
HAL Id: hal-04611757
https://hal.science/hal-04611757

Submitted on 14 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maintaining Security Consistency During System
Development with Security-Oriented Model Federation

Chahrazed Boudjemila, Fabien Dagnat, Salvador Martínez

To cite this version:
Chahrazed Boudjemila, Fabien Dagnat, Salvador Martínez. Maintaining Security Consistency During
System Development with Security-Oriented Model Federation. International Conference on Software
and Systems Processes (ICSSP ’24), Sep 2024, Munich, Germany. �10.1145/3666015.3666016�. �hal-
04611757�

https://hal.science/hal-04611757
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Maintaining Security Consistency During System Development
with Security-Oriented Model Federation

Chahrazed Boudjemila
chahrazed.boudjemila@imt-

atlantique.fr
IMT Atlantique

Lab-STICC, UMR 6285
Brest, France

Fabien Dagnat
fabien.dagnat@imt-atlantique.fr

IMT Atlantique
Lab-STICC, UMR 6285

Brest, France

Salvador Martínez
salvador.martinez@imt-atlantique.fr

IMT Atlantique
Lab-STICC, UMR 6285

Brest, France

ABSTRACT
Multi-modeling is an approach within the MDE realm that pro-
motes the development of complex systems by decomposing them
in sets of heterogeneous models. These models are defined using
different modeling languages and constructed using diverse tools.
They represent different but often interdependent views. However,
the models of a system are far from being static. They change to
accommodate new requirements, functionality improvements, bug
fixes, and other evolution events. These changes represent a chal-
lenge w.r.t. consistency. This is especially true in security-critical
scenarios. Indeed, security information is often integrated within
the systems models so that security requirements are met follow-
ing what is called ”security-by-design”. In such scenarios, the secu-
rity concern of the systems models must remain consistent across
changes so that security properties continue to hold.

In order to tackle this problem, we propose a methodology to
enhance the (multi)model-based design phase of a system devel-
opment process. It comprises the creation of a security federation
in which security dependencies between the different models are
reified and equipped with security rules expressing security con-
sistency requirements. Then, whenever a model is changed, the
security rules are evaluated to monitor the consistency of secu-
rity across the system models. We evaluate the capabilities of this
methodology by a prototype implementation and its application to
different use cases.

CCS CONCEPTS
• Software and its engineering → Software development process
management; System modeling languages; • Security and pri-
vacy → Software security engineering.

KEYWORDS
Model-driven engineering, model federation, security by design,
model evolution.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
ICSSP ’24, September 4–6, 2024, München, Germany
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0991-3/24/09.
https://doi.org/10.1145/3666015.3666016

ACM Reference Format:
Chahrazed Boudjemila, Fabien Dagnat, and Salvador Martínez. 2024. Main-
taining Security Consistency During System Development with Security-
OrientedModel Federation. In International Conference on Software and Sys-
tems Processes (ICSSP ’24), September 4–6, 2024, München, Germany. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3666015.3666016

1 INTRODUCTION
In themodel-driven engineering (MDE) paradigm, the design phase
of the development process of large and complex software and
system projects often requires using multiple modeling languages
(and/or tools). Each modeling language covers a different view of
the application and is suitable for a corresponding set of domain
experts. This approach is generally called multi-modeling [1] (also
intermodeling or view modeling). Models participating in a multi-
model system are, however, not isolated as (often implicit) seman-
tically rich relationships may exist between elements of different
models (e.g., a relation may mean equivalence, dependency, spe-
cialization, etc.). As a consequence, maintaining consistency [10]
is a critical and challenging issue whenmodels evolve. A change in
onemodelmay requiremodifications of dependentmodels.This, in
turn, requires the ability to propagate changes among models and
evaluate these changes w.r.t. the semantics of the relationships.

When multi-modeling occurs in a security-critical scenario, the
consistency challenge becomes even more crucial. Indeed, since
security plays a vital role in many nowadays systems, several ap-
proaches aim to integrate security aspects into modeling and mod-
eling languages (e.g., UMLsec [4] and SecBPMN [22] among oth-
ers) and adopt a security by design perspective to deal with secu-
rity since the early phases of the development process. In this sce-
nario, inconsistencies regarding security requirements and proper-
ties may lead to the inadvertent introduction of security flaws that
make the modeled systems vulnerable to security threats.

