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A B S T R A C T   

The potential of data to circulate across organizations and sectors and stimulate innovation in multiple contexts has been largely acknowledged by practitioners and 
researchers. This has given rise to a specific form of innovation strategy, “data-push innovation”, which consists of stimulating the use of existing data by third-party 
actors. However, how to manage such a strategy remains challenging. The paper explores this question by examining the longitudinal case study of an actor that has 
successfully stimulated the use of Earth observation data by multiple actors over the last 40 years. The paper offers several contributions to research in information 
systems and innovation management. First, the paper shows that data-push innovation can be fostered through the intentional design of a so-called “fit system” 
allowing data to be used in multiple contexts. Such a fit system can be built as a generic system, following similar “generification” strategies as those supporting 
platform or software development but with original patterns to adapt to the specificities of data-push innovation. Second, the paper characterizes the types of 
“boundary resources” needed to support this process. These boundary resources especially have a two-way resourcing function: they help third-party actors 
contribute to the fit system development, but they also allow the fit system owner to identify the knowledge boundaries preventing data from gaining meaning in new 
contexts. Third, the paper reveals an intriguing form of localized and nondominant platform leadership, focusing on gaining generative power rather than controlling 
power over the platform ecosystem.   

1. Introduction 

In recent years, the development of the IoT, of increasingly low-cost 
sensors and of computational capacities has dramatically increased the 
flow of data in almost every business, industry and research area. This 
“big data” phenomenon has been largely described in both innovation 
management literature (e.g. Cappa et al., 2021; Appio et al., 2021; 
Bharadwaj and Noble, 2017; Blackburn et al., 2017; George et al., 2014) 
and information systems (IS) literature (e.g. Günther et al., 2017; Abbasi 
et al., 2016; Gandomi and Haider, 2015; Chen et al., 2012). 

Scholars have especially highlighted different forms of data-based 
innovation strategies to take advantage of the new possibilities offered 
by data. Among these different possibilities, scholars have especially 
unveiled certain forms of “data-push innovation” (Han and Geum, 2022; 
Trabucchi and Buganza, 2020) starting with existing data and focusing 
on stimulating the use of these data by third-party actors outside the 
organization’s boundaries, which is also similarly referred to as 
“outbound data-based innovation” (Trabucchi et al., 2018). For 
example, Uber created a service called Uber Movement, providing 
anonymized data collected through their service of matching riders and 
drivers to help urban planning around the world – e.g., by offering 

insights to avoid traffic congestion caused by specific events or holiday 
traffic (Trabucchi and Buganza, 2020). Data-push innovation strategies 
seem all the more promising because data are acknowledged to be 
highly ‘portable’, thus having the broader potential of being used and 
reused across a large variety of contexts across organizations and in
dustries (e.g. Günther et al., 2017; Lycett, 2013). However, how to 
manage such strategies remains insufficiently understood. Scholars 
point to the “challenging nature of the effort for identifying the potential 
[users of data]” (Trabucchi and Buganza, 2020, p. 9). As such, these 
strategies are described as merely “a matter of serendipity” (Trabucchi 
et al., 2018, p. 52), relying on the ability of potential customers to 
identify a “different hidden value within existing databases” (Trabucchi 
et al., 2018, p. 51). This paper aims to bridge the gap in how to manage 
data-push innovation strategies beyond serendipity. In particular, the 
paper proposes to leverage two main streams of literature that already 
provide important insights but have been insufficiently articulated in the 
specific context of data-push innovation. 

On the one hand, information systems (IS) research has a long 
tradition in investigating digital innovation strategies by closely 
analyzing the underpinning system of interrelated components enabling 
information to be created, processed, distributed, and used by 
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organizations to support multiple forms of activities. In particular, a 
recent and growing body of IS research elucidates the specificities of 
data compared to other forms of digital objects, such as software mod
ules, computer programs, digitalized books or videos, and the resulting 
specificities of the innovation processes involved in creating value from 
data (Aaltonen et al., 2021; Mikalsen and Monteiro, 2021; Alaimo et al., 
2020; Alaimo and Kallinikos, 2020; Østerlie and Monteiro, 2020; Mon
teiro and Parmiggiani, 2019; Aaltonen and Tempini, 2014). These 
studies suggest that data-push innovation, as a specific form of 
data-based innovation, especially needs a logic of meaning construction 
(e.g., Alaimo et al., 2020). Indeed, data are originally associated with a 
meaning that is linked to the purpose for which they are produced (e.g., 
anonymized data collected through Uber to match riders and drivers). 
However, beyond their initial context of production, these data are 
likely to be meaningless for others. In this respect, IS scholars highlight 
that the meaning of data needs to be reconstructed through a sophisti
cated process to make data valuable in a new context (e.g. Aaltonen 
et al., 2021; Alaimo et al., 2020; Aaltonen and Tempini, 2014). In line 
with IS research (e.g. Li and Nielsen, 2019; Dittrich, 2014), a “context of 
use”, or “use context”, refers to the specific context in which data 
eventually appear to be valuable for an actor having certain needs and 
practices (e.g., an advertising company that is willing to assess its 
advertising audiences and for which data from the telecommunication 
operator eventually prove to be valuable). As expressed by Li and 
Nielsen (2019) in the case of software development, “designers attempt 
to understand the users’ current needs and practices, and predict and 
anticipate how the artifact to be designed can fit into this context” (p. 5). 

Drawing upon the recent studies on data specificities (e.g. Aaltonen 
et al., 2021; Alaimo et al., 2020; Aaltonen and Tempini, 2014), it ap
pears that (re)constructing the meaning of data involves building tech
nical components, such as algorithms, to create meaningful metrics for a 
certain group of users (e.g., Aaltonen and Tempini, 2014); socio-
organizational components, such as contracts with relevant stakeholders 
or collaborations, to build consensus across the industry on the legiti
macy of the chosen metrics (e.g., Aaltonen et al., 2021); and cognitive 
components, such as knowledge on the sensors producing data and the 
potential contexts of use (e.g., Monteiro and Parmiggiani, 2019). The 
paper designates this set of components as the “fit system”, which is aimed 
at enabling data to gain meaning in a certain range of heterogeneous contexts, 
or in other words, enabling data to fit into a certain range of heterogeneous 
use contexts. From this perspective, fostering data-push innovation can be 
considered to involve designing a fit system between data and multiple use 
contexts. However, this literature stream mainly considers a limited 
timeframe in a limited number of occurrences, merely focusing on fitting 
the data produced in a given context into one new use context or within 
one single sector, e.g., making data that are initially collected by a 
telecommunication operator meaningful for advertising companies (e.g. 
Aaltonen et al., 2021; Alaimo et al., 2020). Therefore, this literature 
offers a limited understanding of how data can be used and reused by a 
large variety of organizations across heterogeneous sectors. 

In this respect, a second stream of literature offers complementary 
insights. Indeed, a long tradition of research in IS and innovation 
management has investigated how information systems could span a 
large variety of use contexts, for example, digital platforms such as 
Apple’s iOS operating system (e.g. Constantinides et al., 2018; de Reuver 
et al., 2018; Tiwana et al., 2010), enterprise software planning (ERP) 
systems, or open data platforms (Bonina et al., 2021; Bonina and Eaton, 
2020; Karhu et al., 2018; Ruijer et al., 2017). In this regard, scholars 
have elucidated so-called “generification” mechanisms that support the 
design of systems that are generic enough to be compatible with diverse 
use contexts and flexible enough to be further customized to provide a 
better fit for a specific use context (Gizaw et al., 2017; Hanseth and 
Bygstad, 2015; Silsand and Ellingsen, 2014; Monteiro et al., 2013; 
Pollock et al., 2007). However, for the specific case of data-push inno
vation, the relevance and forms of these mechanisms need to be better 
understood. 

Drawing upon the respective contributions and limitations of these 
two streams of literature, this paper addresses the following research 
question: how can generification mechanisms support the development of a 
fit system allowing data to be used in multiple contexts? Following recom
mendations for further longitudinal empirical research capturing how 
data-based value creation processes unfold over time (Günther et al., 
2017), this paper is based on a longitudinal case study of an actor that 
has successfully managed such generification mechanisms in the specific 
case of Earth Observation (EO) data, i.e., data that are used to capture 
the different phenomena related to Earth’s physical, chemical and bio
logical systems and are considered to be a promising open data resource 
(Borzacchiello and Craglia, 2012). 

Our research primarily contributes to IS and innovation management 
research, advancing our understanding of data-push innovation. Align
ing with a common approach in IS research, the strategy of an actor is 
primarily examined through the analysis of the information system 
(here, the fit system) the actor intends to develop. In this regard, the fit 
system can be understood as the means for the fit system owner to set a 
certain strategy and take on a certain role within its ecosystem. This 
analysis allows us to characterize one possible strategy to support data- 
push innovation beyond serendipity, coined “data genericity building”, 
which consists of designing the fit system as a generic system. The paper 
shows the originality of the generification mechanisms when applied to 
the case of data-push innovation. These original patterns are intrinsi
cally linked to the specificities of the meaning construction process 
underpinning data-push innovation, in contrast with other forms of 
digital innovation. The case study analysis also unveils an original form 
of strategic positioning that goes hand-in-hand with the development of 
the fit system, allowing a fit system owner who has limited power in a 
given ecosystem to contribute to the dynamics of this ecosystem in a 
localized and nondominant way. 

These results have important implications for researchers and prac
titioners with regard to the specificities of data-push innovation within 
the broader field of digital innovation. From a theoretical perspective, 
the concept of a “fit system” offers a way of bridging the two IS streams 
of literature mentioned previously, which are highly complementary but 
remain thus far insufficiently articulated: on the one hand, there is long- 
standing research on building generic information systems that can 
serve a large variety of users; on the other hand, there is a more recent 
but growing body of research on characterizing data as specific digital 
artifacts, rather than more well-known forms such as software modules. 
Our case study highlights that the management of data-push innovation 
can be inspired by well-known strategies for platform or software 
development (aiming at developing generic systems) but requires 
additional adaptations to take into account the fact that data cannot 
‘travel’ across use contexts as mere software modules to be customized 
and recombined. On a more practical basis, the paper depicts the efforts 
of generification through a threefold perspective: which generification 
mechanisms unfold, how they can be supported, and why they are 
important with regard to the strategy of the actor aimed at fostering 
data-push innovation. 

2. Theoretical background 

This section, which is organized into three parts, presents the con
ceptual lens that will be used in the case study analysis and discussion 
sections to analyze the generification mechanisms involved in designing 
a fit system between data and multiple use contexts. The first part 
elaborates on the composition of the fit system. The second part further 
characterizes its architecture and the associated nature of generification 
mechanisms. The third section synthesizes the main insights derived 
from the two previous parts. 

