI ·
∫ t

0
ϵ(s, j) ds + KD ·dϵ

dt
(t, j) (29)

In its simplest form (proportional correction only), Equation (29) can be simplified and
leads to the P−ILC formulation:

x(t, j + 1) = x(t, j) + KP·ϵ(t, j) (30)

As commented in [42], P−ILC is simple; the inputs are reduced to ϵ(t,j) and the
parameters to Kp. Its implementation is very straightforward, and, like classic PID, it can
be very robust with the right choice of Kp.

5.2. From 2 to 10 kHz Predictions

The significant temperature increase associated with the magnetization loss makes it
highly complex to characterize the GO FeSi magnetic laminations beyond f = 1 kHz; such a
limitation does not exist in the simulation nor in electrical machines where cooling systems
are present. In the results displayed below, a low-pass filter stage was added between
the controller and the system for smoother signals. P−ILC was stopped when the red(%)
comparing the simulated and the targeted B reached a 1% threshold. Figure 8a illustrates
the resulting comparison between the targeted flux density waveform and the simulated
one at f = 1 kHz. Figure 8b shows the corresponding H.
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[2–10] kHz.

Just as expected, the level of losses increases significantly with the frequency. In the
very high-frequency range, the static contribution can be considered insignificant (less than
0.6% of the total loss at f = 10 kHz). It could possibly be replaced with an anhysteretic curve
in the simulation process. Figure 10 shows the extension of Figure 6 in the high-frequency
range; the evolution of the excess loss proportion is worth noting.

Finding experimental results beyond 1 kHz in the scientific literature is challenging.
Still, in [44], authors collected experimental results at Bm = 1.7 T, f = 10 kHz on a 0.29 mm
thick GO electrical steel (M2H) using a single sheet tester in a single-shot mode measure-
ment to limit heat increase. No information is provided in the paper about using a cooling
system, nor do we know how the imposed waveform for the single shot is predetermined.
The only information provided is that the magnetomotive force (MMF) drop to the flux clos-
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ing yoke was compensated. Then, they propose a method to predict the loss distribution.
Figure 11 compares their predictions to ours.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 14 of 17 
 

 

Just as expected, the level of losses increases significantly with the frequency. In the 
very high-frequency range, the static contribution can be considered insignificant (less 
than 0.6% of the total loss at f = 10 kHz). It could possibly be replaced with an anhysteretic 
curve in the simulation process. Figure 10 shows the extension of Figure 6 in the high-
frequency range; the evolution of the excess loss proportion is worth noting. 

 
Figure 10. Loss contributions vs. f, extension to the high-frequency range. 

Finding experimental results beyond 1 kHz in the scientific literature is challenging. 
Still, in [44], authors collected experimental results at Bm = 1.7 T, f = 10 kHz on a 0.29 mm 
thick GO electrical steel (M2H) using a single sheet tester in a single-shot mode measure-
ment to limit heat increase. No information is provided in the paper about using a cooling 
system, nor do we know how the imposed waveform for the single shot is predetermined. 
The only information provided is that the magnetomotive force (MMF) drop to the flux 
closing yoke was compensated. Then, they propose a method to predict the loss distribu-
tion. Figure 11 compares their predictions to ours. 

A relatively close behavior between Whyst and Wclass contributions is visible. The slight 
increase in Whyst, when f increases in [44], can be attributed to a higher level of B on the 
edge layers, but this behavior does not happen in our simulation method, where the static 
contribution illustrated in Figure 4b is always very saturated, even in a lower level of fre-
quency. The most noticeable difference comes from the evolution of Wexc, which increases 
at a much lower rate in [44] than in our simulation method. The low level of Wexc in [44] is 
attributed to the significant skin effect in the high-frequency range (f > 200 Hz) and the 
absence of magnetization in the center of the tested lamination. At 1 kHz, where our sim-
ulation method has been validated through comparison with experimental results, our 
Wexc contribution is already three times larger than that of [44]. This difference could be 
attributed to the different grades of oriented grain electrical steel tested. Unfortunately, in 
[44], no experimental result at 1 kHz could validate this hypothesis. Finally, a slight devi-
ation in excess loss is observable in our simulation results for the high level of f. This ob-
servation should be confirmed experimentally in future studies. Although differences can 
be observed in the prediction of the excess loss frequency dependency (Figure 11), the 
close behavior of the classic and hysteresis losses, combined with the excellent simulation 
results shown in Figures 2 and 3, can be considered as a solid validation of our simulation 
method. 

Figure 10. Loss contributions vs. f, extension to the high-frequency range.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 11. Comparison of frequency-dependent loss contribution predictions between those gath-
ered from [44] and those obtained using the method in this paper. 

6. Conclusions 
The problem of magnetic loss in electromagnetic converters is a classic topic. Ad-

vanced materials and new working conditions have made conventional simulation meth-
ods, such as the popular STL, obsolete. Our research introduces a novel technique involv-
ing the solution of the Maxwell diffusion equation coupled with a material law derived 
from a fractional differential equation. By applying this methodology, we successfully 
replicated the experimental B(H) hysteresis cycles of GO FeSi laminations up to f = 1 kHz, 
achieving a remarkable 4.8% relative Euclidean distance within the f = 50 Hz to 1 kHz 
bandwidth. 