A solution to this challenge requires at least the means to: 1)
make explicit and exploitable the relationship between the models
participating in a multi-model, notably w.r.t. security; 2) evaluate
how a change propagates through these relationships and how that
affects security. We propose to leverage the model federation to
tackle this problem. The model federation paradigm promotes the
reification of dependencies between heterogeneous models while
keeping them in their original technological space [9], which par-
tially fulfills the first requirement. Additionally, dependencies in
model federation have customizable semantics and may carry be-
haviors which help to fulfill the second requirement and complete
the first one.

Concretely, we propose a methodology for the creation, oper-
ation and management of what we call, security federations. Our
methodology integrates within the (model-based) design phase of

1

https://orcid.org/0000-0002-2827-8595
https://orcid.org/0000-0002-2419-7587
https://orcid.org/0000-0002-3978-9876
https://doi.org/10.1145/3666015.3666016
https://doi.org/10.1145/3666015.3666016

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSSP ’24, September 4–6, 2024, München, Germany Chahrazed Boudjemila, Fabien Dagnat, and Salvador Martínez

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the system’s development process by adding new tasks and arti-
facts that help maintain security. It involves first the creation of
a security-oriented model federation in which the security depen-
dencies between the models are reified and equipped with security
rules. These rules encode the conditions required for dependent
elements in different models to remain consistent w.r.t. security
properties. Second, and when the models change due to an evo-
lution event, security federation is used to determine whether the
changes impact the security of the system under study. To do this,
the security rules attached to the reified dependencies that are re-
lated to the change are (re) evaluated. The results of the evaluation
together with the reified dependencies inform the security federa-
tion user of the security impact of the change (if any) and gives
information regarding the elements involved in the inconsistency
so that consistency can be restored.

In this paper we extend preliminary work [3] in which we out-
line the first steps of the methodology. Specifically, compared to
the previouswork, this paper provides: 1) a detailed and formalized
description of our methodology, offering comprehensive steps; 2)
an evaluation introducing numerous new security rules covering
various security properties of two use cases and new evolution sce-
narios; 3) a complete prototype implementation; 4) a critical discus-
sion of our methodology and its evaluation.

The rest of the paper is organized as follows. Section 2 discuss
the relatedwork. A detailed description of ourmethodology’s steps
and rationale follows in Section 3. Section 4 presents our validation
and use cases, including a discussion of limitations. Finally, we con-
clude the paper in Section 5 by summarizing our contributions and
outlining future research directions.

2 BACKGROUND & RELATEDWORK
This section is divided into three subsections. The first two subsec-
tions introduce the main concepts behind our work, namely model
federation and security by design. The final subsection presents
various approaches developed in the context of multi-model con-
sistency and security.

2.1 Model Federation
As systems undergo frequent updates, managing the models in a
multi-model system is a critical challenge. In recent years, various
approaches have been developed in this field [15], including inte-
gration (e.g., through a pivot model and a set of model transforma-
tion), unification which relies on a general meta-model capable of
having all the required models as instances, and model federation
which promotes the reification of dependencies[9], enabling the in-
tegration and themanagement of diversemodels that participate in
a given federation.Themodel federation paradigm has two notable
features. First, the models federated can independently evolve in
their original technical spaces while remaining connected to the
overall federation through adapters. Second, model federations are
not merely static; on the contrary, the reified dependencies and
the federation itself may be equipped with (automatic) behaviors.
These behaviors may be used to give an intention to the federation
(e.g., maintaining synchronization, consistency or security).

Due to the aforementioned features of the model federation par-
adigm, we chose it as infrastructure for our approach to maintain

security consistency in multi-modeling scenarios. To achieve this
objective, it is also essential to integrate security requirements into
the design phase to identify and address security inconsistencies.
Therefore, our research also builds on foundational principles that
integrate the security by design paradigm.

2.2 Security-by-Design
Security by design paradigm is particularly relevant, as it empha-
sizes considering security requirements from the very beginning
of the design phase. Its main objective is to identify and address
potential security vulnerabilities and risks [18] of the system un-
der development as early as possible.

In a MDE scenario, several different techniques may be used for
the integration of the security-by-design paradigm. These include
the creation of new, security-specificmodels (e.g., attack and threat
models) and the extension of existing modeling languages to in-
clude security concerns. Examples of the latter are UMLsec [12]
and SecBPMN [22] where security is added to the widely used
UML and BPMN modeling languages. We use both UMLsec and
SecBPMN in the use cases described in Section 4. UMLSec is an
UMLprofile (and an accompanying analysis tool) containing security-
related stereotypes, tagged values, and application constraints. Sim-
ilarly, SecBPMN introduces security to BPMN through a number
of security annotations formalized with predicates.

