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Abstract

Recent advancements in text-to-speech (TTS) powered by
language models have showcased remarkable capabilities in
achieving naturalness and zero-shot voice cloning. Notably,
the decoder-only transformer is the prominent architecture in
this domain. However, transformers face challenges stemming
from their quadratic complexity in sequence length, imped-
ing training on lengthy sequences and resource-constrained
hardware. Moreover they lack specific inductive bias with
regards to the monotonic nature of TTS alignments. In
response, we propose to replace transformers with emerg-
ing recurrent architectures and introduce specialized cross-
attention mechanisms for reducing repeating and skipping
issues.  Consequently our architecture can be efficiently
trained on long samples and achieve state-of-the-art zero-
shot voice cloning against baselines of comparable size.
Our implementation and demos are available at https://
github.com/theodorblackbird/lina-speech.
Index Terms: speech synthesis, zero-shot adaptive text-to-
speech, language modeling, linear attention

1. Introduction
1.1. Context and Related Works

Over the recent years, neural text-to-speech synthesis (TTS)
has gained spectacular improvements in terms of quality with a
diversity of approaches and paradigms [1, 2, 3, 4]. In particular,
discrete speech and audio representations allowed immediate
use of well-established decoder-only transformers such as
GPT [5] in many state-of-the-art text-to-audio and text-to-
speech model. However, transformers rely on the self-attention
“time-mixing”[6] operation which can be efficiently trained in
parallel but suffers from quadratic complexity with respect to
the sequence length. The challenge of designing sequence
modeling architecture that can compete with transformers has
sparked a resurgence in research on recurrent neural networks
(RNNSs). This work introduces the broad term “linear attention”
to denote this emerging class of RNNs that replaces self-
attention for linear complexity “time-mixing” while keeping
performances and high training throughput.

This paper primarily relates to speech models formulated
as language models (LMs) or employing discrete audio codecs
through Residual Vector Quantization (RVQ). VALL-E [7]
employs an autoregressive transformer to predict the first
quantizer and a parallel transformer for the residuals. Before
the rise of RVQ codecs, Tortoise [8] achieved a significant
improvement through scaling up and leveraged a decoder-
only transformer to predict a VQ representation of the mel
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spectrogram. Some other works introduce semantic codes
as low frame rate audio latents, following advancements in
self-supervised speech representations. For instance Bark [9]
separately predicts semantic codes from text, first quantizers
from semantic codes, and residuals with three decoder-only
transformers. SoundStorm [10] predicts audio from semantic
codes in parallel by leveraging a MaskGit [11] architecture.
In contrast, NaturalSpeech2 [12] avoids the language model
formulation by learning the continuous latents of an RVQ codec
with a diffusion model, sidestepping autoregressive modeling or
semantic encoding and instead relying on given durations and
fundamental frequency.

1.2. Linear surrogate of decoder transformer

Unlike previous RNNs such as LSTM or GRU, transformers
are significantly faster to train, do not suffer from vanishing
gradient and demonstrate scalability with parameters reaching
into the hundreds of billions. Further hardware-aware
implementation [13] of self-attention has established it as a
prevalent choice for sequence modeling, including applications
in audio processing. General softmax-based attention involves
three sequences, denoted as Q € RV*4 K ¢ RY /Xd, and
VvV eRY Xd/, along with an optional mask M € RN*N' The
attention function is defined as:

T
Att(Q, K, V) = softmax ( QK

©M)V. 1)

When Q, K, and V represent different linear projections
of the same input sequence X € R™*? (and are therefore
function of X), the resulting function X +— Att(Q, K, V)
is referred to as self-attention. Backing the success of GPT2
[5] and successors for natural language modeling, the decoder-
only transformer architecture can be generalized with the
terminology proposed in [6]:

Y’ = X + TimeMixing(Norm(X)),
Y = Y’ + ChannelMixing(Norm(Y")).

