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H I G H L I G H T S

An artificial-intelligence-based approach for PEMFCs performance prediction.
A new feature selection method based on KPCA and mutual information.
XGBRegressor and Tree-structured Parzen are jointly used for predicting the polarization curve.
A comparison study with conventional machine learning prediction models.
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A B S T R A C T

Proton-exchange membrane fuel cells (PEMFCs) are critical components of zero-emission electro-hydrogen
generators. Accurate performance prediction is vital to the optimal operation management and preventive
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maintenance of these generators. Polarization curve remains one of the most important features representing
the performance of PEMFCs in terms of efficiency and durability. However, predicting the polarization
curve is not trivial as PEMFCs involve complex electrochemical reactions that feature multiple nonlinear
relationships between the operating variables as inputs and the voltage as outputs. Herein, we present an
artificial-intelligence-based approach for predicting the PEMFCs’ performance. In that way, we propose first
an explainable solution for selecting the relevant features based on kernel principal component analysis and
mutual information. Then, we develop a machine learning approach based on XGBRegressor and Bayesian
optimization to explore the complex features and predict the PEMFCs’ performance. The performance and
the robustness of the proposed machine learning based prediction approach is tested and validated through a
real industrial dataset including 10 PEMFCs. Furthermore, several comparison studies with XGBRegressor and
the two popular machine learning-based methods in predicting PEMFC performance, such as artificial neural
network (ANN) and support vector machine regressor (SVR) are also conducted. The obtained results show that
the proposed approach is more robust and outperforms the two conventional methods and the XGBRegressor for
all the considered PEMFCs. Indeed, according to the coefficient of determination criterion, the proposed model
gains an improvement of 6.35%, 6.8%, and 4.8% compared with ANN, SVR, and XGBRegressor respectively.
1. Introduction

Renewable fuels are essential in the current energy mix and are
increasingly used due to new energy policies aimed at significantly
reducing greenhouse gas emissions. Fuel cells, particularly proton ex-
change membrane fuel cells (PEMFCs), are an efficient and clean way
of utilizing energy. They can convert chemical energy into electrical
energy and have several advantages, such as being environmentally
friendly, having a high energy conversion efficiency, producing low
noise, and operating at low temperatures. In this context, Energy Ob-
server Development (EODev) aims to expand the use of renewable fuels,
particularly hydrogen, as an energy carrier to realize a low-carbon
society. The zero-emission electro-hydrogen generator (GEH2) is the
most compact and efficient hydrogen generator available commercially
in terms of power output (Fig. 1) [EODev products, Blue Diamond
Machinery Brochure]. GEH2 is composed of (a) a PEMFC operating
on dihydrogen; The PEMFC requires auxiliary systems such as pumps,
cooling systems, and power supplies for operation; (b) a 44 kWh
battery to optimize the service life of the PEMFC and satisfy customer
requirements; (c) power conversion and control systems to ensure the
smooth operation of the group. The main components of GEH2 and
their characteristics are shown in Fig. 1.

EODev currently adheres to a systematic maintenance plan compris-
ing more than 50 operations to ensure the long-term smooth operation
of GEH2. Given the ever-changing and unpredictable nature of opera-
tional situations, as well as the gradual wear and tear of components
over time, the current maintenance plan is inadequate to meet the real
needs of GEH2. To reduce the maintenance cost while maintaining
the proper functioning of GHE2, EODev aims to apply the predictive
maintenance approach to deploy maintenance actions only at the right
component and at the right time. For this purpose, the performance
of GEH2’s key components should be estimated to enable predictive
maintenance decision-making. In that way, we focus on predicting the
performance of PEMFC, a crucial component of GEH2.

The performance of a PEMFC refers to its ability to efficiently
convert chemical energy, typically from hydrogen and oxygen, into
electrical energy. This efficiency is generally assessed through various
metrics and one of the most common ones is the polarization curve [1,
2] which is also known as the I–V curve. The polarization curve
represents the relationship between the current density (I) and the
voltage (V) output of the fuel cell under different operating conditions,
such as fuel cell temperature, pressure at the fuel cell inlet, and air
flow. It characterizes the electrochemical behavior of the fuel cell and
provides insights into its efficiency and performance under different
load conditions. Quantifying PEMFC performance involves analyzing
the shape and characteristics of the polarization curve, like the voltage
at which maximum power is achieved (peak power point), the slope
of the curve, and any deviations from ideal behavior, such as voltage
losses due to ohmic, activation, or mass transport losses.
2

A machine learning approach based on XGBRegressor and Bayesian
optimization is developed to estimate PEMFC performance. The pro-
posed approach is tested and validate though a real industrial dataset
including 10 PEMFCs. When compared to XGBRegressor and conven-
tional approaches such as artificial neural network (ANN) and support
vector machine regressor (SVR), the proposed approach provides better
results for all the considered PEMFCs.

In the next section, related works on the existing works on PEMFC
performance prediction are discussed to identify the related research
gaps and highlight the scientific contributions of this study.

2. Related studies and scientific contributions

2.1. Existing studies pertaining to PEMFC performance prediction

According to the authors of Wang et al. [1], Ding et al. [2], the
polarization curve is selected as the focal point for the performance pre-
diction model because of its ability to encompass the crucial properties
of PEMFCs, including the current density, voltage, and other significant
factors. Currently, three main approaches are employed to analyze
the performance of PEMFCs: model-driven, hybrid, and data-driven
approaches.

The model-driven approach forecasts the performance of PEMFCs
based on physical and mathematical models of the associated electro-
chemical, transport, and thermal processes. These models can simulate
PEMFC performance under a range of operational conditions and do
not require a significant amount of data to construct. However, they
require a comprehensive understanding of the underlying operational
mechanisms and the interactions between components, as well as the
incorporation of temporal and spatial elements. Zhao et al. [3] re-
viewed physics-based models for real-time control of PEMFCs and
compared 1D physical models incorporating transport and electrochem-
ical phenomena. Shi et al. [4] developed a mathematical model for a
passive fuel cell fed with an e-fuel and examined the effects of various
structural and operating conditions. Hasan et al. [5] introduced a nu-
merical method to predict the lifetime and deterioration of membranes
in PEMFCs, with emphasis on mechanical fatigue failure as a typi-
cal degradation mechanism that can result in PEMFC failure. Krishan
et al. [6] investigated the correlation between electrode performance
and drying techniques by constructing a dynamic two-dimensional
physical continuum model that incorporated the sensitivity of the
microstructure parameters of the catalyst layer. Kishimoto et al. [7]
developed a numerical methodology for predicting electrochemical
characteristics that considers various features, such as the current–
voltage behavior, macroscopic properties, and impedance. Singh et al.
[8] created a dynamic chemical degradation model to investigate the
effect of membrane degradation on PEMFCs. Danilov and Tade [9]
developed a new technique for estimating the cathodic and anodic
charge transfer coefficients from PEMFC voltage-current curves. Kim
et al. [10] formulated an equation to fit the cell potential to the cur-
rent density data of PEMFCs under different conditions. This equation
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Fig. 1. Zero-emission electro-hydrogen generator [EODev GeH2 Specifications].
included an exponential term that accounted for the effects of mass
transport, thus allowing slope changes and rapid potential drops to be
captured. Meanwhile, Guinea et al. [11] developed a voltage-current
model that considers the electron leakage current density to achieve
accurate matching performance using gradient optimization methods
and rotation.