2.3 Multi-model consistency
In the last two decades, many different approaches have been de-
veloped to deal with multi-modeling consistency [24, 25]. Due to
space limitations, we only mention a few of the existing contribu-
tions ,prioritizing those more similar to model federation.

In [14] the authors present an approach to detect and repair in-
consistencies across heterogeneous models. It is based on a set of
general relationship between models and a classification of pos-
sible violations to those relationships. It is based on the epsilon
ecosystem. Similarly, but with a stronger focus on the automa-
tion of the matching and change detection processes in [6] and
[7] the authors describe a multi-model evolution approach and
tool. In [16] the authors present an approach for managing design
model inconsistencies caused by changes. This approach analyzes
the changes made to models and automatically generates potential
repairs. These repairs are then analyzed to identify any newly in-
troduced inconsistencies. Their repairs can be integrated into our
process when security inconsistencies are detected. More in the
scope of model federation, in [13], the authors define a concept
meta-model to establish inter-model relations called Commonal-
ities. From a more theoretical point of view, in [23] the authors
present Comprehensive systems, a structure based on category the-
ory inwhichmulti-model systems can be described, demonstrating
that existing consistency verification and repair approaches may
be used over it. None of these contributions deals with security
directly, although they could arguably be adapted to deal with it,
e.g., by implementing our methodology. Besides, while they deal
with semantic heterogeneity, they do not directly cross technolog-
ical spaces. We choose Openflexo as our model federation infras-
tructure due to its flexibility and maturity and the availability of
ready-to-use technological adaptors.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Maintaining Security Consistency During System Development with Security-Oriented Model Federation ICSSP ’24, September 4–6, 2024, München, Germany

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Meta-Model

System Model Model Element

Security Rule Security Federation Correspondence

modeled by

∗

contains

∗

conforms to
1

contains

∗

11
federates

∗

features
∗

Figure 1: Methodology concepts meta-model

Focused on security and/or evolution, in [20] the author pro-
poses an approach on top of UMLsec to study the evolution of
system artifacts (conceptual level to program level) by using inter-
artifact tracing and graph transformation techniques to synchro-
nize models. Similarly, and also based on UMLSec, in [5, 19] the au-
thors present an approach to co-evolve systemmodelsw.r.t. changes
in security knowledge and requirements. Set of rules are used to
both, detect changes and semi-automatically restore system secu-
rity. Furthermore, in [21] the authors propose to bridge business
process security design and technical security measures by using a
set of transformation rules. We think that (parts of) their approach
may be integrated into ours to enhance it. As an example, their
rules may be used as behaviors in our links. In [8] the authors aim
to integrate security across the entire engineering process so that
security requirements can be traced to countermeasures (e.g., in de-
ployment). This approach and ours may be combined so that ours
gets more security information and artifacts and their gets sup-
port for evolution. With the aim to automate security processes
in software development, in [26] the authors developed an auto-
mated test mechanism for microservices which combines multiple
open-source scanning tools to identify security vulnerabilities and
suggest improvements. Finally, in [11] the authors propose an on-
tology based approach to automate the process of orchestrating
various security systems tools. While their approach, as ours, also
describes security relevant correspondences, they are used for a
different purpose and in a much later phase.

In the following section, we present our work, which is based
on the key concepts of model federation and security by design.

3 METHODOLOGY
This section describes our proposed methodology. It is based on
the model federation paradigm and its objective is to provide the
means to maintain the consistency of a multi-model system un-
der study w.r.t. its security. In a first phase, our methodology pre-
scribes the creation of a so-called security federation.This is achieved
by establishing security relevant correspondences and specifying/im-
plementing security rules exploiting them.Then, in a second phase,
our methodology describes how to use the security federation to
maintain security consistency when models change.

Our methodology places itself as a complement to the design
phase of software and system’s development process. It does so by

involving new actors, prescribing new tasks and producing/ con-
suming new artifacts. When using our methodology, the user must
first choose its development process and extends it with the new
tasks described in this section.