Initially built with self-attention for TimeMixing [14], position-
wise feed-forward network for ChannelMixing and layer
normalization for Norm. In the context of autoregressive
modeling, a causal mask M; ; = 1;<; is employed to prevent
tokens from attending to relative future tokens, enabling the
model to function as an autoregressive model while being
trained in parallel.

However, self-attention exhibits quadratic complexity
concerning sequence length during training and inference.
Simultaneously, it has been observed that in certain scenarios,
self-attention tends to focus on local reasoning [16], as
evidenced in text-to-speech by almost diagonal attention
weights in practice (see Figure 1). This observation suggests
that computing every pair-wise relation in QKT at every
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(a) In decoder-only LM TTS models [7, 9, 15], attention
scores either boil down to cross-attention or local reasoning
so that a large proportion of tokens are not attended.
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(b) In our work, we only use two layers of cross-attention
compared to self-attention in every layer.

Figure 1: Decoder-only attention weight tend to behave as an
encoder-decoder.

layer may not be essential. These insights align with recent
developments in recurrent architectures which have emerged
as potential replacements for transformers in natural language
modeling. For instance, RWKV [6] is an RNN designed
as an alternative to transformers. RWKYV incorporates new
mechanisms for both TimeMixing (known as “WKV” and is
closely linked to some form of linear attention [17, 18, 19]) and
ChannelMixing (involving linear interpolation of current and
past token). In the lineage of State-Space Model [20], Mamba
[21] unifies TimeMixing and ChannelMixing operations in
(Equation 2), removes the linear time-invariant assumption
with data-dependency and introduces parallelization through
parallel scan. RetNet [22] features linear attention with
decaying state for TimeMixing allowing efficient chunkwise
computation. Gated Linear Attention (GLA) [23] explores
hardware efficient chunkwise form of linear attention with data-
dependent transition. All offer alternatives to the original
transformer decoder-only block for language modeling with
competitive throughput and performance for language modeling
as demonstrated on various tasks. They scale linearly with the
sequence length during training, opening the door to training
on long sequences thus capturing long-term dependencies at
a lower cost. We refer to them as Linear Causal Language
Model (LCLM) blocks. To the best of our knowledge
their usage for audio generative modeling remains largely
unexplored.

1.3. TTS as conditional codec language modeling

The remarkable ability of language models to adapt from
unseen inputs sample is known as “in-context learning”
[24], and has been successfully adapted for TTS for zero-
shot voice continuation [7]. For text-to-speech we follow
conditional codec language modeling formulation as introduced
by [7], given x = {xo,...,TN} a text transcription, y €
{1,...,C0}9*T a RVQ representation of the corresponding
audio with @) quantizers of codebook size N. we formulate it as

T Q
p(y[x) = [T [] p(yaelx, y<a<t)- 3)

t=0gq=1

By concatenating source and target transcriptions and by
providing only source audio tokens during inference, condi-
tional codec modeling turns into a zero-shot voice cloning
model without explicit need of speaker encoder module. In
contrast with natural language modeling and because of the
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Figure 2: Model Overview. Top: input pipeline. Bottom:
encoder-decoder architecture. @ means summation.

hierarchical nature of RVQ, we must account of the conditional
dependencies between succeeding residuals. Previous work
[7, 9] tend to train separate models for first “coarse” quantizers
to “finer” successive residuals.

1.4. Positioning and contributions

Being able to train on large datasets is a crucial aspect for
diverse and expressive speech generation. Typical LM are
difficult to train in the limited hardware regime (ie consumer
grade GPU). Our model shows that language modeling can be
successfully adapted to the small model regime with careful
architecture considerations :

e This paper introduces Linear Causal Language Model
(LCLM) blocks instead of autoregressive transformers
commonly used in language modeling for audio application.
To the best of our knowledge this is the first time they are
used for text-to-speech. As a consequence we are able to
train efficiently on long samples (up to 30s). We hypothesize
that it is crucial for learning expressive speech.