The hybrid approach predicts the performance of PEMFCs based
on physical models and historical data. Bressel et al. [12] proposed
a novel approach using an extended Kalman filter-based observer to
accurately estimate both the health status and degradation dynam-
ics. Yue et al. [13] presented an online method for detecting and
forecasting the degradation of PEMFCs. To establish a degradation
indicator, they employed a nonlinear regression approach independent
of the operating conditions and a multistep window-sliding echo-state
network model to predict the future evolution of the identified degra-
dation indicators. Pan et al. [14] introduced a hybrid methodology
that combined a model-based adaptive Kalman filter with a data-driven
nonlinear autoregressive exogenous model (NARX) neural network to
predict the degradation of PEMFCs. The overall degradation trend was
captured using an empirical aging model and an adaptive Kalman filter,
whereas the intricate degradation specifics are depicted using the NARX
neural network. Hu et al. [15] proposed a hybrid method for predicting
the probability of performance degradation in PEMFCs to extend the
service life and reduce maintenance costs. Wang et al. [16] presented
a new method that combined the benefits of machine learning methods
and semi-empirical models to predict the degradation of a PEMFC
system comprising 300 cells. Zhou et al. [17] combined a physical aging
model with time-delay neural networks to predict the deterioration of
PEMFCs. A physical aging model was used to remove nonstationary
trends from the original data, and the linear component was filtered
using an autoregressive and moving-average model. Subsequently, the
remaining nonlinear model was used to train the delayed neural net-
works, which were used to obtain the final prediction. Cheng et al.
[18] proposed a method to enhance the precision of prognostic results
in cases involving uncertain characterizations. They used the least-
square support vector machine for initial prognostics and subsequently
employed a regularized particle filter to determine the final probability
distribution of the remaining useful life for PEMFCs.

The application of model-driven and hybrid approaches requires
a certain level of physical knowledge regarding the system behavior,
which may be difficult to gain for some complex applications. In this
context, a data-driven approach for predicting PEMFC performance
based purely on historical data has been extensively developed because
of its remarkable flexibility and robust predictive capabilities [19].
For example, Wilberforce and Olabi [20] employed an artificial neural
network (ANN) to predict the current and voltage of a PEMFC, thus
minimizing the power required for fuel pumping and reducing the net
3

losses in the cell. Legala et al. [21] conducted a comparative study
between an ANN and a SVR (support vector machine regressor) for
predicting variables such as cell voltage and membrane resistance.
They showed that the ANN performed better than the SVR, particularly
for multivariate output regression tasks. However, the SVR performed
better in simpler regressions and reduced the computational load while
maintaining high accuracy. He et al. [22] proposed an autoencoder-
LSTM network model to predict the progress and mechanisms of PEMFC
degradation during vehicle operation. In this method, a health indicator
representing the PEMFC degradation states was employed, and LSTM
analysis was performed. Kheirandish et al. [23] proposed a method
for predicting the performance of a PEMFC system of a commercially
available electrical bicycle using a support vector machine. Huo et al.
[24] used a combination of Random Forest algorithm for feature se-
lection and Convolutional Neural Networks (CNNs) for predicting the
polarization curve of PEMFCs. Chen et al. [25] developed an insulation
variation model using a data-driven long short-term memory neural
network to identify insulation resistance value anomalies caused by
deionizer failure in fuel cell vehicles. Falcão et al. [26] used a feed-
forward ANN with three layers to predict the influence of relative
humidity of the gases and fuel cell temperatures on the polarization
curve. Li et al. [27] proposed a framework that combines a state-of-
the-art meta-heuristic algorithm with a machine learning technique
to predict performance and optimize parameters of PEMFCs. They
developed a three-dimensional model to serve as the framework’s data
source, then construct a prediction model using the Kernel Extreme
Learning Machine. Han and Chung [28] combined an ANN and an
SVR to predict the stack performance of PEMFCs while considering
the effects of different PEMFC operating conditions. Hong [29] used
a deep belief network to build a model to predict the performance
and maximize the power density of a PEMFC. Meanwhile, the authors
of Zheng et al. [30] used long short-term memory (LSTM) to predict
the performance of PEMFCs under dynamic conditions, particularly for
vehicle applications. Chen et al. [31] used a gradient backpropagation
neural network to predict the aging evolution of PEMFCs. The parame-
ters of this model were adjusted using an evolutionary algorithm, which
included a mental evolutionary algorithm, particle swarm optimization,
and a genetic algorithm. Zuo et al. [32] developed a recurrent neural
network model with an attention mechanism to optimize prognostic
and health management predictions, thus promoting a more accurate
anticipation of output voltage deterioration in PEMFCs. A comparison
of recent research on polarization curve prediction based on data driven
methods and the proposed method is summarized in Table 1.

According to the literature review and the comparative Table 1,
existing models for estimating PEMFC performance have the following
limitations: (1) the majority of models rely on data gathered from fuel
cell aging test bench. Despite the meticulousness of these experiments,

https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf
https://eo-dev.imgix.net/documents/EODEV_GEH2_PRODUCT_DESCRIPTION_EN_web.pdf


Energy and AI 17 (2024) 100380S. Echabarri et al.
Table 1
Comparisons of recent research works and the proposed method.
References Feature Prediction on various Number of PEMFCs Validation Prediction

selection dynamic operating used for model on real accuracy
conditions validation data

Wilberforce and Olabi [20] No Yes 1 No High
Legala et al. [21] No No 2 No High
Han and Chung [33] No Yes 2 No High
Hong [29] No Yes 1 No High
Huo et al. [24] Yes No 140 No Moderate
Chen et al. [31] No No 3 No Moderate
Zuo et al. [32] No No 2 No Medium
Kheirandish et al. [23] No No 1 No Medium
Li et al. [27] No Yes 1 No High
Proposed method Yes Yes 10 Yes High
the data obtained may not fully represent the genuine behavior of the
PEMFC when operating under real-world conditions; (2) in the case of
dynamic operating conditions, the selection of parameters that control
the performance of PEMFCs (relevant features) has been made on the
basis of experience without any explanation; (3) the performance of the
existing machine learning models was not robust enough and still lim-
ited in exploring complex operational data of real applications; (4) the
optimization of the models’ hyperparameters, a key factor in machine
learning performance, has rarely been investigated. A new explainable
and robust model that exploits the complex real-life operational data is
required to provide a better prediction of PEMFC performance.