To motivate the purpose of our methodology, we present a sim-
ple example of a medical system. This system is designed using
two models: a data model and a BPMN model. The data model
captures the essential data, their structure, and the relationships,
while the BPMN model describes the process of obtaining a medi-
cal record. Some elements of the BPMNmodel correspond to some
elements in the data model. For example, there is a Class element
Prescription in the data model corresponding to a DataObject Pre-
scriptionObject in the BPMNmodel.The twomodels can evolve in-
dependently. For instance, a designer may add a Privacy security
annotation to the Prescription in the data model to specify that
it represents personal data. If the BPMN model does not change,
the privacy of the prescription may be violated since the corre-
sponding PrescriptionObject do not require any specific security
action. To maintain security consistency, the BPMN model should
also specify that the PrescriptionObject is private.

This section provides a detailed explanation of our methodology
for dealing with the aforementioned security consistency problem.
It starts by defining the concepts it uses. Then, we present the cre-
ation of security-oriented model federations. Lastly, we introduce
how these security federations are used. Section 4 illustrates this
methodology on use cases. The proposed methodology is not de-
pendent on specific models or model-federation approaches.

3.1 Methodology Meta-Model
The upper part of the conceptual model in Figure 1 describes the
usual elements of systems design. A System is modeled by a set
of Models conforming to variousMeta-Models. AModel contains
Model Elements. Reusing the example described above, Prescrip-
tion and PrescriptionObject are both modeling elements of respec-
tively the data model (conforming to the UML class diagram meta-
model) and the process model (conforming to BPMN).

The bottom part defines the concepts of our methodology. Its
central element is the Security Federation. It is a model federation,
as such, it is a model and federates a set of models. It contains a
set of Correspondences, a correspondence relating two model el-
ements (generally of two different models) and featuring a set of
Security Rules. Each a security rule specifies a security constraint
that must be maintained between the two elements of the corre-
spondence. In the above example, the security federation should
at least contain a correspondence between the Prescription class
and the PrescriptionObject data object. It should be equipped with
a security rule ensuring that whenever the Prescription class fea-
tures a Secrecy security annotation, the corresponding data object
(here PrescriptionObject) also features the Integrity or Confiden-
tiality security annotation.

3.2 Create a Security-Oriented Model
federation

The creation of a security federation follows the process described
in Figure 2. This process involves three actors. The designers are
in charge of developing the models of the system under study to
satisfy both its functional and non-functional requirements. The

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSSP ’24, September 4–6, 2024, München, Germany Chahrazed Boudjemila, Fabien Dagnat, and Salvador Martínez

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

D
es

ig
ne

rs

Create
Model

Models

Se
cu

rit
y

Fe
de

ra
tio

n
R

es
po

ns
ib

le

Create
Security

Federation

Establish
Correspondences

Matching
Rules

Security
FederationReceive Models

Implement
Security
Rules

Receive Security specification

Security
Rules

Specifications

Se
cu

rit
y

Ex
pe

rt Define
Security

Rules
Security
Rules

Specifications

Figure 2: Process for the creation of a security federation

security federation responsible is in charge of developing andman-
aging the security federation during the system development pro-
cess.This includes the selection of the federation tool, the establish-
ment of correspondences between elements of various models and
the implementation of the security rules using the chosen federa-
tion tool. Finally, the security expert specifies inter-model security
constraints. These three actors collaborate as described below.

First, the designers construct the various system models (task
CreateModels). Each designer describes his/her model using a lan-
guage according to his/her domain expertise.

Then the security federation responsible can federate thesemod-
els. Notice that this actor must be familiar with the model feder-
ation paradigm and the chosen tools for the federation. He/she
creates the security federation using the chosen tools and starts
the collection of the correspondences (task Establish correspon-
dences). Our methodology focuses on establishing security-related
correspondences, requiring a detailed examination of additional se-
curity information at themodel level. To elicit the correspondences
this actor may follow one of the numerous approaches that aim to
identify correspondences between heterogeneous models. For ex-
ample, one can follow [6, 23] and create amodel or ameta-model of
correspondences or [2, 21] and define a set of transformation rules
that explicitly identify the correspondences. In both approaches,
the correspondences are identified by using a set of relationships
between the elements of the models’ meta-model. These relation-
ships named matching rules in the rest of this article may guide
in establishing correspondences. An example, of such a matching
rule is that a Class in a data model which contains security an-
notation (expressed as a UML class diagram) may correspond to a
DataObject in the BPMN model. Applied to our medical system
example, this rule helps in identifying the correspondence between
the Prescription class and the PrescriptionObject dataObject. In
this article, we assume that the matching rules exist and provide a
set of correspondence candidates.