¢ We introduce a Position-Aware Cross-Attention (PACA)
mechanism which is specifically designed for text-to-speech
and helps with skipping and repeating issues.

* The proposed model has competitive performance on zero-
shot voice cloning TTS by comparison to existing TTS
models of the same size, while requiring much less resources
during training.

2. Small-E

This section presents Small-E, a multi-speaker neural TTS
with zero-shot voice cloning capabilities. Small-E belong to
the family of neural codec language model such as [7, 9,
15, 10]. In contrast with previous TTS codec LM model
that leverages decoder-only (GPT) transformers, Small-E relies
on encoder-decoder architecture. Indeed, we observed that
previous decoder-only transformers tend to behave internally as
an encoder-decoder (see Figure 1) leading to a potential waste
of compute. The general architecture is presented in Figure
2, text is encoded through a non-causal transformer, audio is
encoded with a stack of LCLM blocks. Both encoders outputs
are fed to the cross-attention that learns to align text to audio.
The audio decoder (same as the audio encoder) takes audio
embeddings and cross-attention output. The decoder output is
projected to logits.

2.1. Model architecture

The input pipeline for audio and text compression is processed
in the following manner. Audio is compressed with an RVQ
codec. We employ a codebook delaying scheme introduced by



MusicGen [25] in order to enforce the conditional dependencies
between residual codebooks. Text is compressed with byte-
pair encoding before embedding. Then the text embedding is
processed with an non-causal transformer encoder, the audio
embeddings are processed with an encoder consisting of a
stack of LCLM blocks. Both encoder outputs are then fed
to a Position-Aware Cross-Attention, the output being the text
embedding attended for each audio embedding. The text
embedding and audio embedding are then superposed and fed to
an audio decoder similar to the audio encoder. The three basic
blocks are:

Text Encoder This component comprises a stack of non-
causal (parallel) transformer encoders with RoPE positional
embedding [26].

Audio Encoder/Decoder We investigated various LCLM
blocks including RWKYV [6] v5.2/v6, Mamba [21] and GLA
[23]. In early experiments we found that they offer comparable
performances.

Position-Aware Cross-Attention (PACA) Autoregressive
speech modeling is prone to skipping and repeating issues
[7, 27, 28]. We introduce a simple tweak to enforce position
awareness. In the conventional formulation of cross-attention
between text and audio, represented as:

Y = At(Q.K, V), @)
where Q is the audio latent sequence, and K, V are linear
projections of the text latent sequence, attention is computed
independently for every time step, without considering previous
attended text latent.
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Figure 3: Position-Aware Cross-Attention

To address this limitation, we propose a modification to the
cross-attention mechanism by explicitly materializing position
information along with a feedback loop to propagate past
positions (see Figure 3). Firstly, a cross-attention is computed
by selecting text positions only:

Y = At(Q, K, P), ®)
where P is sinusoidal positional embedding along the text latent
positions, that is: Py oq = sin(t/lOOOOQd/db)

(6)
Pt.2a+1 = cos(t/10000%% %),

This ensures that Y*) contains only information about
the position of the attended text latent, rather than actual text
content. These positions are then fed into a LCLM block
represented by the transition function f to introduce a feedback
loop on the positions:

Y&, Hepr = £(Y) H). ©)
This causal linear LCLM block can be any recurrent LM block

such as RWKYV [6], Mamba [21] or GLA [23].

Finally, a cross-attention of Y2 against P is performed to
select V (containing text information), mapping the position
Y @ 1o the text latent:

Y® = A(Y®, P, V). ®)

It is important to note that the positional embedding P is
not superposed onto any latent vector but rather materialized
independently, constraining the model to accurately encode
positional information to effectively attend to the text content.
We set dp, to be significantly smaller than the model dimension
(dy < 64) to keep additional operations negligible. This
approach is reminiscent of Location Sensitive Attention [27],
while being an order of magnitude faster due to the efficiency
of LCLM blocks. The optimization objective is cross-entropy
loss between original RVQ codec and logits prediction.