2.2. Scientific contributions

In this study, we propose a new explainable solution for the selec-
tion of the relevant feature and an efficient prediction approach based
on the XGBRegressor and Tree-structured Parzen Estimator (TPE). The
main contributions of this study are summarized as follows:

1. A new feature selection method based on KPCA and mutual
information is developed to select relevant features for control-
ling the performance of PEMFCs. The method provides useful
information for interpreting the results and understanding the
factors that affect the polarization curve;

2. An efficient and robust method based on XGBRegressor (a pow-
erful machine learning approach for the regression problem) and
TPE (a new Bayesian method for machine learning optimization)
is proposed to predict the polarization curve of PEMFCs, taking
into account their dynamic operational conditions;

3. The proposed model is compared to XGBRegressor and two
popular machine learning-based methods (ANN and SVR) in
predicting PEMFC performance, on a complex industrial dataset
provided by EODev.

The remainder of this paper is organized as follows: Section 3 presents a
description of the PEMFC system and introduces the problem statement
and the proposed methodology. Section 4 describes the selection of
PEMFC characteristics using the proposed feature selection method.
Section 5 presents a detailed description of the proposed prediction
model based on the XGBRegressor and TPE. Section 6 presents the
evaluation of the performance of the proposed method using the actual
polarization curve data of 10 PEMFCs. Furthermore, a comparison
study conducted using three established machine learning regressors,
the XGBRegressor, the artificial neural network (ANN), and the support
vector machine regressor (SVR), to predict the polarization curve is
presented. Finally, conclusions inferred from this study are presented
in Section 7.

3. System description and problem formulation

In this section, we describe the PEMFC system structure and its prin-
ciple of working flows, as well as how the data was collected from dif-
ferent GEH2s under different operating conditions. Then, we describe
the problem statement and introduce our proposed methodology.
4

3.1. PEMFC system structure and principle of working flows

The underlying structure of a PEMFC entails two electrodes, namely
the anode and cathode, separated by a solid membrane serving as an
electrolyte (Fig. 1). Hydrogen fuel passes through a network of channels
to reach the anode, where it undergoes dissociation into protons and
electrons. Specifically, hydrogen molecules dissociate into protons (H+)
and electrons (𝑒−) through the reaction:

H2 → 2H+ + 2e−

These protons migrate across the membrane towards the cathode, while
the electrons travel through an external circuit connecting the two elec-
trodes, thus generating electrical current. Concurrently, the oxidant,
typically air in this study, follows a similar pathway through chan-
nels to reach the cathode. At the cathode, oxygen combines with the
electrons from the external circuit and the protons migrating through
the membrane, resulting in the formation of water according to the
reaction:

1∕2O2 + 2H+ + 2e− → H2O

The overall cell reaction, which summarizes the electrochemical pro-
cesses occurring within the PEMFC, can be expressed as:

H2 + 1∕2O2 → H2O

As a result, the PEMFC produces water, DC electricity, and heat. The
working principle of PEMFC is illustrated in Fig. 2.

The PEMFC system includes additional components, such as a pump
for cooling water, a valve for cooling water temperature control, an air
compressor, and a converter an inverter. Each of them plays a crucial
role in the PEMFC system, contributing to its efficiency, reliability, and
overall functionality. Furthermore, the PEMFC structure is designed to
optimize the performance of the PEMFC system inside the GEH2. A
detailed description of the PEMFC and its operation within the GEH2
will be addressed in the following section.

3.2. PEMFC system and its monitoring data

The data collected from several GEH2s for various components and
sub-components provides useful information to better understand and
analyze the PEMFC mechanisms that allow improving and optimizing
the GEH2 performance.

Each GEH2 generator is equipped with an internet-connected data
logger that acquires more than 1000 signals sampled at 100 ms and
emitted by both the sensors and control units. Regarding the PEMFC
system, 22 variables are monitored, including the stack current, stack
tension, fuel cell temperature, etc. Table 2 summarizes all the mon-
itored variables. Subsequently, the polarization curves are obtained
using the acquired data after they are downsampled to 30 s time
intervals, resulting in a database of 12,000 points. Ten identical PEM-
FCs deployed worldwide by EOdev provided experimental data for

validation and training of our model under various conditions.
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Fig. 2. The working principle of PEMFC [34].
Fig. 3. Sensors location in the PEMFC module, components and auxiliary systems. The numeric labels correspond to the sensor reference in Table 2.
To comprehend the parameters outlined in Table 2 and their place-
ment within the PEMFC system, we illustrate in Fig. 3 the sensors
(represented by numeric labels) and the interdependencies among the
sub-components.

3.3. Problem statement and proposed methodology

The main objective of this study is to predict the evolution of
the PEMFC’s performance, i.e., the polarization curve representing
the relationship between PEMFC current density and voltage, from
recorded real dataset mentioned in the previous section. In that way,
the focus of this study is centered on comprehending and addressing
the complex and nonlinear relationships that are inherent in the electro-
chemical reactions of PEMFCs. Therefore, a comprehensive model must
be established that captures the intricate dynamic behavior of PEMFCs,
incorporating various operational factors such as temperature, pressure,
and airflow. Additionally, the model must accurately capture the non-
linear relationships between these parameters. Such relationships are
often challenging to model accurately using conventional methods.

To overcome these challenges, we propose to use a machine learning
model, namely XGBRegressor, that allows effectively modeling complex
dynamic behavior by learning the nonlinear relationships between
input variables and output variable. However, it is important to note
that the predictive quality of XGBregressor is highly dependent on its
5

estimated hyperparameters, so the selection of the best hyperparam-
eters is a crucial and important step in our methodology. Therefore,
it is proposed to integrate Tree-structured Parzen Estimator (TPE) into
XGBregressor to optimize its hyperparameters. This approach allows us
to search for the best hyperparameters and update them in a effective
manner based on the model’s performance. Unlike traditional methods
such as random search and grid search, which can be limited in their
capacity to thoroughly investigate the hyperparameter space, especially
when complex dependencies are present, TPE concentrates on promis-
ing areas of the hyperparameter space, thus significantly decreasing the
number of evaluations needed to find an optimal configuration.

In addition, due to the complexity and dynamic nature of PEMFC
electrochemical reactions, careful identification of the operational vari-
ables that significantly influence performance is essential. Therefore,
relevant variables need to be selected as inputs to the XGBRegressor
model to achieve accurate and robust predictions. To address this, a
combination of KPCA and mutual information was used for feature
selection. This approach aims to overcome the limitations of traditional
approaches by capturing nonlinear relationships between variables and
identifies complex interactions that may affect model performance.
Indeed, KPCA transforms data into a nonlinear feature space, pro-
viding a better representation of complex interactions, while mutual
information quantifies the dependency between variables, aiding in
the selection of influential features. This feature approach enhances
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Table 2
Operating variables of the PEMFC.