Several notable features distinguish our simulation method. The dynamical contri-
bution relies on only two parameters, ρ’ (a constant) and n (the fractional order of the time-
fractional derivative term). Those parameters can be set once using the f = 1 kHz experi-
mental curve and conserved afterward. Leveraging the Grünwald−Letnikov expression 
for the fractional derivative enables efficient pre-calculation of the resolution coefficients 
and the finite difference stiffness matrix, streamlining the simulation process. The tem-
poral resolution facilitates the simulation of diverse waveform shapes, enhancing the 
model’s versatility. Finally, our method offers insights into the spatial distribution of con-
ventional loss contributions (hysteresis, classic, and excess) up to f = 10 kHz, providing 
valuable predictive capabilities. 

Noteworthy observations and implications arise from the simulation predictions. The 
trajectory of loss contributions remains consistent beyond f = 1 kHz, albeit with an increas-
ing proportion of excess loss as frequency escalates. Remarkably, even at f = 10 kHz and 
with Bm = 1.7 T, eddy currents resulting from the penetration equation fail to prevent mag-
netization of the lamination center (node 10), highlighting a significant aspect for further 
exploration. 

This study equally opens avenues for future research and applications. Exploring the 
simulation method across various grades of ferromagnetic laminations promises valuable 
insights into magnetization mechanisms. The extension of our model to incorporate rota-
tional magnetization behavior presents an exciting direction for further investigation [45]. 

In summary, this research addresses current challenges in electromagnetic converter 
design and lays the groundwork for future advancements in the soft ferromagnetic field. 

Figure 11. Comparison of frequency-dependent loss contribution predictions between those gathered
from [44] and those obtained using the method in this paper.

A relatively close behavior between Whyst and Wclass contributions is visible. The
slight increase in Whyst, when f increases in [44], can be attributed to a higher level of B
on the edge layers, but this behavior does not happen in our simulation method, where
the static contribution illustrated in Figure 4b is always very saturated, even in a lower
level of frequency. The most noticeable difference comes from the evolution of Wexc, which
increases at a much lower rate in [44] than in our simulation method. The low level of Wexc
in [44] is attributed to the significant skin effect in the high-frequency range (f > 200 Hz)
and the absence of magnetization in the center of the tested lamination. At 1 kHz, where
our simulation method has been validated through comparison with experimental results,
our Wexc contribution is already three times larger than that of [44]. This difference could
be attributed to the different grades of oriented grain electrical steel tested. Unfortunately,
in [44], no experimental result at 1 kHz could validate this hypothesis. Finally, a slight
deviation in excess loss is observable in our simulation results for the high level of f. This
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observation should be confirmed experimentally in future studies. Although differences can
be observed in the prediction of the excess loss frequency dependency (Figure 11), the close
behavior of the classic and hysteresis losses, combined with the excellent simulation results
shown in Figures 2 and 3, can be considered as a solid validation of our simulation method.

6. Conclusions

The problem of magnetic loss in electromagnetic converters is a classic topic. Advanced
materials and new working conditions have made conventional simulation methods, such
as the popular STL, obsolete. Our research introduces a novel technique involving the
solution of the Maxwell diffusion equation coupled with a material law derived from a
fractional differential equation. By applying this methodology, we successfully replicated
the experimental B(H) hysteresis cycles of GO FeSi laminations up to f = 1 kHz, achieving a
remarkable 4.8% relative Euclidean distance within the f = 50 Hz to 1 kHz bandwidth.

Several notable features distinguish our simulation method. The dynamical contri-
bution relies on only two parameters, ρ’ (a constant) and n (the fractional order of the
time-fractional derivative term). Those parameters can be set once using the f = 1 kHz
experimental curve and conserved afterward. Leveraging the Grünwald−Letnikov ex-
pression for the fractional derivative enables efficient pre-calculation of the resolution
coefficients and the finite difference stiffness matrix, streamlining the simulation process.
The temporal resolution facilitates the simulation of diverse waveform shapes, enhancing
the model’s versatility. Finally, our method offers insights into the spatial distribution of
conventional loss contributions (hysteresis, classic, and excess) up to f = 10 kHz, providing
valuable predictive capabilities.

Noteworthy observations and implications arise from the simulation predictions.
The trajectory of loss contributions remains consistent beyond f = 1 kHz, albeit with an
increasing proportion of excess loss as frequency escalates. Remarkably, even at f = 10 kHz
and with Bm = 1.7 T, eddy currents resulting from the penetration equation fail to prevent
magnetization of the lamination center (node 10), highlighting a significant aspect for
further exploration.

This study equally opens avenues for future research and applications. Exploring the
simulation method across various grades of ferromagnetic laminations promises valuable
insights into magnetization mechanisms. The extension of our model to incorporate rota-
tional magnetization behavior presents an exciting direction for further investigation [45].

In summary, this research addresses current challenges in electromagnetic converter
design and lays the groundwork for future advancements in the soft ferromagnetic field.
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