Once the responsible security federation finishes reifying all
correspondences identified into the security federation, the secu-
rity expert can start specifying the security rules. These security
rules are defined according to the security requirements of the sys-
tem and the security information added to the models (following

security by design). They embody the inter-model security con-
straints and must be executed to evaluate security. Our security
rules serve as indicators for users, notifying them of any security
violation caused by security inconsistencies within system models
when changes occur. They can be implemented with Java, OCL or
any other suitable language. Moreover, it is crucial to note that
while these rules are only evaluated in the context of this paper,
other uses (e.g., satisfiability analysis) may constrain or be con-
strained by the chosen language.

Each security rule is related to a correspondence and therefore
to at least a pair of meta-models.Thus, it is highly dependent on the
different chosen modeling languages and their security features.
As stated at the end of the previous subsection, the correspondence
between the Prescription class and the PrescriptionObject data ob-
ject features a security rule ensuring that they contain (semanti-
cally) matching annotations.

Finally, the security federation administrator implements the se-
curity rule specification received from the security expert (task Im-
plementing security rules). For this task, he/she must use a predi-
cate language supported by the federation tool and attach them to
the right correspondence.

3.3 Using the Security-Oriented Model
federation

We have presented above the process to build a security federa-
tion. The aim of such a federation is to assist in the identification
of security inconsistencies when any of the federated models in-
volved evolve. Figure 3 presents the process of using the security
federation to achieve this.

As already mentioned, models change over time to satisfy tech-
nical or business needs such as requirements changes, the introduc-
tion of new technologies, deployment changes, discovering new
vulnerabilities, new regulations, etc. We consider that the process
of using the security federation starts when a designer changes
one of the system models. Such evolution may involve adding, re-
moving, or modifying elements of a model. When a change occurs,
the security federation responsible analyzes it. The evolution may

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Maintaining Security Consistency During System Development with Security-Oriented Model Federation ICSSP ’24, September 4–6, 2024, München, Germany

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

D
es

ig
ne

rs

Create
Model

Models

Receive Security Rules violated
Se

cu
rit

y
Fe

de
ra

tio
n

Analyse
Changes

Receive Models

Update
Security

Federation

Select impacted

Correspondences

Evaluate
Security Rules

Correspondences
Changes need to

update security model
federation?

No

Yes

Figure 3: Process for using a security federation

need an update of the security federation, for example, a new corre-
spondence must be defined. After a possible extension of the secu-
rity federation, the security rules of the correspondences impacted
by the change must be evaluated. This evaluation can be automat-
ically initiated. Each re-evaluated security rules that is violated is
sent to the designers together with the impacted elements. In the
example cited in the beginning, we may add a security rule to en-
sure that the related elements incorporate semantically the same
security annotations. When an annotation is added to Prescription,
an evaluation of the security rule added to the correspondence be-
tween Prescription and the PrescriptionObject data object occurs.

4 EVALUATION
We dedicate this section to the evaluation of ourmethodology.This
evaluation consists in its application to different use cases. For
brevity, we detail here two of them, namely, iTrust and Holiday
Booking. The rest are available on the website of the project1. Our
methodology is implemented as a prototype on top of Openflexo2,
a mature state-of-the-art model federation framework. In order to
ease the discussion in the following, we briefly introduce the main
concepts behind Openflexo. The use cases are detailed in Sections
4.1 and 4.2 followed by a discussion in Section 4.3.

Openflexo provides us with the infrastructure required to con-
nect multiple models while keeping each model in its original tech-
nological space. This infrastructure includes a Federation Model
Language (FML) engine and an integrated model design environ-
ment. The main construct in Openflexo is the Virtual Model which
corresponds to a model in more traditional modeling frameworks.
Virtual models contain FlexoConcept elements (which can be seen
as classes), which in turn carry FlexoProperty elements (i.e., struc-
tural features). Flexo properties may use a ModelSlot to access in-
formation in external models (e.g., the federated models) through
so-called technology adapters. (Openflexo provides off-the-shelf tech-
nology adapters for BPMN, Excel, XML, EMF and OWL among oth-
ers.) Figure 4 contains a screen capture of the FML editor illustrat-
ing the various elements explained above.
1https://github.com/labsticc-p4s/SecurityFederationModelsValidation
2https://openflexo.org

4.1 iTrust
The iTrust is an open-sourcemedical system [17] developed in 2005
at the University of North Carolina with the aim of providing soft-
ware engineering students with a complex real-world system for

experimentation. In this sense, it has already been used in many
different research works as a realistic use case. Regarding security,
iTrust has requirements related to privacy, confidentiality, and in-
tegrity.