Sensor Variable name Description Unit Type

reference

1 mes_u_stack Stack tension V measurement

2 mes_i_stack Stack current 𝐴 measurement

3 mes_p_fc_net Fuel cell net power W measurement

4 mes_d_fc_h2In Instantaneous H2 consumption mg measurement

5 mes_pr_fc_h2Mid H2 supply pressure kPa measurement

6 mes_pr_fc_h2Low H2 pressure at fuel cell inlet kPa measurement

7 req_pr_fc_h2Low H2 pressure at fuel cell inlet kPa request

8 req_n_h2Pump H2 pump speed rpm measurement

9 mes_t_fc Fuel cell temperature ◦C measurement

10 mes_t_fc_out Coolant temperature at fuel cell outlet ◦C measurement

11 mes_t_rad_out Coolant temperature at radiator outlet ◦C measurement

12 mes_t_aux_out Auxiliary cooling circuit ◦C measurement

temperature at radiator inlet

13 mes_n_wp Water pump speed rpm measurement

14 req_n_wp Water pump speed rpm request

15 mes_prc_3wVlv_opn 3 way valve opening rate % measurement

16 mes_d_aSup Airflow NL∕min measurement

17 mes_pr_aSup Air pressure at fuel cell inlet kPa measurement

18 mes_t_aComp_inv Air compressor inverter temperature ◦C measurement

19 mes_t_aComp_mot Air compressor internal temperature ◦C measurement

20 mes_n_aComp Air compressor speed rpm measurement

21 req_n_aComp Air compressor speed rpm request

22 st_fc_mod Fuel cell mode (start/stop/generating/off) – state
the understanding of the parameters controlling the PEMFC system,
improving overall performance understanding.

Due to the complex and ever-changing nature of electrochemical re-
actions in PEMFCs, it is crucial to carefully identify the operational vari-
ables that have a significant impact on PEMFC performance. Therefore,
selecting the appropriate variables to use as inputs for the Proposed
XGBRegressor prediction model is a critical step in achieving accurate
and reliable predictions. To address this challenge, the following sec-
tion combines Kernel Principal Component Analysis (KPCA) and mutual
information to select the most relevant features.

In conclusion, the proposed methodology for predicting the PEMFC
performance can be divided by two steps: (1) incorporating KPCA and
mutual information for feature selection and (2) combining XGBRe-
gressor machine learning model and TPE for the PEMFC performance
prediction. These methodological choices address the challenges arising
from the complexity of electrochemical reactions and the dynamic
behavior of PEMFCs, ultimately improving the quality, robustness, and
relevance of the predictive model. The detailed description of the
proposed methodology will be presented in Sections 4 and 5.

4. Features selection using KPCA and mutual information

Feature selection, integral to the method of dimensionality reduc-
tion, aims to decrease the dimensionality of data by eliminating irrel-
evant or redundant variables. On the other hand, feature extraction
techniques achieve dimensionality reduction by combining variables.
These two dimensionality reduction techniques will be discussed in
detail in Section 4.1.

PEMFCs exhibit intricate electrochemical reactions involving multi-
ple nonlinear relationships between their operating variables and the
average PEMFC stack voltage. Feature selection yields insignificant
results, particularly when variables that are supposed to control the
polarization curve, such as current, temperature, and pressure, are not
6

selected. For extraction methods, model accuracy is more important
than interpretability. In this study, we propose a selection method
based on KPCA and mutual information to select relevant features while
ensuring the interpretability of the model. This is discussed in more
detail in Section 4.2.

4.1. Fundamentals of feature selection and feature extraction

Feature selection
Feature selection involves selecting the most relevant features from

a dataset [35]. The main advantage of this method is that it reduces the
dimensionality of the dataset while conserving information to improve
the model performance by reducing overfitting and improving inter-
pretability. This reduces the complexity of the model, thus rendering it
easier to understand and interpret [36]. The overall feature selection
process is illustrated in Fig. 4.

Feature selection can be accomplished via several approaches, in-
cluding filter, wrapper, embedded, and ensemble methods. Among
them, filter methods are considered the oldest and are also known as
open-loop methods. They involve evaluating the relevance of features
with respect to the target variable independent of the model. Moreover,
feature characteristics are typically measured based on dependence,
information, consistency, and distance [37]. By contrast, wrapper meth-
ods, also known as closed-loop methods, are based on the performance
of learning algorithms. In these methods, features are evaluated using
a machine learning model and the most relevant features are searched
based on the performance accuracy [38]. Embedded methods, which is
similar to wrapper methods, are different in that they perform feature
selection during model training by incorporating features into the
feature extraction algorithm. This implies that the features are selected
during the model implementation process [39]. Finally, the ensemble
method involves creating multiple feature subsets and combining the
results to obtain a more robust outcome. This approach relies on several
subsampling techniques, wherein a specific feature selection method is

applied to different subsamples and their resulting features are merged
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Fig. 4. Process of feature selection.
Fig. 5. PEMFC features selection.
to form a more stable subset. In summary, each of these methods has
its own advantages and disadvantages. In Dash and Liu [37], a detailed
explanation pertaining to the selection of the best method to adapt to
our data is provided by highlighting the advantages and disadvantages
of each approach.

Feature extraction
Feature extraction involves transforming the original data into a

new set of features that is more representative of the underlying
patterns of the data. The most well-established methods are principal
component analysis (PCA), KPCA, multidimensional scaling, locally lin-
ear embedding, or independent component analysis. Feature extraction
can be useful when many features are present in the data, some of
which are highly correlated, because it can reduce the number of
features without excessive information loss. For more details on feature
extraction, please refer to Elhadad et al. [40], Aziz et al. [41].

4.2. Proposed feature selection method

As mentioned above, a PEMFC undergoes intricate electrochemi-
cal reactions involving multiple nonlinear relationships between the
operating variables of the PEMFC as inputs and the average PEMFC
stack voltage as the output. To select the relevant features, we propose
applying KPCA to extract KPCA components that explain the data and
then calculate the mutual information between these KPCA components
and all PEMFC variables to extract the relevant variables as described
in Fig. 5.

KPCA [42] is an extended form of PCA that relies on kernel tech-
niques to perform nonlinear dimensionality reduction. The basic idea
behind KPCA is to transform the source data into a high-dimensional
feature space through a nonlinear mapping function and then perform
PCA in that feature space. This technique allows KPCA to capture the
nonlinear relationships between data points that cannot be detected via
linear PCA. The steps for reducing the dimensionality via KPCA are
outlined as follows:

• Construct the kernel matrix 𝐾. In our study, we choose the
polynomial kernel

𝐾𝑖,𝑗 = 𝜅
(

𝐱𝐢, 𝐱𝐣
)

= (𝑥𝑇𝑖 𝑥𝑗 + 1)2. (1)

• Compute the gram matrix �̃� using to the following equation:

�̃� = 𝐾 − 𝟏 𝐾 −𝐾𝟏 + 𝟏 𝐾𝟏 , (2)
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𝐍 𝐍 𝐍 𝐍
where 𝑁 is the number of data points and 𝟏𝐍 is the 𝑁 ×𝑁 matrix
with all elements equal to 1∕𝑁 .