2.1. Composition of the fit system 

As introduced above, the underlying rationale of the fit system 
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consists of enabling data to gain a certain meaning in use contexts that 
are different from the ones for which the data were initially produced. As 
indicated by the recent body of studies on data as specific digital arti
facts (Aaltonen et al., 2021; Mikalsen and Monteiro, 2021; Alaimo et al., 
2020; Alaimo and Kallinikos, 2020; Østerlie and Monteiro, 2020; Mon
teiro and Parmiggiani, 2019; Aaltonen and Tempini, 2014), a fit system is 
not automatically generated when data are produced but needs to be built 
through dedicated design efforts. As recalled by Mikalsen and Monteiro 
(2021), there is sometimes a “misconception that data speak for them
selves”, which downplays the “considerable, ongoing work to craft data 
into data”. In this respect, the case of network data produced by a 
telecommunications operator is particularly telling, as, for example, 
developed by Aaltonen et al. (2021). Data are initially produced for 
basic management tasks of the network infrastructure, as every click, 
call and message of the network subscribers are recorded. These data 
encode the identity of the subscriber, the time and type of the network 
operation and other details in the form of alphanumeric characters, such 
as 097369D2D7372762D31080000000000000001; 1;33668741168; 
3322208; 6;20081101004923; 20081101004923; 20081101004923. As 
such, it clearly appears that those data cannot easily—or at least 
directly—fit into other use contexts beyond the boundaries of the tele
communication operator. These records of alphanumeric characters 
appear meaningless until they are transformed into metrics such as re
cords of audience members and advertising audiences that can then fit 
into advertising companies’ practices. 

As mentioned in the introduction, three broad categories of compo
nents are especially critical for supporting the meaning construction 
process that is needed to make data fit into various use contexts. These 
categories are hereafter examined in more detail. First, the fit system 
includes technical components. These components consist of the technical 
infrastructure required for the collection, storage, processing and dis
tribution of data (e.g. Abbasi et al., 2016). In particular, the algorithms 
and analytical methods used to process data into meaningful metrics 
play a critical role (e.g. Günther et al., 2017; Chen et al., 2012). 

Beyond these technical components, the fit system also involves 
designing some forms of socio-organizational components, referring to the 
various forms of relationships to be built with relevant actors. As high
lighted by Günther et al. (2017), creating value from data requires 
specific organizational models. This might involve internal relationships 
within a given organization, for example, taking the form of temporal 
and local arrangements between data analysts to discuss the meaning of 
data (e.g. Mikalsen and Monteiro, 2021). This might also involve 
external relationships with data producers and users or other relevant 
actors of the ecosystem, e.g., “to negotiate the adoption of metrics and 
their meanings, eliminate ambiguities, and build consensus across the 
industry or ecosystem in which they operate” (Aaltonen et al., 2021, p. 
419). 

Finally, cognitive components are also an essential part of the fit sys
tem. They specifically refer to knowledge on the contexts of data pro
duction and uses. Indeed, concerning the data production context, data 
can never be considered completely “raw” and are always formatted by 
the particular conditions under which they are produced (e.g. Gitelman, 
2013). The representation of reality conveyed by data is guided by an 
initial purpose (Aaltonen et al., 2021; Mikalsen and Monteiro, 2021) 
that ultimately “sets the boundaries” of what can be later derived from 
data (Aaltonen and Tempini, 2014), hence “[circumscribing] the op
portunities and limitations of data as resources” (Aaltonen et al., 2021, 
p. 418). Moreover, regarding the understanding of new potential use 
contexts, other authors have especially emphasized the crucial impor
tance of “industry-specific expertise” (e.g. Schymanietz et al., 2022; 
Urbinati et al., 2019), which consists of knowledge on sectors and or
ganizations that might benefit from data. This especially includes un
derstanding the political, environmental, economic, and social aspects 
that might influence the relevance of data for a given organization or 
sector. 

Notably, these categories of components should not be considered 

separately, as they are closely intertwined. Indeed, both technical and 
organizational components require adapted knowledge to be con
structed. Moreover, technical and socio-organizational components are 
also closely linked (e.g., standards requiring relationships with the in
dustry to be defined and implemented). All three dimensions thus need 
to evolve synchronously, as noted by Aaltonen et al. (2021), who called 
for “keeping several data sources, analytical tools, and organizational 
practices in sync” (p. 416). 

2.2. Architecture of the fit system and generification mechanisms 

To further understand how the fit system can enable data to be used 
in multiple contexts, it is important to consider the architecture of the fit 
system. The literature has already extensively highlighted modularity as 
a promising way of designing complex systems by developing and 
recombining modular components (Baldwin and Clark, 2000), which is 
especially prevalent in platform architectures (e.g. Gawer, 2014; Bald
win and Woodard, 2009). A platform architecture basically comprises 
three main elements: a generic core made of low-variability compo
nents, a periphery of complementary modules addressing the variety 
and variability of specific needs and practices associated with given use 
contexts, and interfaces setting the rules of interactions among compo
nents (Baldwin and Woodard, 2009). Depending on the nature of these 
interfaces, the peripheral components can be either built by the platform 
owner in cases of internal platforms that are limited to the boundaries of 
a given organization or by third-party innovators in cases of industry 
platforms that span a wider ecosystem of actors (Gawer, 2014). The term 
“ecosystem” has been widely used in management research (e.g. Jaco
bides et al., 2018). The present paper follows the “platform ecosystem” 
view mentioned by the latter authors, considering the “ecosystem” as 
the broad set of actors organizing around the platform and contributing 
to its functioning. Moreover, it is important to note that the fit system is 
a form of innovation platform, defined as “a technological foundation 
upon which a large number of [actors] can build further complementary 
innovations”, and differing from transactional platforms that “create 
value by facilitating the buying and selling of existing goods and ser
vices”, such as social networks or online marketplaces (Gawer, 2020). 

Articulating a generic core and use-specific peripheral components 
especially allows the platform owner to manage the tension between 
standardization, which is necessary for a system to serve a multitude of 
organizations, and flexibility, which is necessary for a system to fit with 
the specificities of a given use context and to be open to future changes 
(e.g. Monteiro et al., 2013; Henfridsson and Bygstad, 2013; Hanseth 
et al., 1996). Scholars have further investigated how the generic core 
and peripheral components of a system could be designed over time, in 
particular through so-called “generification” mechanisms (Gizaw et al., 
2017; Silsand and Ellingsen, 2014; Monteiro et al., 2013; Pollock et al., 
2007). In particular, Gizaw et al. (2017) describe these mechanisms in 
an open and distributed context of innovation for the development of an 
open-source health information system, describing “open gen
erification” as “establishing the necessary resources […] that enable 
locally situated developers to perform local innovations” (p. 635). 
Taking a dynamic view, the authors specifically show that generification 
involves two intertwined processes: disembedding, which is defined as 
“the process of lifting out local software requirements out of their con
texts and abstracting them to serve diverse user needs across space and 
time” (p. 622), and embedding, which is defined as “pinning down the 
disembedded system back to situated realities” (p. 622). 

This case of “open generification” seems particularly relevant for our 
investigation. Indeed, data-push innovation corresponds to a case of 
distributed innovation in which third-party actors (i.e., potential users 
of data) can be involved, as especially highlighted in recent cases of open 
data platforms (e.g. Bonina and Eaton, 2020; Ruijer et al., 2017). As 
such, it seems consistent to consider similar forms of generification 
mechanisms applied to the case of the fit system. In this regard, the 
definition of both disembedding and embedding processes can be 

R. Barbier et al.                                                                                                                                                                                                                                 



Technovation 132 (2024) 102992

4

adapted as follows: disembedding refers to the process of making certain 
elements of the fit system serve diverse use contexts; embedding refers to 
the process of adding use-specific peripheral components to the fit sys
tem to better fit data into a given use context. 

Regarding the interfaces between the generic core and peripheral 
components, the IS literature has specifically developed the concept of 
“boundary resources” (Gawer, 2020), e.g., in the case of Apple’s iOS 
operating system (Eaton et al., 2015; Ghazawneh and Henfridsson, 
2013). In the case of Apple described by the latter authors, these 
boundary resources are characterized by both a “resourcing” function 
and a “securing” function. The resourcing function designates the 
“process by which the scope and diversity of a platform is enhanced” 
(Ghazawneh and Henfridsson, 2013, p. 177). This involves fostering 
third-party actors’ contributions to the expansion of the platform 
through the development of complementary modules (e.g., through 
Application Programming Interfaces (APIs) and Software Development 
Kits (SDKs)). In addition to a resourcing function, the boundary re
sources also have a “securing” function, enabling a form of control over 
the strategic components of the platform (e.g., through licenses defining 
what is allowed and what is not). Recent studies have unveiled a broader 
variety of boundary resources—such as information portals, documen
tation, helpdesks, and workshops—in cases where it might not be trivial 
for third-party actors to develop complementary components (Foerderer 
et al., 2019). Such forms of boundary resources appear to be critical for 
overcoming “knowledge boundaries” between the platform owner and 
third-party actors by “furnishing third parties with development 

knowledge in order to facilitate participation in development and 
innovation” (Foerderer et al., 2019, p. 120). This echoes similar findings 
on open data platforms, where boundary resources include multiple 
devices such as web portals and hackathons fostering the use of datasets 
by various actors or dataset templates to help data producers share their 
data in a standardized format (Bonina and Eaton, 2020). The main no
tions used to describe the architecture of the fit system are synthesized in 
Fig. 1. 

2.3. Summary of theoretical background 

Our research question has been formulated as follows: how can gen
erification mechanisms support the development of a fit system allowing data 
to be used in multiple contexts? Several factors suggest that the forms of 
embedding-disembedding processes and boundary resources supporting 
the design of the fit system are likely to differ from reported cases of 
generification. Indeed, additional issues can be noted in the context of 
data-push innovation, calling for more intensive and probably new 
forms of embedding-disembedding processes. 

First, one can note that reported cases of generification rely on 
already well-established design capacities of local developers (Gizaw 
et al., 2017), although these competencies might need to be enhanced 
(Silsand and Ellingsen, 2014). In contrast, in the context of data-push 
innovation, potential users might be highly unfamiliar with data (e.g. 
Magalhaes and Roseira, 2020; Jetzek et al., 2019; Janssen et al., 2012) 
and thus do not necessarily constitute an active and strongly-tied 

Fig. 1. Synthesis of the main concepts of our theoretical background. Representation of the fit system in pale blue, entailing a generic core (i.e., components that are 
common to several use contexts) and a periphery made of use-specific components (dotted blue spikes). The dark blue boxes represent the use contexts into which 
data are eventually used thanks to the design of the fit system. Boundary resources are represented in purple and support the interfaces between the fit system 
owner and the third-party actors of the ecosystem. Generification mechanisms are illustrated in the two lower boxes: embedding consists of adding new use- 
specific components to the fit system, and disembedding consists of enhancing the generic core of the fit system. 
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network of third-party innovators (Bonina and Eaton, 2020). In such 
contexts, it can thus be expected that the fit system owner needs to 
undertake more extensive embedding efforts compared to previous cases 
of generefication to balance the initial limited capacities of third-party 
actors. Second, beyond embedding processes, data-push innovation is 
also likely to require more extensive disembedding processes. These 
processes were already critical for other systems, such as ERPs, to ensure 
that these systems could fit multiple users. However, given the high 
‘portability’ or ‘liquidity’ of data underlined by scholars and practi
tioners (e.g. Günther et al., 2017; Lycett, 2013), data have the potential 
to be used by an increasing number and variety of users, thus calling for 
amplifying disembedding processes. 