In the following we illustrate the application of our methodol-
ogy to (parts of) iTrust.We rely on availablemodels in literature [5]
and on the iTrust public documentation. Among all the possible as-
pects and models of the systems, our use case relies on four models
presented in Figure 5: 1) a BMPN model containing descriptions
of data access and manipulation processes; 2) a UML class model
defining the static structure of iTrust; 3) a UML deployment model,
describing how iTrust is installed in a given environment, and 4) an
access control model which describes roles and permissions on the
system. Security concerns are represented in the BMPN and UML
models by reusing the annotations of SecBPMN and UMLsec.

Once the models are created and selected to be part of the se-
curity federation, the next step of our methodology is the creation
of correspondences between elements in different models. As we
have mentioned, security-relevant correspondences are identified
through the analysis of the security information integrated within
elements ofmodels (e.g., security annotations) and the use ofmatch-
ing rules. Such a matching rule specifies elements in different mod-
els that may be in correspondence. For example, there is a match-
ing rule that specifies that a Class in a data model of a system (ex-
pressed as a UML class diagram) may correspond to a DataObject
in a BPMN model of the same system. Indeed, as they both are
models of the same system, their elements may represent the same
”thing”. This matching rule may be applied to a model UMLsec and
a model secBPMN. If a Class of the data model (in UMLsec) is an-
notated Critical and a DataObject (in secBPMN) is annotated
by ConfidentialityDO or PrivacyDo, we can identify a security-
relevant correspondence between the DataObject and the Class.

Referring to the commonalities identified between BPMN and
data models as discussed in [23] and the set of transformation rules
defined in [2, 21]. We show in the following, some of the matching
rules that are relevant to the context of the iTrust case study.

• MatchingRule-1: A class in the UML Class model may cor-
respond to a DataObject in the BPMN model.

• MatchingRule-2: A User in the UML Class model may cor-
respond to a Role in the Access Control model.

• MatchingRule-3: A Role in the Access Control model may
correspond to a Pool in the BPMN model.

5

https://github.com/labsticc-p4s/SecurityFederationModelsValidation
https://openflexo.org

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSSP ’24, September 4–6, 2024, München, Germany Chahrazed Boudjemila, Fabien Dagnat, and Salvador Martínez

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Virtual Model being edited

Virtual Model FML code

Outline

Behavior

FlexoConcept

ModelSlot

Figure 4: Openflexo Framework

Prescription

+medication: Medication[]

User

+ firstName: String
+ lastName : String
+ address :String
+ password :String

PatientDoctor

OfficeVisit

+ date: Date

<<Critical>><<Critical>>

<<Critical>>

2 4

*

iT
ru

st
S

End

D
oc

to
r

Data Data

<<NonRepudMF>>
<<IntegrityMF>>

Check
Login

Check
Info

PrescriptionReceive
Prescription

1

Request
LogIn

Request
Prescription

View
Prescription

<<artifact>>

iTrust

<<artifact>>

Doctor

<<artifact>>

DataBase

iTrustServer WebServer

<<artifact>>

AuthenSer

<<deploy>> <<deploy>>

<<call,integrity,
secrecy>>

<<call,integrity,
secrecy>>

Mobile
Device

<<Internet>>

<<deploy>>

<<deploy>>

<<artifact>>

Doctor

<<deploy>>

<<call,integrity,
secrecy>>3

<<IntegrityDo>>

Figure 5: Excerpt of iTrust Medical System models

• MatchingRule-4: A permission in the Access Control model
may correspond to an operation in the UML Class model.

• MatchingRule-5: The flow between two Pools in the BPMN
model may correspond to the Association between Arti-
facts in the Deployment model.

• MatchingRule-6: A communication Link in the BPMNmodel
may correspond to a communication Path in the Deploy-
ment model.

Figure 6 shows the result of the previously described task of find-
ing the correspondences on the case study. Concretely, it shows
three correspondences between elements of the BPMNandDeploy-
ment models. The two pools (Doctor and iTrust) are linked to their
corresponding artifacts in the deploymentmodel.The exchange be-
tween the doctor and the iTrust software of prescription is linked
to the internet link between the server and the mobile device. In-
deed, the Doctor artifact may be deployed on the mobile device
while iTrust is deployed on the server.