• Find the vector 𝑎𝑘 by solving the following equation:

�̃�𝑎𝑘 = 𝜆𝑘𝑁𝑎𝑘, (3)

where 𝑎𝑘 = [𝑎𝑘1, 𝑎𝑘2,… , 𝑎𝑘𝑁 ]𝑇 are the eigenvalues of �̃� and 𝜆 are
the corresponding eigenvectors.

• Finally, compute the kernel principal components 𝑦𝑘(𝑥)

𝑦𝑘(𝐱) = 𝜙(𝐱)𝑇 𝐯𝑘 =
𝑁
∑

𝑖=1
𝑎𝑘𝑖𝜅

(

𝐱𝐢, 𝐱𝐣
)

. (4)

To ensure the reliability of our KPCA, the input data were normal-
ized before the KPCA was applied. After applying KPCA to the data, the
number of KPCA components that explained the main variance in the
data was determined.

To select the relevant variables that affect the polarization curve
of the PEMFC and determine the parameters that significantly affect
the first KPCA element, we applied the mutual information method.
In probability and information theories, the mutual information of two
random variables is used to quantify the statistical dependence. If the
variables are independent, then the mutual information is zero; how-
ever, it increases with the statistical dependence. Mutual Information
is mathematically defined as follows:

• in the discrete case:

𝐼(𝑋; 𝑌 ) =
∑

𝑥,𝑦
𝑃 (𝑥, 𝑦) log

𝑃 (𝑥, 𝑦)
𝑃 (𝑥)𝑃 (𝑦)

, (5)

• in the continuous case:

𝐼(𝑋; 𝑌 ) = ∫R ∫R
𝑃 (𝑥, 𝑦) log

𝑃 (𝑥, 𝑦)
𝑃 (𝑥)𝑃 (𝑦)

𝑑𝑥𝑑𝑦, (6)

where 𝑃 (𝑥, 𝑦), 𝑃 (𝑥) and 𝑃 (𝑦) represents the densities of (𝑋, 𝑌 ), 𝑋 and
𝑌 , respectively.

We applied mutual information between the KPCA components that
represented the data and the operating variables of the PEMFC. The
variables selected using the proposed hybrid approach are shown in
Table 3.

We compare our proposed selection technique with other tech-
niques such as the Pearson correlation and mutual information (filter
methods), recursive feature elimination–random forest and genetic al-
gorithm (wrapper methods), and auto-encoder as well as Lasso and
ridge regressors (embedded methods) in Section 6.
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Table 3
Selected variables with the proposed method.
Sensor reference Variable name Description

2 mes_i_stack Stack current
4 mes_d_fc_h2In Instantaneous H2 consumption
6 mes_pr_fc_h2Low H2 pressure at fuel cell inlet
10 mes_t_fc_out Coolant temperature at fuel cell outlet
12 mes_t_aux_out Auxiliary cooling circuit temperature at radiator inlet
17 mes_pr_aSup Air pressure at fuel cell inlet
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5. Integrated XGBRegressor and TPE model based prediction

In this section, we present a method to predict the PEMFC perfor-
mance based on the relevant variables identified in the previous step
using the XGBRegressor and TPE. Additionally, evaluation criteria are
presented at the end of this section to evaluate the performance of the
proposed model.

5.1. XGBRegressor and tree-structured Parzen estimator

5.1.1. XGBRegressor
Extreme Gradient Boosting (XGBoost) is a library that provides an

efficient implementation of the gradient boosting ensemble algorithm
based on decision trees. The XGBRegressor is a version of XGBoost
designed to perform regression tasks. The objective function of XGBoost
at the 𝑡th iteration is defined as follows:

(𝑡) =
𝑛
∑

𝑖=1
𝑙
(

𝑦𝑖, �̂�
(𝑡−1)
𝑖 + 𝑓𝑡

(

𝐱𝑖
)

)

+𝛺
(

𝑓𝑡
)

, (7)

where 𝑙 is a differentiable convex loss function; 𝑥𝑖 and 𝑦𝑖 are the
observation vector and the actual value of observation 𝑖, respectively;
𝑓𝑡 is the prediction function of tree t; and �̂�(𝑡)𝑖 is the prediction of
the observation 𝑖th in the t-th iteration. The second term 𝛺 is a
regularization that penalizes the regression tree functions and is defined
as follows:

𝛺(𝑓 ) = 𝛾𝑇 + 1
2
𝜆‖𝑤‖

2, (8)

here 𝑇 is the total number of leaves in the tree, 𝑤 is the leaf weights,
nd 𝛾 and 𝜆 are hyperparameters control the regularization strength.

As shown, the function (𝑡) cannot be optimized using traditional
ptimization techniques in Euclidean space. Therefore, this function
ust be transformed into a function in the Euclidean domain. Hence, a

econd-order Taylor approximation was applied to obtain a new form
f the objective function as follows:

(𝑡) ≃
𝑛
∑

𝑖=1

[

𝑙
(

𝑦𝑖, �̂�
(𝑡−1)) + 𝑔𝑖𝑓𝑡

(

𝐱𝑖
)

+ 1
2
ℎ𝑖𝑓

2
𝑡
(

𝐱𝑖
)

]

+𝛺
(

𝑓𝑡
)

, (9)

where 𝑔𝑖 = 𝜕�̂�(𝑡−1) 𝑙
(

𝑦𝑖, �̂�(𝑡−1)
)

and ℎ𝑖 = 𝜕2
�̂�(𝑡−1)

𝑙
(

𝑦𝑖, �̂�(𝑡−1)
)

. By removing the
constant terms, we obtain the following simplified form in step 𝑡:

̃(𝑡) =
𝑛
∑

𝑖=1

[

𝑔𝑖𝑓𝑡
(

𝐱𝑖
)

+ 1
2
ℎ𝑖𝑓

2
𝑡
(

𝐱𝑖
)

]

+𝛺
(

𝑓𝑡
)

. (10)

For more details regarding the construction of the next learner and
the method to measure the quality of a tree structure, please refer
to Chen et al. [31].