These considerations suggest that a specific tension needs to be 
overcome in a context of data-push innovation: on the one hand, third- 
party actors are likely to require more embedding efforts from the fit 
system owner; on the other hand, and at the same time, the fit system 
owner is driven toward intensified disembedding efforts to address the 
large range of potential data users. It especially raises the question of 
how this double intensification can be managed by the fit system owner. 
Initially, the fit system owner does not seem particularly well positioned 
to do so due to its limited capacities to reach and mobilize third-party 
actors. Indeed, the variety and heterogeneity of sectors in which data 
could be used increases the chance for the fit system owner of primarily 
appearing as a new entrant with limited leadership in these sectors (e.g., 
a telecommunications operator primarily appears as a small player in 
the advertising sector). 

These elements lead us to assume that original forms of gen
erification mechanisms are likely to unfold to cope with the expected 
issues related to data-push innovation mentioned above. These mecha
nisms will be specifically examined in the discussion section by taking 
three complementary perspectives.  

- The ‘what’ perspective, describing the observed embedding and 
disembedding processes and their sequence over time;  

- The ‘how’ perspective, describing the actions and devices supporting 
these mechanisms, with a specific focus on boundary resources as 
encouraged by recent developments in IS research described above;  

- The ‘why’ perspective, describing the drivers pushing the fit system 
owner to undertake dedicated embedding-disembedding processes. 

By taking these three complementary perspectives, analyzing the 
generification mechanisms of the fit system will also allow us to better 
understand the role and strategy of the fit system within its ecosystem. 

3. Methodology 

This research uses a qualitative methodology, relying on a longitu
dinal case study (Yin 2009). We investigate the case of an organization 
that has steered the development of a platform fostering the use of EO 
data across various types of actors (industries, public bodies, research 
communities) for more than 40 years. In particular, the case study is 
conducted following principles of collaborative management research 
(Shani et al., 2008). Collaborative management research is particularly 
adapted to investigate an ongoing phenomenon that organizations face 
in practice but that remains poorly understood. It especially involves “an 
organization […] undergoing development by adopting new structures 
and processes, [and] researchers [attempting] to provide knowledge, 
which is not readily accessible in the organization” (Pasmore et al., 
2008, p. 13). In this respect, collaborative management research offers 
an interesting way to investigate the structures and processes put in 
place by an organization involved in data-push innovation. The paper 
specifically investigates the case of an organization that has successfully 
developed a fit system allowing data to be used in multiple contexts over 
time. 

3.1. Overview of the Earth observation data ecosystem 

Earth observation (EO) refers to the gathering of data about Earth’s 
physical, chemical and biological systems collected through in-situ in
struments and satellites and computed from large models such as those 
used in meteorology. EO data were initially produced mainly for sci
entific goals to monitor the planet and its environment, e.g., to measure 
and monitor the ocean, solar radiation reaching the ground, the 
composition of the atmosphere, and the status of vegetation. Different 
kinds of instruments are used for this purpose and include in-situ sensors 
(for example, floating buoys to monitor ocean currents, temperature and 
salinity or land stations that record air quality and rainwater trends), 
airborne sensors, or satellites. In recent years, the development of 
remote-sensing satellites and increasingly high-tech in-situ instruments 
has generated an increasing amount of data. Moreover, the European 
Union has significantly invested in making these scientific data a com
mon good that is freely accessible to all potential users through dedi
cated “open-data” policies. Socioeconomic applications of these data are 
diverse and promising. They could benefit not only the EO scientific 
community but also public authorities, private companies, industry, 
universities, and citizens. In particular, EO data can aid these different 
actors in facing current socioenvironmental grand challenges, e.g., by 
providing the means of monitoring and responding to natural disasters 
(fires, floods, earthquakes and tsunamis), assessing the potential of 
renewable energy sources, managing freshwater supplies and agricul
ture, and addressing emerging diseases and other health risks. However, 
the actors of the EO community currently face difficulties in further 
stimulating the use of EO data in such a large variety of evolving use 
contexts and acknowledge the need to go beyond mere open-data pol
icies through different types of capacity-building activities and new 
projects targeting the development of services based on EO data that 
could be more easily integrated into users’ practices (Goor et al., 2021; 
Ranchin et al., 2021). 

3.2. Empirical materials 

This paper focuses on the longitudinal case study of the research 
center O.I.E. (Observation, Impacts, Energy) at MINES Paris – PSL 
(France). With a current team of 24 researchers, O.I.E. has developed 
several research activities since 1976 based on the exploitation of EO 
data in the fields of renewable resource evaluation (solar, wind, ocean, 
etc.), meteorology and climatology for energy, methodological devel
opment to assess the environmental impacts of renewable energy uses, 
and interoperability and dissemination of information through data
bases and Web services. The activities related to solar radiation illustrate 
particularly well the successful efforts of O.I.E. in continuously stimu
lating the use of EO data in a large variety of use contexts that are 
different from those of their original purposes. Indeed, the work of O.I.E. 
has basically consisted of taking satellite data initially developed for 
climate and meteorology purposes (Meteosat series of satellites) and 
transforming them into solar radiation data that can be further used in 
multiple other contexts through so-called “SoDa” (SOlar radiation DAta) 
Web services. These services are maintained and commercialized by a 
commercial company called “Transvalor”, with whom O.I.E. has built a 
specific partnership since 2009. These services are currently used by 
thousands of users (76 000 unique visitors in 2020) and approximately 
100 clients of paid-for services, spanning various sectors (e.g., solar 
energy industry agriculture, construction industry, health industry). The 
SoDa service is mostly used by companies that leverage SoDa for their 
own purposes or to build new services. 

From this perspective, it can be considered that O.I.E. is building a fit 
system between EO data (in particular solar radiation data) and multiple 
use contexts. As such, it will be designated as a “fit system owner” in 
subsequent sections of the paper. Moreover, it is important to note that 
the case of O.I.E. offers a particularly interesting situation for precisely 
investigating the phenomena related to the design of the fit system. 
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Indeed, it corresponds to a form of a “pure” case where the rationale 
almost exclusively lies in creating the fit between existing data and 
users’ existing capacities, without considering how new data could be 
produced or how users’ practices should be dramatically transformed. 
Indeed, O.I.E. is not in a position to trigger the launch of new satellites in 
response to certain demands; this role is being taken by other industrial 
players that develop scientific instruments producing EO data, such as 
Airbus or Thales Alenia Space. Although O.I.E. is not responsible for the 
production of new data, it is important to note that the nature of the data 
used by O.I.E. does change over time. Indeed, datasets are continuously 
enriched with new measurements when instruments are running (e.g., 
every 15 min for Meteosat data), and new instruments are regularly 
created. Moreover, considering the side of data users, O.I.E. is primarily 
external to the sectors that might benefit from EO data. Therefore, O.I.E. 
cannot trigger deep reorganizations of these different sectors. As a 
result, O.I.E. has to account for the practices of the already well- 
established actors, both on the side of data production and data usage. 

3.3. Data collection and analysis 

Our empirical materials were collected from September 2018 to 
September 2023. Different forms of empirical evidence were exploited 
to ensure triangulation between sources (Yin, 2009), which are listed in 
Table 1. The interviews allowed us to build an in-depth understanding of 
O.I.E.‘s activities over time. Secondary sources of data were used to 

enrich some aspects discussed during the interviews, especially to vali
date the temporality and exact content of O.I.E.‘s activities. Regular 
informal interactions were also used as a way of enriching our inter
pretation of O.I.E.‘s activities and clarifying some points of analysis. 

These data were analyzed in a collaborative research setting 
involving both researchers and practitioners, which were, in this case, 
members of O.I.E. and other relevant partners, such as Transvalor (Shani 
et al., 2008). This setting especially aims to “reduce the likelihood of 
drawing false conclusions from the data collected, with the intent of 
both proving performance of the system [of action] and adding to the 
broader body of knowledge in the field of management” (Pasmore et al., 
2008, p. 20). Following guidelines for collaborative research (Cirella 
et al., 2012; Pasmore et al., 2008), the analysis procedure consisted of 
progressively building a shared interpretation of empirical data and findings 
between researchers and practitioners. The analysis procedure thus 
involved two intertwined forms of actions: (1) continuously deepening 
the understanding of O.I.E.‘s activities on the basis of interviews, notes 
taken after informal interactions, and secondary sources of data and (2) 
validating this understanding with practitioners through dedicated 
collaborative meetings, resulting in a shared interpretation of empirical 
data and findings, as detailed in Table 2. These meetings were organized 
as follows: the first phase consisted of a presentation made by our 
research team on our current understanding of O.I.E.‘s activities and 

Table 1 
Sources of empirical data.  

Interviews Interviewed members of O.I.E.  
- Emeritus researcher and previous director of O.I.E. (involved 

in solar radiation research at O.I.E. since the 80s): 6 h in 2018 
to go through O.I.E.‘s overall history and origins  

- Senior researcher and director of O.I.E. (PhD at O.I.E. 
1991–1993, researcher at O.I.E since 1995): 2 h in Nov 2018, 
2 h in Nov 2021, regular informal interactions since 2018  

- Senior researcher in remote sensing & energy sector (PhD at 
O.I.E. 1996–2000, research engineer in the industry 
2000–2007, O.I.E. researcher since 2007): 1 h in Nov 2018, 1 
h in Nov 2019, 2 h in Nov 2021, regular informal interactions 
since 2018  

- Research scientist with specific expertise in data 
infrastructures and Web services (involved in the team since 
the 80s): 2 h in July 2019, 2 h in Nov. 2021, regular informal 
interactions since 2018  

- Researcher with specific expertise in ICTs (involved in the 
team since the 2000s): 2 h in July 2019 

Transvalor’s team involved in SoDa (in 2021)  
- Manager of the team since 2009: 2 h in Nov 2018  
- Technical support and sales engineer: 2 h in Nov 2018  
− 2 researchers in remote sensing for longer-term research 

projects: 2 h in Nov 2018 (only one of them)  
− 2 R&D engineers for maintenance and operations: 2 h in July 

2019 (only one of them) 
Secondary 

sources 
List of past and present research projects: 56 projects 
extracted from O.I.E.‘s website (related to solar resource 
assessment, interoperability and dissemination of data, 
instruments for Earth observation) 
Scientific publications (conferences and journal papers) 
accessible through the HAL open-access platform:   

- Related to Heliosat methods, especially (Cano et al., 1986; 
Rigollier et al., 2004; Blanc et al., 2011b; Lefèvre et al., 2013; 
Blanc and Wald, 2015; Tournadre et al., 2022)  

- Related to SoDa project and Web services, especially 
(Rigollier et al., 2000; Gschwind et al., 2006; Thomas et al., 
2013)  

- Related to solar cadasters developed for different use 
contexts, especially (Blanc et al., 2011a; Ménard et al., 2013; 
Callegari et al., 2017; Blanc and Ménard, 2021) 

Informal 
interactions 

1st author visiting periods in O.I.E. research team: 3 weeks from 
July to August 2019 & 4 weeks in November 2021 (the notes 
taken during these periods were used to enrich an overall 
understanding of O.I.E.‘s activities)  

Table 2 
Synthesis of the validation meetings implemented for data analysis.   