3. Experimental Evaluation
3.1. Dataset

Small-E was trained on Librilight medium [29], consisting of
approximately 5,000 hours of multi-speaker English speech
recordings reading audio books, collected from LibriVox. We
used the provided recipes to get samples of approximately 25
seconds. Speech utterances were transcribed textually using
Ocotillo [30] speech recognition system. Validation set is made
of 2,000 random utterances. For evaluation, the proposed model
and the benchmark models (see below) were compared on the
LibriTTS test split [29], in particular by insuring training and
testing speakers do not overlap.

3.2. Implementation details

For the text encoding, the proposed model used byte-pair
encoding with a vocabulary size of 256 computed on the dataset
transcription. For the audio encoding we used EnCodec [31] at
3kbps bitrate. In a preliminary experiment, the proposed model
has been compared with different LCLM blocks, including
RWKY, Mamba, and GLA. For each, the text encoder consists
of 9 layers of non-causal transformer, each layer of dimension
512 with 8 heads. For the experiments, we chose Gated Linear
Attention as LCLM Block, each block consisting of 6 layers
of inner dimension 512 with 2 heads. We observed during this
preliminary that GLA is performing similarly as Mamba and
RWKYV in terms of validation loss while giving slightly better
training throughput with respect to our configuration (i.e fixed
batch size and number of parameters). For this reason, the
proposed model is using GLA blocks in the remaining of this
paper. The whole model consists of 64M trainable parameters.
For the training, Adam optimizer was used with a learning rate
equal to 5e—4, with momentum 3; = 0.9, B2 = 0.999, and
weight decay of 0.1. We group sentences of similar length
within 10 buckets and use dynamic batch size with target size of
approximately 80, 000 audio tokens. We used gradient clipping
of 1.0. Trainings were done on 4 RTX3080 (10GB VRAM
each) during two days, consisting of 15 epochs over the dataset.
During inference we use top-k£ sampling with k set to 100 for
the first quantizer and greedy decoding for the residuals.

3.3. Benchmark

We compared Small-E with YourTTS [32] which is a common
baseline for the evaluation of multi-speaker TTS models (e.g.,
[7, 12]). For the comparison, we used the official checkpoint
which has been trained on a multilingual dataset comprising
VCTK (English), LibriTTS (English), and Portuguese split of
MLS. In addition, we also compared with MetaVoice [15] as a
strong baseline, an open-source and open-weight GPT model
of 1.2B parameters trained on 100k hours of speech from a
private dataset. This constitutes to our knowledge the strongest



codec language model TTS model publicly available. Notably
for decoding EnCodec tokens, our model rely on Vocos [33]
at 3kbps. This is in contrast with MetaVoice which leverages
MultiBand diffusion at 6kbs and an additional post-net. We
regret that most of the baselines belonging to our family don’t
have publicly available official implementations, limiting our
subjective and objective evaluation.

3.4. Methodology
3.4.1. Objective evaluation

As for the quantitative objective evaluation, we investigated the
performance of the proposed Small-E architecture in terms of
training throughput, i.e., the throughput measured by means of
audio-tokens per seconds and the perplexity of the LM as an
indicator of the reconstruction error as the exponential of the
cross-entropy loss. This is measured on Librilight medium with
the setup described in Section 3.2. Additionally, we conducted
an ablation study to investigate the role of the proposed PACA
mechanism with respect to the skips and repetitions problem
known as a common issue of auto-regressive models [7, 27, 34].
To do so, we followed the methodology presented in [34]. 100
utterances were randomly picked up from the validation set
and were manually inspected in terms of skips and repetitions
by comparison of the reference utterance. This methodology
is preferred to the common measurement of the word error
rate since the skip and repetition problem is specific to auto-
regressive models [34, 7].