5.1.2. Tree-structured Parzen estimator
In this study, we aim to estimate the hyperparameters of the XG-

BRegressor using the TPE [43]. The TPE is a Bayesian-based method
for tuning model hyperparameters. Let 𝜃 and 𝑦 be the hyperparameter
and loss function of the model, respectively. After selecting a new set of
hyperparameters, the improvement (EI) of the model can be expressed
as follows:

𝐸𝐼𝑦∗ (𝜃) =
𝑦∗
(

𝑦∗ − 𝑦
)

𝑝(𝑦 ∣ 𝜃)𝑑𝑦, (11)
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∫−∞
where 𝑦∗ is a control parameter.
To tune the hyperparameters, TPE simulates 𝑝(𝑦 ∣ 𝜃) by simulating

𝑝(𝜃 ∣ 𝑦) and 𝑝(𝑦) indirectly.
Therefore, we replace 𝑝(𝑦 ∣ 𝜃) in Eq. (11) and EI is expressed as:

𝐸𝐼𝑦∗ (𝜃) = ∫

𝑦∗

−∞

(

𝑦∗ − 𝑦
) 𝑝(𝜃 ∣ 𝑦)𝑝(𝑦)

𝑝(𝜃)
𝑑𝑦, (12)

where 𝑝(𝜃 ∣ 𝑦) is the probability density defined as the piecewise
function in terms of 𝑦:

𝑝(𝜃 ∣ 𝑦) =

{

𝑙(𝜃) if 𝑦 < 𝑦∗

𝑔(𝜃) if 𝑦 ≥ 𝑦∗
, (13)

where 𝑙(𝜃) and 𝑔(𝜃) are two probability densities formed by loss values
ess than and greater than 𝑦∗, respectively. Therefore, if we consider

= 𝑝
(

𝑦 < 𝑦∗
)

(14)

we obtain

𝑝(𝜃) = ∫R
𝑝(𝜃 ∣ 𝑦)𝑝(𝑦)𝑑𝑦 = 𝛾𝑙(𝜃) + (1 − 𝛾)𝑔(𝜃). (15)

Furthermore, EI can be written as follows:

𝐸𝐼𝑦∗ (𝑥) =
𝛾𝑦∗𝑙(𝜃) − 𝑙(𝜃) ∫ 𝑦∗

−∞ 𝑝(𝑦)𝑑𝑦
𝛾 𝑙(𝜃) + (1 − 𝛾)𝑔(𝑥)

∝
(

𝛾 +
𝑔(𝑥)
𝑙(𝑥)

(1 − 𝛾)
)−1

. (16)

Based on Eq. (16), to determine the hyperparameters that yield the
highest EI, the TPE algorithm assesses the hyperparameters using the
ratio of 𝑔(𝜃)∕𝑙(𝜃) and selects the hyperparameters 𝜃∗ that yield the

aximum EI.

.2. Hyperparameters estimation using TPE

The process of estimating the XGBRegressor hyperparameters using
PE is depicted in Fig. 6 in which solid lines depict the core, non-

terative steps that establish the framework for the TPE algorithm.
hey define the initial setup (specifying the search space and objective
unction) and the actions taken after each iteration (evaluating newly
ampled configurations and updating observations). In the oher hand,
ashed lines indicate a loop that encompasses multiple steps within
ach iteration. It essentially signifies that steps 4 through 8 are repeated
or a fixed number of iterations. These steps involve sorting observa-
ions, modeling densities, sampling new hyperparameters, evaluating
hem, and updating the observations. All the process steps illustrated
n Fig. 6 are specified as follows:

• Step 1: In this initial step, we start by establishing the potential
range of values for the hyperparameters to be set in the XGBRe-
gressor model. These parameters typically include the number of
estimators, maximum depth, learning rate and colsample_bytree.
This space of hyperparameters forms the basis for exploring the
TPE algorithm.

• Step 2: To quantify the model efficacy, the objective function
represented in Eq. (7) is utilized and the root mean square error
is designated as the loss function. This directs the optimization
process by minimizing its value.

• Step 3: This entails randomly sampling a set of hyperparameter
configurations from the defined search space in step 1. These
configurations represent the initial set of ‘‘observations’’ used by
the TPE algorithm.
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Fig. 6. Process for estimating XGBRegressor parameters using TPE.
• Step 4: Here, the performance of each randomly chosen hyperpa-
rameter configuration is assessed using the designated objective
function. The observations are then sorted based on their scores
and segregated them into two groups, where the first group
contains the best-performing configurations (𝑥1) and the second
contains the remaining configurations (𝑥2).

• Step 5: The TPE algorithm employs a technique known as Parzen
density estimation to approximate the underlying probability dis-
tributions of the two sets of observations, (𝑥1) and (𝑥2). These
densities, denoted by 𝑙(𝑥1) and 𝑔(𝑥2) (as shown in step 5-1),
respectively, represent the likelihood of encountering a specific
hyperparameter configuration within each group.

• Step 6: This step leverages the modeled densities to strategically
select new hyperparameter configurations. As shown in Eq. (16),
EI is proportional to 𝑔(𝑥2)∕𝑙(𝑥1). Therefore, we obtained sam-
ple hyperparameters from 𝑙(𝑥1) and evaluated them relative to
𝑔(𝑥2)∕𝑙(𝑥1). The set that minimized this ratio and corresponded
to the highest EI was selected. This approach steers the search
towards regions in the hyperparameter space that are more likely
to yield superior performing models.

• Step 7: The newly sampled hyperparameter configurations are
assessed using the objective function, similar to how the initial
random samples were evaluated in step 4.

• Step 8: Incorporate the newly observed performance metrics
into the Bayesian model. By updating the probability distributions
of hyperparameters based on observed outcomes, the algorithm
adapts its search strategy to focus on promising regions of the
hyperparameter space (step 8-1).
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• Step 9: This iterative process, encompassing steps 4 through 8,
is repeated for a fixed number of iterations. The core principle
behind TPE is its iterative refinement of the search space. By pri-
oritizing regions with promising configurations and progressively
incorporating new information, TPE aims to efficiently locate
optimal hyperparameters for the XGBregressor model.

Finally, to evaluate the performance of the proposed model, three
measures were used: the root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination (R2). These three metrics
are expressed mathematically as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑉𝑖 − 𝑉𝑖)2. (17)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑉𝑖 − 𝑉𝑖|. (18)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑉𝑖 − 𝑉𝑖)2
∑𝑛

𝑖=1(𝑉𝑖 − 𝑉 )2
, (19)

where 𝑛 is the number of observations, 𝑉𝑖 the average observed PEMFC
stack voltage, 𝑉𝑖 the predicted value, and 𝑉 the mean value of the
average PEMFC stack voltage observed.

Detailed results and discussions obtained from 10 PEMFCs datasets
will be addressed in Section 6.
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Table 4
Results of different feature selection methods in terms of RMSE and R2.

XGBRegressor ANN Number of

RMSE R2 RMSE R2 selected features

Filter method Mutual Information 0.0501 0.8717 0.0588 0.7354 4
Correlation 0.1065 0.5919 0.1633 0.5615 7

Wrapper method RFE-Random Forest 0.0318 0.9376 0.0487 0.8766 9
Genetic algorithm 0.0914 0.7590 0.0766 0.6918 12

Embedded method
Auto-encoder 0.0421 0.9054 0.0549 0.7422 8
Lasso 0.0652 0.8577 0.0789 0.6700 13
Ridge 0.0682 0.8505 0.0734 0.6692 9

Proposed method 0.0112 0.9888 0.0362 0.9240 6
Table 5
Hyper-parameters estimated by the proposed XGBRegressor model for the 10 PEMFCs.
Hyper-parameters FC.01 FC.02 FC.03 FC.04 FC.05 FC.06 FC.07 FC.08 FC.09 FC.10

n_estimators 1600 1500 1800 400 1600 800 1400 1200 200 400
max_depth 8 12 8 6 2 2 2 4 2 12
learning_rate 0.1335 0.0607 0.1095 0.0905 0.0119 0.0375 0.1252 0.1167 0.1398 0.1477
colsample_bytree 0.55 1 0.7 0.6 1 0.5 0.6 0.8 0.85 0.9
6. Results and discussions

We applied the proposed model to predict the polarization curve
using real data acquired from 10 distinct PEMFCs associated with dif-
ferent GEH2s. To assess and contrast the effectiveness of the proposed
model, we conducted benchmarking against XGBRegressor alone, as
well as two widely used machine learning-based methods (ANN and
SVR) for predicting PEMFC performance.