Collaborative validation meetings Formalization of a validated 
and shared interpretation of 
data and findings 

April 
2019 

Objective: validating with O.I.E. a 
first interpretation of empirical 
data and findings (built on 
secondary sources of data and 
interviews) 

Visual mapping strategy: 1st 
template representing the fit 
system as developed by O.I.E to 
enable the use of solar radiation 
data by ISWT 
Narrative strategy: document 
written by our research team, 
revised and validated by the 
participants, and additionally 
validated by two external 
reviewers (one expert in the EO 
field and one innovation 
management researcher) 

Participants:  
− 3 members of O.I.E.: lab 

director, senior researcher in 
remote sensing & solar energy, 
research scientist expert in data 
infrastructures and Web 
services  

− 3 management researchers 
(including 1st & 4th authors) 

June 
2019 

Objective: validating with 
Transvalor the interpretation of 
empirical data and findings 
previously discussed with O.I.E. 

Visual mapping strategy: 1st 
template representing the fit 
system as developed by O.I.E to 
enable the use of solar radiation 
data by ISWT 
Narrative strategy: document 
written by our research team, 
revised and validated by the 
participants, and additionally 
validated by two external 
reviewers (one expert in the EO 
field and one innovation 
management researcher) 

Participants:  
− 3 members of O.I.E.: lab 

director, senior researcher in 
remote sensing & solar energy, 
research scientist expert in data 
infrastructures and Web 
services  

− 3 members of Transvalor: team 
manager, 2 researchers  

− 3 management researchers 
(including 1st & 4th authors) 

January 
2022 

Objective: validating with O.I.E. 
an updated interpretation of 
empirical data and findings 
(enriched through interviews and 
regular informal interactions) 

Visual mapping strategy: 2nd 
template representing the 
evolving composition of the fit 
system over time 
Narrative strategy: 
preliminary version of the 
present paper, revised and 
validated by O.I.E. 

Participants:  
− 3 members of O.I.E.: lab 

director, senior researcher in 
remote sensing & solar energy, 
research scientist expert in data 
infrastructures and Web 
services  

− 1 management researcher (1st 
author)  
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remaining questions and blind spots, and the second phase consisted of a 
semistructured discussion with the participating practitioners starting 
with their reactions to what was presented in the first phase. To support 
this process, two analytical strategies were specifically used. These 
included a visual mapping strategy, allowing the “simultaneous repre
sentation of a large number of dimensions” (Langley, 1999, p. 700), and 
a narrative strategy, involving the “construction of a detailed story from 
the raw data” (Langley, 1999, p. 695), as recommended for research 
with the goal of “understanding how things evolve over time and why 
they evolve in this way” (Langley, 1999, p. 692). Finally, the interme
diary versions of the present paper written in 2022–2023 were sys
tematically reviewed and validated by O.I.E.‘s team. 

More specifically, to characterize the nature of the fit system and 
identify the embedding and disembedding processes over time, the 
following process was applied. 

First, we conducted an in-depth analysis of a recent case in which O.I. 
E. had successfully enabled data to fit into a new use context (a start-up 
called “In Sun We Trust” (ISWT) using solar radiation data to foster the 
installation of photovoltaic panels in urban areas). The different com
ponents of the fit system developed by O.I.E. were identified based on 
the collected empirical materials presented above. In particular, the 
interviews with O.I.E.‘s members could be easily triangulated with 
existing online documentation (academic publications, communications 
on O.I.E.‘s and ISWT’s websites). The components of the fit system were 
categorized as “use-specific” if they had been specifically developed to 
adapt to ISWT’s context or “generic” if they were used to fit data into 
multiple use contexts beyond ISWT. A first type of visual mapping 
template was especially used to support this process, allowing us to 
represent our understanding in a synthetic way and obtain O.I.E.‘s 
feedback and validation (see Fig. 2). This first visual mapping template 

provides a static view of the fit system, i.e. the composition of the fit 
system captured at one moment in time. 

Subsequently, the different components of the fit system were traced 
back into O.I.E.‘s long-term trajectory starting in 1976. Specific atten
tion was given to identifying when a given generic component was first 
built and determining whether it was built as a use-specific component 
or as a generic component at the outset. Disembedding processes could 
be identified when O.I.E.‘s development efforts consisted in widening 
the range of use contexts for which a given component could be used. 
The embedding processes were associated with O.I.E.‘s development 
efforts to further fit data into a given use context. A second type of visual 
mapping template was used to represent our analysis in a synthetic way 
and obtain O.I.E.‘s feedback and validation (see Fig. 2). As opposed to 
the first visual mapping template focusing on the fit system at one 
moment in time, the second visual mapping template provides a dynamic 
view of the fit system, by showing the evolution of use-specific and 
generic components of the fit system over time. For simplification pur
poses, in this dynamic-view template, the components of the fit system 
are named based on the technical dimension of the fit system, but the 
other dimensions (socio-organizational, cognitive) are closely inter
twined. For example, “SoDa Web services” refers to the technical arti
facts but also embodies O.I.E.‘s relationship with Transvalor and O.I.E.‘s 
knowledge on solar radiation and energy sectors. 

4. Case study analysis 

The case study analysis of O.I.E. begins with a recent situation in 
which O.I.E. succeeded in fitting EO data into a given use context 
(ISWT). This allows us to precisely describe the components of the fit 
system in this context. Our analysis then goes back in time to investigate 

Fig. 2. Visual mapping templates used as supportive tools of the collaborative research process. The completed versions of these templates are later shown in the 
“Case study analysis” section (Figs. 4 and 6). 
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O.I.E.‘s activities since 1976 and how they have contributed to designing 
the fit system involved in the case of ISWT. This retro-analysis allows us 
to further elucidate the embedding-disembedding processes, the 
boundary resources underpinning the design of the fit system over time 
and the reasons for such developments. 

4.1. Characterizing the fit system underpinning a successful case of data- 
push innovation 

Since 2014, O.I.E. has developed so-called “solar cadasters” at the 
urban scale for the start-up ISWT. Created in 2015 following the first 
interactions of the founders with O.I.E., this start-up aims to provide 
private individuals with a free support service facilitating the installa
tion of photovoltaic (PV) systems on their roofs. This includes a simu
lation tool of economic profits provided by the installation of PV systems 
allowing electricity self-consumption or selling to the electric grid at the 
feed-in tariff (see Fig. 3) and the connection of interested clients with 
local PV installers, who are selected by ISWT for their validated trust
worthiness. ISWT makes profits by selling the cadasters to municipalities 
or local authorities, as well as taking margins on the transactions be
tween the clients and PV installers when a contract is eventually signed 
thanks to ISWT’s service. At this stage, ISWT provides all the adminis
trative and legal services required by the local public services and the 
French electricity provider EDF (declaration of the building work for the 
PV installation, connection to the grid, etc.). Since 2015, ISWT has 
progressively deployed its services all over French territory, triggering 
more than 3500 installations and becoming exclusive partners of more 
than 80 local authorities in five years. In 2019, ISWT merged with 
Otovo, a leading PV energy company in Scandinavia. 

Our analysis focuses on the first years of ISWT development (from 
2015 to 2019), in which O.I.E. and Transvalor played a critical role by 
providing ISWT with the solar cadasters used as a basis of the ISWT 
simulation tool (Callegari et al., 2017). These solar cadasters basically 
involve computing the long-term average solar radiation received by a 
given 1 m2 surface in an urban area (e.g., the city of Nantes). The story of 
how these interactions started was recalled by one of the O.I.E.‘s main 
researchers involved, as follows: 

“Before working with ISWT, I had been working on solar 
cadasters for the Provence-Alpes-Côte d’Azur (PACA) region in 
France at 200 m of resolution. And I gave a talk at a conference 
where I said: if we want to go from 200 m to 1 m, we need 3D models. 
[…] Nicolas [one of the founders of ISWT] wanted to create a start- 
up to support the development of photovoltaics at the urban scale. 
He called me and […] and I told him that I had already talked 
about the possibility of assessing solar radiation at an urban 

scale at this conference and that I had identified 3D data as the 
main issue. So I told him it would be interesting to talk with IGN 
[French national mapping agency] and that I could put him in 
contact with the research director of IGN that I knew. […] ISWT 
was then hosted by IGN, providing ISWT with their data for the 
digital surface model, which IGN initially did not know what to do 
about.” (Philippe) 

This story provides a few important hints about the fit system built by 
O.I.E. in the ISWT case. First, it mirrors well the multifaceted compo
sition of the fit system, involving the design of technical components (e. 
g., 3D data associated with a digital surface model), socio-organizational 
components (e.g., building a partnership between ISWT and IGN), and 
cognitive components (e.g., knowledge on the missing scientific gaps to 
move from a 200 m resolution to a 1 m resolution). These different 
components are more exhaustively presented in Table 3 and syntheti
cally represented in Fig. 4 based on the static-view visual mapping 
template. 

This analysis of the fit system in the case of ISWT suggests the exis
tence of generic components. The story told by O.I.E. clearly indicates 
the use of preexisting components that had been previously built by O.I. 
E. to fit solar radiation data in other use contexts beyond ISWT, for 
example, for the PACA region. It is further confirmed by the in-depth 
analysis of the fit system unveiling components that had been built by 
O.I.E. over a long period of time, such as long-term solar resource 
datasets or O.I.E.‘s relationship with the company Transvalor. However, 
considering the case of ISWT alone is not sufficient for understanding 
how these different components have been successfully built in the long 
run. To examine these aspects, we need to go back to O.I.E.‘s history. 