3.4.2. Subjective Evaluation

A subjective evaluation was additionally conducted to assess
the naturalness and the similarity to the reference speaker of
the considered speech sample. The experiment consisted in
presenting to the participants a speech sample and a reference
speech sample of the same speaker but pronouncing another
utterance. The participants were asked to judge the speech
sample with respect of the following instructions on a 5-degree
MOS scale : (1) naturalness: to which extent the speech sample
is judged as natural as real human speech?; (2) similarity :
to the reference speaker: fo which extent the speech sample
is judged close to the reference speaker? For each participant
subject, an experiment run consisted into the judgement of 15
samples. These samples were randomly selected among a total
of 50 utterances (the same for all models) x 4 models (the
three models being and the real speech = 200 speech samples.
The real speech was presented as a positive anchor to the
participant. The whole experiment has been conducted using
the Prolific platform with a mix of 70 native and non-native
English speakers.

4. Results and Discussion

Table 1 presents the training throughput of Small-E with
comparison to a standard decoder-only architecture (following
[7] implementation) taken as a baseline of the LMs generative
family. Small-E training is significantly faster compared to this
baseline architecture with same amount of parameters, with a
relative increase of 62 %. This comes with a slight improvement
of the perplexity, indicating that training throughput gain
doesn’t come at the cost of performance.

Table 2 presents the results of the ablation study. On the
100 generated utterances which were manually inspected, the
Small-E version with PACA presents a drastic reduction of this

Using EnCodec[31] at 3kbps with delaying scheme[25], it consists
of 4 tokens generated in parallel per decoding step.

Table 1: Training throughput. Throughput is measured by
means of audio token per second (in kilo tokens per second),
and perplexity (referred to as ppl).

Model Audio token per second (kT/s) Ly ppl |
Small-E 316 18.33
Decoder-only (GPT) 195 19.68

problem, either in terms of skips or repetitions. This proves
the efficiency of the proposed cross-attention mechanism as a
solution to the skip and repetition problem.

Table 2: Position-Aware Cross-Attention impact on 100
utterances. Number of utterances that contains at least one
skip/repetition.

Model Skip |  Repeat |
Small-E w. PACA 1 1
w/o PACA 5 9

Table 3 presents the MOS scores obtained for the subjective
evaluation. Under ¢-test, we found every pair of candidates to
be significantly different (p < 0.05). Firstly, we observe that
Vocos at low bitrate presents a slight but significant degradation
with comparison to the original speech sample. Secondly,
Small-E presents significantly higher scores than the baseline
YourTTS both in terms of naturalness and similarity. Finally,
Small-E presents significantly lower score than the strong
baseline MetaVoice as expected since it consists of 20 times
more data and parameters, excluding it from training on limited
hardware.

Table 3: Subjective evaluation. MOS for naturalness, and
SMOS for similarity to the reference speaker.

Model Params. MOS 1t SMOS 1
Original 4.55 £ 0.20 4.62 £ 0.23
Vocos 3kbps 4.27 £0.21 4.43 +£0.22
Small-E (ours) 64M 3.16 £0.28 3.08 £0.30
YourTTS 86M 2.56 £ 0.24 2.54+0.24
MetaVoice 1.2B 3.80 £0.28 3.91+£0.28

5. Conclusion

In this paper we presented Small-E, a TTS model based on
codec language model. The proposed model tackles limitations
of current LM TTS models. Firstly, we introduced Linear
Causal Language Model in place of the traditional decoder-
only transformer. Secondly, we introduced a cross-attention
mechanism designed specifically to handle text and speech
modalities in the context of TTS, with the idea of preventing
the skip and repetition problem of auto-regressive models. In
contrast with existing work, we were able to show that training
LM TTS model is interesting even on limited hardware and
leads to state-of-the-art quality against model of the same
size. Experimental evaluation demonstrated the efficiency of
the proposed model either in terms of training throughput, skip
and repetition reduction, as well as naturalness and similarity
to the reference speaker of the generated speech. These
observations constitute encouraging results opening the way for
small and efficient generative TTS models. In future work we
are interested in streaming TTS, taking advantage of the linear
complexity of LCLM for very long or embedded synthesis.
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