ANNs are biological neural networks that develop structures of
the human brain. Similar to the human brain with interconnected
neurons, ANNs feature interconnected neurons in various layers of the
network. The performance of ANNs has been demonstrated in several
applications, including regression problems [44,45]. In this study, the
ANN was designed with an input layer comprising six variables, two
hidden layers comprising 64 and 32 neurons each, and an output layer
comprising a single neuron. The activation function for the first two
layers was a ReLU and that for the third layer was linear. The loss
function selected was the RMSE, which was minimized using the Adam
optimizer. The training data were segmented into batches of size 32 and
the model was trained over 50 epochs. A schematic illustration of the
ANN, where the variables selected in the previous selection were used
as feature vectors (inputs) to predict the PEMFC polarization curve, is
shown in Fig. A.1 (Appendix A).

The SVR is an extension of the support vector machine (SVM)
applied to regression analysis [46,47]. Its purpose is to identify a
regression function that predicts continuous values by maximizing the
margin between the predicted and actual values while controlling the
complexity of the model. We focus on the data points closest to the
margin, known as support vectors, to construct the regression function.
The SVR can use different kernel functions such as the radial basis
function to capture nonlinear relationships. It solves an optimization
problem that balances prediction errors and model regularization, sim-
ilar to SVMs, for classification. In this study, the SVR used to predict
the polarization curve comprised a Gaussian kernel, an epsilon error
tolerance of 0.025, a regularization parameter C of 5, and a kernel-
independent term of 0.01. Fig. A.2 (Appendix A) shows a schematic
illustration of the SVR model used to predict the polarization curve of
the PEMFC.

As discussed in Section 4.2, KPCA and mutual information were
jointly used to select the relevant features. To demonstrate the effec-
tiveness of this method, we compared it with different feature selection
methods. The results of this comparison are presented in Table 4.
As shown, the proposed feature selection method yielded better re-
sults than the other methods presented in the table, including the
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XGBRegressor and ANN prediction models.
As shown in Table 4, feature selection methods lead to different
numbers of selected features primarily due to algorithmic differences,
scoring metrics, search strategies, etc. Indeed, the algorithms of some
methods prioritize features based on distinct criteria. Some methods
may focus on individual feature importance, while others may consider
feature interactions or correlations. Feature selection methods often
employ different scoring metrics to evaluate feature relevance. Metrics
such as information gain, correlation coefficients, or model perfor-
mance metrics, may lead to different feature selections. The search
strategies employed by feature selection methods, such as forward
selection, backward elimination, or recursive feature elimination, can
influence the number of selected features. Therefore, the evaluation of
prediction quality presented in Table 4 allows determining whether the
selected features are optimal, taking into account both the number and
the specific features selected.

6.1. Hyper-parameters tuning

The different hyperparameters of the proposed XGBRegressor model,
such as the number estimators, maximum depth, learning rate, and
colsample_bytree, were first optimized for each PEMFC using the TPE
(see Section 5.2). The optimization process is illustrated in Fig. 6. The
representative hyperparameters of the 10 PEMFCs are presented in
Table 5.

6.2. Validation and discussion pertaining to application of proposed method

To evaluate and validate the performance of the proposed method,
we compared its prediction results with real data provided by 10
PEMFCs, as well as with XGBregressor, SVR, and ANN. As outlined in
Section 3, the PEMFC system comprises 22 measured parameters, some
of which directly influence its performance, as detailed in Table 3. In
Table 6, we present the possible range of values for these parameters.
It is crucial to emphasize that each PEMFC operates under unique
conditions, resulting in varying parameter values within the range
presented in Table 6.

The results on four first PEMFCs (FC.01, FC.02, FC.03 and FC.04)
are shown in Figs. 7–8.

Considering the variability in PEMFC performance resulting from
diverse operating conditions, our evaluation incorporates these condi-
tions, as well as not all the GEH2 units operate for the same duration.
This reflects the various scenarios encountered in real-world appli-
cations. These results not only demonstrate the robustness of our

methodology, but also demonstrate the flexibility and the adaptability
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Fig. 7. Polarization curve prediction for FC.01 and FC.02.
Fig. 8. Polarization curve prediction for FC.03 and FC.04.
Table 6
Range of PEMFC parameters..

Parameter Unit Range

Stack current A 0–290
Instantaneous H2 consumption mg 0–585
H2 pressure at fuel cell inlet kPa 50–282
Coolant temperature at fuel cell outlet ◦C 15–69
Auxiliary cooling circuit temperature at radiator inlet ◦C 16–61
Air pressure at fuel cell inlet kPa 80–206

of the proposed method to various sets of PEMFC units operating under
different operating conditions.

Similar results on the six remaining PEMFCs are shown in Ap-
pendix B. The metrics (RMSE, MAE, and R2) used to evaluate the results
were computed for 10 PEMFCs, as shown in Table 7.

The results confirmed that the proposed model outperformed the
XGBRegressor, ANN, and SVR models. In fact, our predicted values
were almost identical to the measured voltages, whereas the curves pre-
dicted by XGBRegressor, ANN, and SVR deviated significantly from the
actual ones, particularly in cases where the current density exceeded
180 mA/cm2. Moreover, the proposed model was more robust than
the three benchmark models because it consistently yielded favorable
performance when applied to different PEMFCs. Based on the PEMFC
specifications, values below 180 mA/cm2. are outside the normal op-
erating range and are thus considered transient values that occur
11
temporarily at the beginning and completion of the process. Moreover,
downsampling the data to 30 s time intervals may have reduced the
coherence in the dataset for such transient values, thus causing the
models to be less effective in predicting complex phenomena occurring
at low current densities.

To estimate the performance of our model more precisely, three
evaluation metrics (i.e., RMSE, MAE, and R2) were used, and the results
are listed in Table 7. Finally, the box plots in Fig. 9 further support our
conclusions.

As shown by the results presented in Table 7, and Fig. 9 our method
consistently yielded results that were better than those yielded by
XGBRegressor, ANN, and SVR. For example, the mean 𝑅2 value of
the proposed approach was 0.9917, whereas those of SVR, ANN, and
XGBRegressor were only 0.9312, 0.9281, and 0.9457, respectively. In
addition, as shown Table 7, the proposed model showed significant im-
provement in terms of all the prediction effectiveness metrics compared
with the three benchmark models. Moreover, when compared with the
ANN model, the proposed model provided lower RMSE and MAE values
by 59.47% and 71.15% respectively, and a higher R2 value by 6.85%.
When compared with the SVR model, the proposed approach gave lover
RMSE and MAE values by 64.06% and 84.45% respectively, and a
higher R2 value by 6.49%. Meanwhile, the proposed method indicated
lower RMSE and MAE values by 57.40% and 71.69%, respectively, and
a higher R2 value by 4.8%, compared with the XGBRegressor model.