4.2. A dynamic view of the generification mechanisms supporting the 
design of the fit system between solar radiation data and multiple use 
contexts 

The longitudinal analysis of O.I.E. highlights how the fit system has 
been designed over time through dedicated generification mechanisms 
contributing to progressively enriching the generic core of the fit system. 
To do so, O.I.E. conducted a sequence of (re)embedding and dis
embedding processes (‘what’ perspective), enabled by the progressive 
creation of various boundary resources (‘how’ perspective), and sup
ported by several forms of drivers (‘why’ perspective). These different 
elements are hereafter described in more detail. 

4.2.1. ‘What’ perspective 
The sequence of embedding-disembedding processes conducted by 

O.I.E. is represented in Fig. 6. Embedding occurs when new use-specific 

Fig. 3. ISWT simulation tool based on solar cadasters at the urban scale (Source: Blanc and Ménard 2021).  
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components are created. Disembedding occurs when the generic core is 
enhanced with new generic components. The following paragraphs go 
through the depicted transformations of the fit system, starting in 1976. 

O.I.E.‘s research work on solar radiation started within a project 
supported by the Solar Energy R&D Programme of the European Com
mission with the goal of building the first European Solar Radiation 
Atlas (Grüter et al., 1986). The project aimed to assess solar radiation 
reaching the ground more precisely and reliably, especially by taking 
advantage of new data from the Meteosat satellites. O.I.E. started to 
develop methods to transform Meteosat top-of-atmosphere radiance 
images into surface solar radiation data, giving birth to the first version 
of the so-called “Heliosat” methods (Cano et al., 1986), which have been 
continuously revised to take advantage of technical and scientific ad
vances. The first developments made within the Solar Energy R&D 

Programme of the European Commission can be referred to as an initial 
embedding process. Indeed, this process contributes to building a fit 
system between Meteosat-based solar radiation data and a given use 
context (the European Commission aiming to build a European Solar 
Radiation Atlas). These developments were later complemented by dis
embedding processes aimed at making these first components useable in 
other contexts. This is, for example, expressed by O.I.E.‘s previous di
rector, who was involved in the early days of Heliosat: 

“The Heliosat principle can be summarized as follows: it consists of 
detecting an anomaly (e.g., a cloud) with regard to an evolving 
model of reference (the surroundings). So with the same conceptual 
framework underlying the Heliosat method [for solar radiation 
assessment], we made a system for the detection of forest fires. […] 
And I also had a discussion with motorway-operating companies 
about traffic monitoring applications […] It’s the Heliosat method 
that led me to think of these kinds of applications and what we 
can build on it.” (Lucien) 

This attempt at making solar radiation data useable in multiple 
contexts took a new dimension with the so-called SoDa project funded 
by the European Commission from 2000 to 2003. The goal of SoDa was 
to broaden the use of solar radiation data to new user communities by 
building “one-stop-shop” easy access based on web-service technologies 
and specific interfaces (Rigollier et al., 2000). This approach successfully 
aroused the interest of actors from heterogeneous sectors, such as solar 
energy, astronomy, air quality, building engineering, climatology, ed
ucation, health, materials, meteorology, oceanography, agriculture, and 
agroforestry (Gschwind et al., 2006). These promising results led O.I.E. 
to dedicate significant efforts to sustaining these services after the 

Fig. 4. Static view of the fit system as appearing in the case of ISWT (data sources used as inputs, their transformations into generic and use-specific components of 
the fit system, and the associated use contexts). 

Fig. 5. Example of a horizon (black area) computed from the digital elevation 
model ‘SRTM’ at location (44.6805◦N, 6.08◦E). The daily trajectories of the sun 
are represented in yellow (three trajectories per month throughout the year). 
The x-axis is the azimuth orientation, beginning from the north. The y-axis is 
the elevation angle in degrees (Source: Blanc et al., 2011). 

Fig. 6. Summary of the generification mechanisms observed in the case of O.I.E. over time (‘what’ perspective). The components of the fit system are named based on 
the technical dimension of the fit system, but the other dimensions (socio-organizational, cognitive) are also closely intertwined (e.g., “SoDa Web services” refers to 
the technical artifacts but also embodies O.I.E.‘s relationship with Transvalor and O.I.E.‘s knowledge on solar radiation and energy sectors). The elements written in 
italic with a question mark correspond to current O.I.E.‘s development efforts (thus still ongoing and uncertain). The elements written in bold are the ones that have 
changed compared to the previous period of time. 
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official end of the project, thus officially creating the SoDa Service in 
2003. O.I.E. ensured the maintenance of SoDa Service until it was later 
transferred to a commercial company in 2009. The creation of SoDa 
Service involved conducting parallel embedding and disembedding 
processes: embedding by making modifications to better fit with the 
contexts of the project’s participants, as well as disembedding efforts. 
Indeed, as highlighted again by the previous director of O.I.E., O.I.E. 
intentionally avoided designing a system that would exclusively focus 
on a single sector: 

“It was easy to go from one application to another, because SoDa was 
not designed for the solar energy sector, but for solar radiation 
assessment.” (Lucien) 

A new sequence of embedding-disembedding processes was later 
encouraged by a new turn in O.I.E.‘s history, when O.I.E. decided to 
entrust the SoDa Service to the company Transvalor in April 2009. 
Indeed, the growing number of user demands led O.I.E. to find external 
support for the operation, maintenance and commercialization of the 
services. Thanks to the partnership with Transvalor, SoDa could be 
provided to users reliably 24/7. The sustainability of these activities was 
ensured through a freemium business model involving the provision of 
free basic solar radiation data at a limited spatial and temporal resolu
tion and more sophisticated paid-for services. Through the operation
alization and commercialization of SoDa, the fit system has been 
enriched to further enable solar radiation data to address diverse use 
contexts. The fit system has sometimes been adapted further to specific 
use contexts through slight adaptations of the service to the requests of 

users (embedding). However, the fit system has also been made 
increasingly generic by using these requests to identify the possible 
transformations of SoDa that seem to be the most promising for several 
use contexts (disembedding). This disembedding process has also 
involved the complete redesign of SoDa to make it compliant with the 
standards recommended by the Open Geospatial Consortium (Thomas 
et al., 2013). These efforts have allowed the fit system to become 
interoperable with other products or systems and compatible with a 
wider range of use contexts. 

In parallel with these advances related to SoDa operationalization, 
another sequence of embedding and disembedding processes can be 
identified with regard to the developments of solar cadasters. Indeed, 
downscaling algorithms leveraging a digital elevation model were 
developed by O.I.E. before partnering with ISWT in the context of 
building a solar cadaster for the PACA region (Blanc et al., 2011a; 
Ménard et al., 2013). These developments were associated with an 
embedding process, as they were initially triggered and funded by local 
and regional organizations and councils from 2008 to 2012. However, 
beyond this initial demand, O.I.E. later invested significant efforts in 
disembedding these developments by making these solar cadasters 
useable in a larger range of contexts, e.g., by enriching them with 
additional data (e.g., the distance to the nearest electric grid line) and 
integrating them into standard-compliant webservices, especially in the 
framework of an FP7 European project called ENDORSE. With the case 
of ISWT, a new phase of embedding unfolded, especially through the 
additional integration of a high-accuracy digital surface model to 
enhance the resolution of solar cadasters and make them relevant at the 
urban scale. The case of ISWT is not the end of the story, and new at
tempts at further disembedding ISWT-related developments can already 
be noted. Indeed, O.I.E. is currently exploring how these urban solar 
cadasters could potentially fit into a larger pool of use contexts, e.g., grid 
operators managing the increasing integration of PV in the grid. 

4.2.2. How perspective 
The analysis of O.I.E.‘s history also shows that the generification 

mechanisms have been especially encouraged through the development 
of specific forms of boundary resources. These boundary sources are listed 
and further described in Table 4 (the “resourcing” and “securing” 
functions are further commented on in the discussion section). One can 
note that some of the boundary resources developed by O.I.E. are not 
only targeted at the potential complementors of the system (here, users 
of data). Indeed, some of them are aimed at supporting “peer de
velopers”, which are taking on similar endeavors of building fit systems 
between EO data and various use contexts in the solar energy sector or in 
different areas. Moreover, only one kind of boundary resources concerns 
the producers of data (here, operators of in-situ instruments). This can 
be explained by O.I.E.‘s downstream position compared to these actors 
and, as a result, their limited ability to trigger transformations on this 
side. 

4.2.3. Why perspective 
Throughout its history, O.I.E.‘s generification efforts have been 

fostered by a few noticeable drivers. A first driver lies in the logic of 
science underpinning O.I.E.‘s activities as a research center since its 
creation, as explicitly stated by several interviewed members of O.I.E.: 

“As researchers, our role is to crystallize basic building blocks at 
the highest level and not to develop components that are too much 
oriented toward a specific domain.” (Lionel) 

“At the creation of our lab, we benefited from computation means 
that were quite unique in France and even Europe. Many scien
tists from various backgrounds used to come visit us to process their 
images based on the tools that had been installed here. […] So, right 
from the beginning, we were working in a multidomain atmo
sphere: geology, forestry, agriculture, meteorology, oceanography, 
and data processing. […] So all the developments we made 

Table 3 
Composition of the fit system enabling solar radiation data to fit into the use 
context of ISWT.   

Components of the fit system built by O.I.E. underpinning the case 
of ISWT 

Technical Long-term solar resource datasets, based on the Helioclim-3 
database or the CAMS radiation database of solar irradiation 
values (i.e., the amount of energy received per unit area during a 
given duration – measured in Wh/m2), with a 4–5 km spatial 
resolution estimated from data provided by the ‘Meteosat Second 
Generation’ satellite. This database is built and updated based on 
the Heliosat-2 algorithms developed by O.I.E. (Rigollier et al., 
2004). The satellite-based dataset can also be calibrated with 
local in-situ measurements from meteorological stations. 
Downscaling algorithms to enhance spatial resolution from 5 km 
up to a few meters (required when considering roofs at urban 
scale). This especially requires taking into account the spatial and 
temporal variability of irradiation values due to the altitude, the 
local orientation, and the shadowing effect of the horizon caused 
by the surrounding orography (e.g. mountains but also buildings, 
vegetation and roof superstructure in an urban area). To calculate 
these so-called “shadow masks” (see Fig. 5), two models were 
used: a decametric resolution digital elevation model (DEM) 
describing the natural orography (mountains, hills, valley etc.), 
and a high-accuracy decimetric digital surface model (DSM) 
giving 3D description of buildings, vegetation and superstructures 
(provided by the IGN French national mapping agency). 
Roof location algorithms, based on another dataset provided by 
IGN (high-accuracy map of building footprints to provide location 
and contours of corresponding roofs). 