PEMFCs have the same capabilities and characteristics but operate
under different conditions. Therefore, the predictive quality of the
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Table 7
Polarization curve results of the three methods in terms of RMSE, MAE, and R2.

Proposed model SVR ANN XGBRegressor

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

FC.01 0.0076 0.0024 0.9951 0.0173 0.0109 0.9745 0.0223 0.0099 0.9580 0.0219 0.0044 0.9535
FC.02 0.0068 0.0022 0.9943 0.0181 0.0128 0.9599 0.013 0.0071 0.9792 0.0119 0.0030 0.9786
FC.03 0.0080 0.0028 0.9954 0.0306 0.0268 0.9323 0.0262 0.0103 0.9505 0.0328 0.0209 0.8841
FC.04 0.0078 0.0027 0.9894 0.0211 0.0152 0.9241 0.0109 0.0059 0.9361 0.0243 0.0147 0.9282
FC.05 0.0119 0.0042 0.9919 0.0341 0.0299 0.9336 0.022 0.0091 0.9651 0.0271 0.0180 0.9458
FC.06 0.0112 0.0052 0.9888 0.0222 0.0154 0.9554 0.0198 0.0095 0.9647 0.0133 0.0154 0.9572
FC.07 0.0060 0.0026 0.9905 0.0216 0.0189 0.8753 0.0395 0.0247 0.6640 0.0261 0.0048 0.9443
FC.08 0.0089 0.0032 0.9954 0.0327 0.0237 0.9336 0.0362 0.0145 0.9240 0.0178 0.0107 0.9456
FC.09 0.0070 0.0021 0.9907 0.0250 0.0211 0.8816 0.0104 0.0051 0.9769 0.0144 0.0021 0.9693
FC.10 0.0171 0.0030 0.9855 0.0342 0.0186 0.9423 0.0272 0.0081 0.9634 0.0270 0.0120 0.9508
Mean 0.0092 0.0030 0.9917 0.0256 0.0193 0.9312 0.0227 0.0104 0.9281 0.0216 0.0106 0.9457
Fig. 9. Box-plot of the four models in terms of RMSE, MAE, and R2.
proposed approach was assessed based on the operating conditions,
as not all were GEH2s operating during the same conditions. Table 7
shows that these conditions can slightly affect the predictive quality
of the proposed model; however, the predictive quality remains better
than that of the XGBRegressor, ANN, and SVR models, which were
significantly affected by the operating conditions.

In conclusion, the proposed model performed better in predicting
the polarization curves of all tested PEMFCs. In addition, the different
tests, which were realized by considering various operating conditions,
demonstrated the effectiveness of the TPE in estimating the XGBRe-
gressor hyperparameters. Finally, from a practical perspective, our
proposed model can support both offline and online predictions of
PEMFC performance owing to its reasonable processing time. Online
prediction of the polarization curve allows one to detect short-term
anomalies, such as the stack poisoning or malfunction of auxiliary
systems. This provides a direct interpretation of the electrochemical
performance of the PEMFC, thus enabling the proactive management
of its operation to maximize efficiency and lifetime while minimizing
unexpected interruptions. Subsequently, the developed model can be
integrated into a control system (such as a GEH2 management sys-
tem) to automatically control certain decisions, such as adjusting the
operating parameters in response to volatile conditions. These advan-
tages render the proposed model a promising option for performance
prediction in industrial applications.

7. Conclusion

In this study, a prediction approach based on the XGBRegressor
with a tree-structured Parzen estimator was proposed for estimating
the proton-exchange membrane fuel cells performance of zero-emission
electro-hydrogen generators. As proton-exchange membrane fuel cells
feature complex electrochemical reactions with multiple nonlinear re-
lationships between the inputs (operating variables of the fuel cell) and
12
outputs (average fuel cell stack voltage), we combined kernel principal
component analysis and mutual information for feature selection. Using
a dataset comprising 10 proton-exchange membrane fuel cells, the per-
formance and effectiveness of the proposed approach in predicting the
polarization curve under different operating conditions were tested and
validated. In addition, compared with XGBRegressor and with two well-
established machine learning regressors (artificial neural network and
support vector machine regressor) that are widely used to predict the
polarization curve based on three performance metrics, the proposed
method performed significantly better in terms of all the prediction
effectiveness metrics. For example, the coefficient of determination of
the proposed model showed average improvements of 6.35%, 6.80%,
and 4.8% compared with artificial neural network, support vector ma-
chine regressor, and XGBRegressor, respectively. Although the obtained
results demonstrated the performance and effectiveness of the proposed
model, some aspects warrant further investigation: (1) The proposed
model was evaluated on a database comprising 10 proton-exchange
membrane fuel cells operating in the nominal state (but under different
operating conditions). It would be interesting to assess the robustness
of the proposed model under other operating conditions, such as stress
or overload conditions; (2) the proposed model should be extended to
predict the performance of other types of fuel cells, such as solid oxide
or alkaline fuel cells.
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Appendix A. Schematic of ANN and SVR architectures

We present here the schematic of ANN and SVR architectures for
PEMFC polarization curve prediction. Recall that both models have
the following variables input variables: mes_i_stack (Stack current)
mes_d_fc_h2In (instantaneous H2 consumption), mes_pr_fc_h2Low (H2
pressure at fuel cell inlet) mes_t_fc_out (coolant temperature at fuel cell
outlet), mes_t_aux_out (auxiliary cooling circuit temperature at radiator
inlet), and mes_pr_aSup (air pressure at fuel cell inlet). Configuration
and the hyperparameters of ANN and SVR are described in Section 6.

Appendix B. Comparison results on other PEMFCs
Fig. A.1. Schematic of ANN architecture for PEMFC polarization curve prediction.
Fig. A.2. Schematic of SVR architecture for PEMFC polarization curve prediction.
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Fig. B.3. Polarization curve prediction for FC.05.

Fig. B.4. Polarization curve prediction for FC.06.

Fig. B.5. Polarization curve prediction for FC.07.
14
Fig. B.6. Polarization curve prediction for FC.08.

Fig. B.7. Polarization curve prediction for FC.09.

Fig. B.8. Polarization curve prediction for FC.10.
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As mentioned in Section 6.2, PEMFCs have the same capacities
and characteristics but operate under different conditions. The follow-
ing figures show prediction results for other PEMFCs operating under
different conditions and over different lengths of time. The aim is
to demonstrate the adaptability of the proposed method to different
scenarios encountered in real-world applications (see Figs. B.3–B.8).
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