Organizational Relationship with Transvalor: O.I.E. is in charge of designing the 
algorithms. Transvalor provides the Helioclim-3 database on an 
operational basis for a large range of actors and is in charge of 
operating the processing chain providing a city-scale solar 
cadaster as a final output based on the technical components, on 
an operational and repeated basis following the deployment of 
ISWT spreading to the whole French territory. 
Relationship with IGN and ISWT: IGN supports ISWT and 
provides them with data. O.I.E. provides their technical expertise 
on how to process these data. 

Cognitive Knowledge of O.I.E. on the solar energy sector and on the data 
sources and processing techniques, based on its long experience 
in the field.  
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Table 4 
Summary of boundary resources developed by O.I.E. over time (‘how’ perspective).  

‘How’ perspective: focus on boundary resources as means of supporting generification mechanisms 

Starting 
date 

Boundary resources Targeted 
third-party 
actors 

Resourcing function Securing function 

For third-party actors For the fit system owner 

2004 Licenses granting access to Heliosat and 
derived methods 

Users&Peer 
developers 

Allows users and peer developers 
to innovate on top of Heliosat 
methods. 

- Allows the fit system 
owner to increase its 
renown and legitimacy Licenses allowing users to freely use, share and 

adapt these products and tools, provided that 
they give credit to the licenses (Creative 
Commons or equivalent in the EO community, 
e.g. GEOSS Data Core Sharing principles) 

2006 Lead of a community of practice on 
renewable energies in the 
intergovernmental body Group on Earth 
Observations (GEO) 
Aiming at sharing best practices among players 
aiming to bridge EO and energy sectors (later 
transformed in the GEO-VENER initiative) 

Peer 
developers 

Allows peer developers to benefit 
from the fit system owner’s 
experience (sharing difficulties 
and best practices). 

Allows the fit system owner to 
keep abreast of current practices, 
new developments and future 
trends. 

Allows the fit system 
owner to foster the 
evolution of the 
ecosystem into certain 
directions. 

2006 Contribution to the International Energy 
Agency’s implementing agreements related 
to solar energy 

Users 
& 
Peer 
developers 

Allows users peer developers to 
benefit from the fit system owner 
‘s experience (sharing difficulties 
and best practices). 

Allows the fit system owner to 
keep abreast of current practices, 
new developments and future 
trends. 

Allows the fit system 
owner to foster the 
evolution of the 
ecosystem into certain 
directions. 

Supporting the emergence of a common vision 
of what defines the quality of solar resource 
assessment and forecasting methods or 
developing standardized and integrating 
procedures for data bankability. Currently 
participating to the PVPS program (Task 16) 
that aims to lower barriers and costs of grid 
integration of PV and lowering planning and 
investment costs for PV by enhancing the 
quality of the forecasts and the resources 
assessments. 

2008 Webservice-energy SDI (Spatial Data 
Infrastructure) 

Users 
& 
Peer 
developers 

Allows users and peer developers 
to innovate on top of existing EO 
data. 

- Allows the fit system 
owner to increase its 
renown and legitimacy Created by O.I.E. following recommendations 

from the GEO Standard and Interoperability 
Forum (SIF). The SDI aims at gathering, 
promoting and spreading EO data for the 
development of renewable energies based on 
open standards. The SDI ensures the access to 
these resources to potential third-party users 
based on open standards. However, it also 
plays a facilitating role for other peer 
developers of the EO community, as it gathers 
the services and products developed by several 
tens of organizations. 

2009 Helpdesk for SoDa service Users Allows potential users to learn 
about solar radiation data and 
further leverage them. 

Allows the fit system owner to 
better understand use contexts 
and identify the future 
development paths that seem the 
most promising.  

Annual training session on the basics of solar 
radiation that has been organized for 30–40 
international participants every year since 
2013. 

2013 Solar Training Users Allows potential users to learn 
about solar radiation data and 
further leverage them. 

Allows the fit system owner to test 
some of its assumptions related to 
the future development paths that 
seem the most promising.  

A training session on the basics of solar 
radiation organized for 30–40 international 
participants every year. 

2019 Jupyter Notebooks Users Allows potential users to get a 
better understanding of possible 
ways of using solar radiation 
data. 

Allows the fit system owner to 
learn from users, by analyzing 
how the latter use the Jupyter 
Notebook and make it evolve.  

Offers the possibility to play with parts of codes 
and visualize them through images or graphs. 
Initially, implemented by O.I.E. in the EU- 
funded project ‘NextGEOSS’, these notebooks 
have been further developed by O.I.E. as a way 
of supporting their interactions with potential 
users, serving as demonstration tools to explore 
new use cases based on the temporal variability 
of solar radiation (Blanc and Ménard, 2021). 

2022 Data Management Plan self-assessment tool Peer 
developers 

Allows peer developer to 
progress in their implementation 
of data sharing principles. 

- Allows the fit system 
owner to foster the 
evolution of the 
ecosystem into certain 
directions. 

Tool developed by O.I.E. within the EU-funded 
‘e-shape’ project (Ranchin et al., 2021) to help 
data-based product or service developers to 
assess their current status and trajectory 
toward compliance with data sharing 
principles supporting standards. 

2022 Web application to visualize the 
homogeneity of data provided by the 
network of in-situ measurements 

Peer 
developers 

Provides peer developers with an 
easier access to in-situ 
measurements encoded in 

- Allows the fit system 
owner to foster the 
evolution of the 

(continued on next page) 
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tended to be quite generic; we needed to conceptualize a lot of 
things.” (Lucien) 

This science-driven logic also appears in O.I.E.‘s efforts in supporting 
peer developers, which can even be O.I.E.‘s competitors in some cases. 
Indeed, as emphasized by the previous O.I.E. director: 

“A lot of methods currently built by our competitors are based on 
Heliosat or derivative versions. […] And I initially educated many 
of those people who created competing databases.” (Lucien) 

Generification has also been enabled by a few organizational drivers, 
especially O.I.E.‘s capacity to identify the high potential of genericity of 
solar radiation data. In particular, this capacity involves ensuring a 
continuous watch on potential data uses and available technical means 
such as data production instruments, algorithms and IT capacities: 

“I constantly have a double view. A methodological view that is: 
‘given these data, how to take advantage of them?’ And another 
view that is: ‘what are the available data sources that I could use 
to further fill in the gaps I currently have in my methods and that 
could improve the service?’” (Philippe) 

Moreover, institutional factors have also played an important role, 
especially the funders of the projects through which O.I.E. has pro
gressively developed its fit system (mainly the European Commission), 
as well as international organizations such as the Group on Earth Ob
servations (GEO). The strategy followed by O.I.E. has been strongly 
supported by these institutional actors, pushing for the development of a 
wide range of applications for EO data in various sectors, as well as the 
adoption of standards, as expressed by interviewees: 

“When we joined the Group on Earth Observations (GEO), we 
became aware of the powerful role of standards. Even if you 
merely comply with them and do not necessarily develop them, they 
have a multiplier effect on your capacity for action in the commu
nity.” (Lucien) 

This last verbatim also points to a strategic driver. Indeed, O.I.E. 
clearly acknowledges that the choice of complying with standards was 
partly driven by gaining a form of strategic advantage. This choice 
contributes to the generification of the fit system in two ways. From a 
technical perspective, the fit system becomes compatible with a wider 
range of use contexts. Moreover, from an organizational perspective, 

complying with standards increases O.I.E.‘s legitimacy in the field and 
its ability to forge valuable partnerships, thus opening up new oppor
tunities to further develop the fit system, as also highlighted in the 
following verbatim: 

“Standards have enabled small players like us to be part of big ini
tiatives. They have played a crucial enabling role in creating new 
partnerships.” (Lionel) 

5. Discussion 

The longitudinal analysis of O.I.E. have allowed us to identify the 
generification mechanisms that have underpinned the design of the fit 
system over time. This section discusses the similitudes and peculiarities 
of the patterns observed in the case of O.I.E. compared to the ones 
described by the literature for other forms of generic systems (e.g., 
digital platforms, software systems). These patterns are commented on 
considering the ‘what’, ‘how’, and ‘why’ perspectives on generification 
mechanisms subsequently. They are synthesized in Fig. 7. 

5.1. What are the observed forms of generification mechanisms? 
Disembedding as more closely intertwined with embedding 

The analysis of O.I.E. confirms the relevance of generification 
mechanisms in the case of data-push innovation. For other forms of 
generic systems studied in the literature, generification mechanisms 
involve both embedding and disembedding processes. The underlying 
rationale lies in the enrichment of the generic core, avoiding building 
components that are too oriented toward a specific domain. This directly 
resonates with previous studies on open ERP systems, in which the de
velopers of the global generic system aim to “stay away from directly 
designing for particular local needs” (Gizaw et al., 2017, p. 635). The 
same authors also highlight that “although important, the ultimate goal 
of open generification is not to make a software work in a particular 
context; it is rather to take the working solution further to multiple other 
contexts” (p. 637). 

However, a few peculiarities can be noticed in the case of O.I.E. 
compared to the literature on generification. As expected from our 
literature analysis, O.I.E. has no choice but regularly undertake signifi
cant embedding processes, e.g., solar cadasters for public authorities of a 

Table 4 (continued ) 

‘How’ perspective: focus on boundary resources as means of supporting generification mechanisms 

Starting 
date 

Boundary resources Targeted 
third-party 
actors 

Resourcing function Securing function 

For third-party actors For the fit system owner 

& 
Data 
producers 

standard forms. 
Allows in-situ data producers to 
understand the benefits of 
standards for in-situ data. 

ecosystem into certain 
directions. 

Developed in order to facilitate the access and 
the use of in-situ measurements by other data- 
based product or service developers, in 
compliance with standards but also compatible 
with other nonstandard formats still used in 
the field (Blanc et al., 2022). Additionally, 
intended to be used by O.I.E. as a 
demonstration of what can be done with in-situ 
data encoded in standards, and potentially 
further convince the providers of in-situ data to 
better comply with standards. 

2023 “libinsitu” an open source python library 
(under BSD licence imposing minimal 
restrictions on the use and distribution) 

Peer 
developers 

Provides peer developers with an 
easier way of encoding in-situ 
measurements in standard forms. 

- Allows the fit system 
owner to foster the 
evolution of the 
ecosystem into certain 
directions. 

The library allows the transformation of 
heterogeneous time series of in-situ 
measurements into standard and interoperable 
well-formed binary file.  
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given region, then for ISWT at a finer resolution. This stems from the 
need to take into account the initial limited capacities of potential users 
to leverage data on their own. Therefore, although the ultimate goal lies 
in enriching the generic core of the fit system, O.I.E. also needs to design 
the necessary use-specific components until the point data can fit into a 
given use context or, in other words, until the point data fit with actors’ 
capacities to further leverage them. However, in the case of O.I.E., 
embedding is not only driven by the mere objective of better serving the 
specificities of local use contexts to avoid a risk of ‘misfit’, as often 
suggested in the literature (e.g. Li and Nielsen, 2019). O.I.E.‘s history 
reveals that embedding processes are always followed by disembedding 
processes. More precisely, use-specific components are designed by O.I. 
E. if they offer promising ways to further enrich the generic core. In 
other words, O.I.E. focuses on designing use-specific components that 
are deemed to have generic potential. For example, the case of ISWT 
gives the opportunity to develop new components (e.g., digital surface 
model) that are thought of by O.I.E. as having the potential to serve 
multiple other use contexts (e.g., grid operators). In the same vein, the 
concept of Heliosat algorithms was initially developed for building the 
European Solar Radiation Atlas but was also used by O.I.E. to explore a 
range of other use contexts, such as forest fire detection. This aspect 
seems quite original compared to usual considerations in generic soft
ware development, in which the adaptations made to fit the system into 
a given context at an implementation level do not directly contribute to 
building up the genericity of the system (e.g. Li and Nielsen, 2019). 
Taking Li and Nielsen’s (2019) classification, the case of O.I.E. invites us 
to consider that, in a context of data-push innovation, the 
implementation-level design (corresponding to embedding processes) 
not only follows a ‘design for use’ approach, aimed at making the system 
fit into a given context but also contributes to a ‘design for design’ 
objective, aimed at building the infrastructure allowing further design at 
a later stage. In other words, embedding processes appear to lay the foun
dation for future disembedding processes. 

This observation could seem paradoxical at first sight. Indeed, one 

could wonder why O.I.E. needs to go through heavy and regular 
embedding processes while its primary objective is driven toward 
genericity and would thus require a focus on disembedding. This pe
culiarity can be linked to the specificities of data-push innovation 
compared to other forms of digital innovation, stemming from specific 
properties of data compared to other digital artifacts. Indeed, the 
meaning and value of data for a specific use context are not given be
forehand (e.g. Alaimo et al., 2020). It cannot be given solely by the fit 
system owner or by the potential users alone. Returning to the case 
analyzed by Alaimo et al. (2020), the telecommunications operator 
cannot imagine how its data can be meaningful and valuable for the 
advertising company without having strong interactions. Nor can the 
advertising company imagine by itself that there might be data owned 
by the telecommunication operation that support their business. 
Therefore, from the perspective of the fit system owner, the generic 
components that will enable data to gain meaning in multiple use contexts are 
unknown from the outset. For example, in the case of O.I.E., it is difficult 
to predict beforehand whether the digital surface model underpinning 
the development of urban solar cadasters should be made as a generic 
component. O.I.E. can assume the potential of genericity of such a 
component, but this assumption can only be later validated if the digital 
surface model also proves useful for other use contexts. The generic 
components are designed as such based on the fit system owner’s un
derstanding of the current range of potential use contexts. This explains 
why embedding and disembedding processes appear so closely inter
twined in the case of O.I.E., especially in the following way: disembed
ding cannot occur independently from embedding. Alternatively, 
embedding can occur without disembedding as a necessary precondi
tion. However, over time, the case of O.I.E. also shows that embedding is 
largely facilitated by previous efforts of disembedding. Indeed, dis
embedding results in building generic components that can be later 
reused (e.g., Heliosat algorithms, digital surface model, partnership with 
Transvalor), thus making embedding processes less cumbersome for a 
new use context. 

Fig. 7. Summary of the main outcomes (in gray boxes) related to what forms of generification mechanisms are involved in building the fit system, how these 
mechanisms can be supported by specific forms of boundary resources, and why the fit system owner is led to support such forms of generification mechanisms. 
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5.2. How can generification mechanisms be supported with specific forms 
of boundary resources? A noticeable two-way resourcing function 

To a certain extent, our results align with recent studies showing the 
need of a sophisticated range of boundary resources targeted at different 
types of actors of the platform ecosystem (e.g. Bonina and Eaton, 2020). 
In line with Foerderer et al. (2019), boundary resources can be seen as a 
way of bridging knowledge boundaries between the fit system owner 
and third-party actors. The case of O.I.E. confirms the latter authors’ 
conclusions, showing that bridging knowledge boundaries does not only 
involve “providing complementors with access to a joint technological 
infrastructure, but [it] rather requires investments in cooperative re
lationships with complementors” (p. 140). 

However, a few original patterns can also be noted. As exposed 
above, building a generic fit system involves continuously exploring 
multiple use contexts and undertaking numerous sequences of 
embedding-disembedding processes over time. This aspect has direct 
consequences on the functions of the boundary resources allowing the fit 
system owner to support such generification efforts. Indeed, there is a 
noticeable impact on the resourcing function of the boundary resources, 
which usually designates “the process by which the scope and diversity 
of a platform is enhanced” (Ghazawneh and Henfridsson, 2013, p. 177), 
especially by attracting third-party actors to join the development of the 
system and encouraging their innovation (Eaton et al., 2015). Notice
ably, in the case of O.I.E., the resourcing function of some boundary 
resources unfolds in a double direction: resourcing the third-party actors of 
the ecosystem, as is usually the case (e.g. Foerderer et al., 2019) but also 
resourcing the fit system owner itself. Taking the example of O.I.E., this 
two-way resourcing function appears quite clearly for boundary re
sources that are specifically aimed at creating closer interactions with 
the potential users of data. It includes a helpdesk for the SoDa Service 
created in 2009, an annual training session on the basics of solar radi
ation organized every year since 2013, as well as Jupyter Notebooks 
used as demonstration tools since 2019. On the one hand, these 
boundary resources allow potential users to learn about solar radiation 
data and how to further innovate on top of the fit system. However, on 
the other hand, these boundary resources also allow O.I.E. to learn about 
the sectors in which these potential users evolve, their practices and 
possible requests. Based on this understanding, O.I.E can assess the most 
promising development paths, especially by identifying which 
use-specific and generic components are worth building. 

This original form of boundary resources can be again explained by 
the unknown character of the meaning of data in a given new use context 
at the outset (e.g. Aaltonen et al., 2021; Mikalsen and Monteiro, 2021; 
Alaimo et al., 2020). Indeed, in the process of building the meaning of 
data for a given use context, both the fit system owner and the 
third-party actors need knowledge from the other side: the fit system 
owner needs to understand elements related to the use context (e.g., 
potential users’ practices, rules and regulations in the sector), while the 
potential users need to obtain an understanding of what they could do 
with these new data. However, neither the fit system owner nor the 
third-party actors are able to exactly pinpoint the types of knowledge 
missing on both sides before they interact. In this respect, not only is the 
meaning of data initially unknown, but the knowledge boundaries be
tween the fit system owner and the potential users are also largely un
known from the outset. This aspect offers an extension to the results of 
Foerderer et al. (2019): not only do the boundary resources contribute to 
bridging knowledge boundaries, but they also play an important role in 
identifying these knowledge boundaries. 

Other interesting patterns can be noted regarding the securing func
tion of the boundary resources. Usually, the securing function is asso
ciated with “the process by which the control of a platform and its 
related services is increased” (Ghazawneh and Henfridsson, 2013, p. 
177). In the case of open data platforms, Bonina and Eaton (2020) depict 
securing as a way of regulating how the different members of the 
ecosystem carry out their respective tasks contributing to platform 

evolution. By contrast, the position of O.I.E. does not allow it to exert 
such a form of control. Indeed, O.I.E. has limited control over the players 
involved in producing data (e.g., big players from the space industry 
launching satellites) or using data (e.g., large industrial energy com
panies or public agencies involved in energy transportation and distri
bution). In such conditions, the securing function of boundary resources 
cannot consist of purely controlling the evolution dynamics of the sys
tem but rather consists of fostering certain forms of evolution dynamics. 
In the case of O.I.E., it entails at least two complementary aspects. The 
first consists of increasing the fit system owner’s legitimacy in the 
ecosystem. For example, O.I.E. has allowed the reuse of Heliosat algo
rithms through Creative Commons licenses or equivalent and has also 
created a Spatial Data Infrastructure (Webservice-energy) to gather, 
promote and spread EO data for the development of renewable energies 
based on open standards. By making the outcomes of O.I.E.‘s develop
ment efforts widely available, these boundary resources contribute to 
making O.I.E.‘s recognition as an active player in the ecosystem. The 
second securing aspect consists of encouraging some activities of the 
actors of the ecosystem without directly controlling them, e.g., 
encouraging peer developers toward further compliance with standards. 
This aspect is illustrated by boundary resources such as O.I.E.‘s partic
ipation in communities of practices, as well as the “libinsitu” open 
source python library, allowing peer developers to transform heteroge
neous time series of in-situ measurements into standard and interoper
able data files. 

5.3. Why support such forms of generification mechanisms? A strategy 
relying on a form of localized and nondominant leadership 

These patterns related to the generification mechanisms and 
boundary resources, as well as the drivers of generification mentioned in 
the findings, contribute to depicting the strategic position of the fit 
system owner within its ecosystem. It especially appears that O.I.E. has 
developed an intriguing leadership position that differs from historical 
cases of platform leadership described for technological platforms 
(Gawer and Cusumano, 2002) or well-known success stories of digital 
platforms such as Apple’s iOS operating system (Eaton et al., 2015; 
Ghazawneh and Henfridsson, 2013). 

Considering the ecosystems of actors in which solar radiation data 
are introduced, O.I.E. cannot be considered a hub firm with the ability to 
orchestrate overall ecosystem dynamics (e.g. Dhanaraj and Parkhe, 
2006). However, O.I.E. can still be considered as having a certain form 
of localized leadership when leadership is considered to be “the exertion 
of influence in order to ‘make things happen’ […] despite a lack of 
formal authority” (Müller-Seitz, 2012, p. 429). Indeed, the analysis re
veals that O.I.E. has been able to punctually implement “localized” ac
tions of stimulation, consisting of stimulating some small-scale 
transformations with pinpointed actors of the ecosystem. For example, 
from the perspective of estimating solar radiation at an increasingly 
fine-grained resolution, O.I.E. was the one building connections be
tween the founders of ISWT and the French national mapping agency 
that had key datasets. This localized leadership is directly rooted in the 
fit system built by O.I.E. over the years. It is only made possible because 
O.I.E. had already accumulated considerable experience in solar radia
tion estimation and could thus leverage existing components of the fit 
system. 

Moreover, the leadership form developed by O.I.E. could be char
acterized as a form of nondominant leadership that focuses more on 
gaining generative power rather than controlling power. Both gen
erativity and control have been extensively described as fundamental 
characteristics of digital platforms (Yoo et al., 2010). For a platform 
owner, gaining controlling power basically consists of strengthening its 
capacity to orchestrate the overall ecosystem around the platform, 
whereas gaining generative power involves strengthening its capacity to 
open up new innovation spaces for others. In the case of O.I.E., in 
addition to the focused actions of stimulation described above, this 
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nondominant logic especially appears in their use of standards and the 
distribution of captured value. Indeed, regarding standards, the IS 
literature has already shown how firms could establish an exclusive and 
powerful position in the ecosystem by influencing or imposing some 
forms of standards (Lyytinen and King, 2006; Yoo et al., 2005). In the 
case of O.I.E., the use of standards unfolds following a different logic. 
Indeed, O.I.E. does not aim to gain dominating control over the 
ecosystem based on these standards. O.I.E. has chosen to comply with 
existing standards recommended by authoritative agencies (e.g., OGC) 
in order to increase the genericity of the fit system. But, echoing other 
studies showing how generification can support standardization (Han
seth and Bygstad, 2015), O.I.E. also contributes to fostering the devel
opment and implementation of these standards among the different 
actors of the ecosystem to further enhance generativity. Moreover, O.I.E. 
does not aim to appropriate all the value generated by the development 
of the fit system. Instead, O.I.E. shares this value with a network of 
partners responsible for maintaining some building blocks of the fit 
system (e.g., Transvalor). This echoes the observation made by other 
scholars, who have argued that “by proactively investing in seeding an 
ecosystem through developing and cultivating new business partners 
while not trying to appropriate all the value allows a firm to have sus
tainable access to a greater variety of capabilities and resources” (Zeng 
and Glaister, 2018, p. 131). 

6. Conclusion 

The question of building generic systems serving a large variety of 
use contexts is not new. It has already been investigated by a long 
tradition of research on digital platforms, infrastructures or software 
systems (e.g. Foerderer et al., 2019; de Reuver et al., 2018; Gizaw et al., 
2017; Eaton et al., 2015; Silsand and Ellingsen, 2014; Monteiro et al., 
2013; Tilson et al., 2010; Pollock et al., 2007). In this context, Gizaw 
et al. (2017) raised the following issue as particularly critical: “To what 
extent can software ‘travel’ to organizations and countries for which it 
was not designed for?” (Gizaw et al., 2017). Similar questions hold today 
for data, particularly in current developments around data-push inno
vation: to what extent can data ‘travel’ to contexts across organizations 
and sectors for which they were not designed? Concrete examples of 
successful cases driven by companies such as Uber confirm the possi
bility of data to travel but also point to the difficulty of systematizing 
such approaches beyond serendipity (e.g. Trabucchi and Buganza, 2020; 
Trabucchi et al., 2018). As highlighted by a growing body of IS research 
on the specificities of data as digital artifacts (e.g. Aaltonen et al., 2021; 
Alaimo et al., 2020; Monteiro and Parmiggiani, 2019), specific issues 
stem from the fact that data cannot travel as mere software modules. 
These authors show that, beyond the recombinant logic that usually 
underpins the development of digital platforms or generic systems, data 
can travel across contexts provided that their meanings are built and 
rebuilt for the new contexts in which they are used. 

Our paper aims to further illuminate what it means for data to travel, 
not only from an initial context of production to a new use context but 
also across multiple use contexts over time. This research is specifically 
based on the case study analysis of an actor (called O.I.E.) that has 
succeeded in stimulating the use of Earth observation data in multiple 
use contexts for more than 40 years. The paper particularly contributes 
to IS and innovation management research by providing a better un
derstanding of how data-push innovation strategies can be managed 
beyond serendipity. The paper does not claim to have exhaustively un
veiled all possible strategies but has elucidated a specific strategy that 
could be characterized as “data genericity building”, which consists of 
intentionally designing a generic “fit system”, comprising a set of tech
nical, socio-organizational and cognitive components enabling data to 
be used in multiple contexts. This is consistent with other well- 
developed studies in innovation management on generic or general- 
purpose technologies, which are characterized by their “potential for 
pervasive use in a wide range of sectors and by their technological 

dynamism” (Bresnahan and Trajtenberg, 1995). Scholars have indeed 
shown that designing these generic technologies involves “intentionally 
designing common features that bridge the gap between a priori het
erogeneous applications and technologies”, rather than only relying on a 
trial-and-error approach where common features are randomly discov
ered (Hooge et al., 2016). This does not imply that serendipity cannot 
occur; however, a genericity-building strategy is all the more successful, 
as it is managed through a dedicated and thought-through strategy 
(Hooge et al., 2016; Kokshagina et al., 2016). 

These results call for more precisely conceptualizing the “genericity” 
of data. Genericity can be fundamentally understood as the ability of 
data to fit into multiple use contexts. This paper invites us to consider it 
not as an intrinsic property of data but rather as a property resulting 
from the design of the fit system. From this perspective, data are 
considered all the more generic, as the residual design effort to fit data 
into a new use context is low, or, in other words, as the fit system 
comprises a large number of generic components that are common to 
different use contexts. One might think that it is simply a matter of 
finding the optimal components that are worth being made generic once 
and for all. However, the paper indicates that genericity should not be 
conflated with acontextuality. In other words, generic components are 
not designed independently from contexts. Generic components are 
progressively designed by understanding the multiplicity of contexts in 
which data could be used. As such, genericity is not a fixed property but 
a result of generification mechanisms that need to be continuously 
supported and adapted to take into account new arising contexts. The 
case of O.I.E. shows that these mechanisms can take original forms, 
compared to other well-known cases of information systems develop
ment, which is intrinsically related to the meaning construction process 
underpinning data-push innovation: the fit system is what supports the 
process of continuously building and (re)building the meaning of data in 
order for them to travel from one context to another. Continuous gen
erification efforts allow data to progressively become more generic by 
being used in an increasing number of contexts. These results have 
important implications for scholars: to better understand how the high 
genericity potential of data can be unleashed, it is critical to pay close 
attention to the different forms of processes, competencies, and condi
tions required to sustain generification efforts over time. 

These academic contributions also offer new insights for practi
tioners willing to implement data-push innovation strategies. Our results 
especially suggest that data-push innovation can be supported by spe
cific forms of strategies to build generic fit systems. The paper gives 
concrete examples of some managerial practices involved in supporting 
such a process, especially elucidating a rich variety of boundary re
sources with original functions compared to the ones initially described 
for digital platforms. This paper also describes an original form of 
localized and nondominant leadership, which could inspire practi
tioners that have limited power in a given ecosystem but are willing to 
contribute to the dynamics of this ecosystem. 

Some limitations are worth noting, leading to several research per
spectives. Our paper has delved into the single case study case of O.I.E., 
which unveils an interesting strategy to support data-push innovation. 
Several factors especially played an important role in fostering gen
erification in the case of O.I.E., such as the science-based nature of its 
activities and the favorable institutional context. One could wonder 
whether similar strategies could be supported in different conditions. 
Other types of strategies could also exist, and they deserve further 
investigation. For example, the literature on open data indicates the 
existence of a range of business models and actors involved in bridging 
the gap between data and use contexts (Magalhaes and Roseira, 2020; 
Janssen and Zuiderwijk, 2014). In this regard, recent projects in Europe 
to stimulate the use of EO data in multiple sectors suggest that diverse 
forms of actors might be concerned with similar strategies (Ranchin 
et al., 2021); these include private companies, public authorities, and 
meteorological institutes that already have a long history in developing 
EO-based weather forecasts and their applications (Lenfle and 
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Söderlund, 2022). It will thus be interesting to compare the different 
strategies, mechanisms and organizational characteristics that might 
exist depending on the profiles of these actors, as well as the conditions 
of their emergence and viability. Another research perspective lies in the 
temporal dimension of generification. The paper has mainly highlighted 
the dynamics of the fit system related to the transformations of use 
contexts. However, drastic changes of available data (e.g., following the 
launch of new satellites) are also likely to impact the design of the fit 
system. Our study could be extended to further analyze whether and 
how generification could also be relevant to cope with significant and 
repeated transformations of data over time. 
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Raphaëlle Barbier: Writing – review & editing, Writing – original 
draft, Visualization, Methodology, Investigation, Formal analysis, Data 
curation, Conceptualization. Skander Ben Yahia: Investigation, Data 
curation. Sylvain Lenfle: Supervision, Conceptualization. Benoit Weil: 
Validation, Supervision, Investigation, Conceptualization. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This project has received funding from the European Union’s Hori
zon 2020 research and innovation programme under grant agreement 
No 820852. The authors also warmly thank the whole team of O.I.E. and 
Transvalor for their involvement and our fruitful interactions, in 
particular P. Blanc, L. Ménard, T. Ranchin, and L. Wald, who have 
provided stimulating insights that have strongly contributed to this 
work. 

References 

Aaltonen, A., Alaimo, C., Kallinikos, J., 2021. The making of data Commodities: data 
analytics as an embedded process. J. Manag. Inf. Syst. 38, 401–429. https://doi.org/ 
10.1080/07421222.2021.1912928. 

Aaltonen, A., Tempini, N., 2014. Everything counts in large amounts: a critical realist 
case study on data-based production. J. Inf. Technol. 29, 97–110. https://doi.org/ 
10.1057/jit.2013.29. 

Abbasi, A., Sarker, S., Chiang, R.H.L., 2016. Big data research in information systems: 
toward an inclusive research agenda. J. AIS 17, 3. https://doi.org/10.17705/ 
1jais.00423. 

Alaimo, C., Kallinikos, J., 2020. Managing by data: algorithmic categories and 
organizing. Organ. Stud., 017084062093406 https://doi.org/10.1177/ 
0170840620934062. 

Alaimo, C., Kallinikos, J., Aaltonen, A., 2020. Data and value. In: Handbook of Digital 
Innovation. Edward Elgar Publishing, Cheltenham, UK.  

Appio, F.P., Frattini, F., Petruzzelli, A.M., Neirotti, P., 2021. Digital transformation and 
innovation management: a Synthesis of existing research and an agenda for future 
studies. J. Prod. Innovat. Manag. 38, 4–20. https://doi.org/10.1111/jpim.12562. 

Baldwin, C.Y., Clark, K.B., 2000. Design Rules: the Power of Modularity. MIT Press. 
Baldwin, C.Y., Woodard, C.J., 2009. The architecture of platforms: a unified view. In: 

Platforms, Markets and Innovation. Edward Elgar, Cheltenham, pp. 19–44. 
Bharadwaj, N., Noble, C., 2017. Finding innovation in data rich environments. J. Prod. 

Innovat. Manag. 34, 560–564. https://doi.org/10.1111/jpim.12407. 
Blackburn, M., Alexander, J., Legan, J.D., Klabjan, D., 2017. Big data and the future of 

R&D management. Res. Technol. Manag. 60, 43–51. https://doi.org/10.1080/ 
08956308.2017.1348135. 

Blanc, P., Espinar, B., Gschwind, B., Ménard, L., Thomas, C., Wald, L., 2011a. High 
spatial resolution solar atlas in Provence-Alpes-Cote d’Azur. In: ISES Solar World 
Congress 2011. Kassel, Germany, 34552.  
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