To effectively create the security federation in the Openflexo
framework, we proceed as follows. First, we create a virtual model

called ITrustSecurityFederation to serve as the main interaction
model, that is, the model that captures the dependencies between
model elements of the different federated models. Practically, this
is achieved with the creation of Flexo concepts and the correspond-
ing Flexo properties usingModel slots. For example, to link the pool
element of the BPMNmodelwith the artifact element of the deploy-
ment model, we have created a concept called PoolArtifactCorre-
spondencewith twomodel properties using model slots relying on
the corresponding technology adapters (BPMN and UML).

For the correspondences to be useful for monitoring security
consistency, we need to add security rules encoding this security
consistency requirementwithin the identified correspondences. For
the iTrust system, we have defined 17 security rules based on its se-
curity requirements and using the four available models. They aim
to ensure consistency of various security aspects concerning for
example integrity, authorization, and non-repudiation throughout
the iTrust system models. We did not conduct a detailed analysis
to confirm the completeness of our security rules. Below there are

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Maintaining Security Consistency During System Development with Security-Oriented Model Federation ICSSP ’24, September 4–6, 2024, München, Germany

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

iT
ru

st

Check
Login

Data

Check
Info

Data

End<<NonRepudMF>>
<<IntegrityMF>>

D
oc

to
r

Request
LogIn

Request
Prescription

View
Prescription

PrescriptionReceive
Prescription

<<Integrity>>

C
or
re
sp

on
de

nc
e1

C
or
re
sp

on
de

nc
e2

Correspondence3

<<artifact>>

iTrust

<<artifact>>

Doctor

<<artifact>>

DataBase

iTrustServer WebServer

<<artifact>>

AuthenSer

<<deploy>> <<deploy>>

<<call,integrity,
secrecy>>

<<call,integrity,
secrecy>>

MobileDevice
<<Internet>>

<<deploy>>

<<deploy>>

<<artifact>>

Doctor

<<deploy>>

<<call,integrity,
secrecy>>

Figure 6: Excerpt of iTrust Medical System and the correspondences between the Deployment model and the BPMN model

some examples of security rules. A detailed description and im-
plementation of these security rules can be found on the project’s
website.

Openflexo enables us to create behaviors that are used to ex-
press security rules using the FML language. FML is a domain-
specific object-oriented language with syntax close to Java and
an equivalent expressivity. In our interaction model, each concept
that represents a correspondence between models contains a set of
security rules. These rules are evaluated when the model elements
linked by a concept change. We detail below three of such security
rules:

• SecurityRule-1: when two pools in the BPMN model (that
correspond to artifacts in the deployment model), commu-
nicate security-critical data and are deployed in different
devices, the communication between the two devices must
occur through an encrypted channel. This rule is added
to the concept PoolArtifactCorrespondence. Note that this
rule uses SecurityRule-2.

• SecurityRule-2: if a MessageFlow in the BPMN model has
a security annotation, the corresponding Communication-
Path in the deployment model must also have a matching
(i.e., semantically equivalent) security annotation and vice
versa. This rule is added to the conceptMessageFlowCom-
municationCorrespondence.

• SecurityRule-3: each user in the defined data model must
have an associated role in the Access Control model. This
rule is added to the concept UserRoleCorrespondence.

Let’s start by the easier Listing 1. It contains a part of the imple-
mentation of the concept MessageFlowCommunicationPathCor-
respondence and its associated behavior iTrustSecurityRule2. It
implements SecurityRule-2 by reporting a security rule violation
if verifySecureCommunication it is not verified. This method en-
sures that both the MessageFlow and CommunicationPath pos-
sess appropriate security annotations (here encrypted for Com-
municationPath and non-repudiation for MessageFlow). This ver-
ification ensures compliance with integrity and non-repudiation
aspects when transmitting personal data.

public concept MessageFlowCommunicationPathCorrespondence {

BPMNMessageFlow messageFlow with EMFObjectRole(container=bpmnModelAccess,type=

BPMN_MESSAGE_FLOW);

DeploymentCommunicationPath communicationPath with EMFObjectRole(container=

deploymentModelAccess,type=DEPLOYMENT_COMMUNICATION_PATH);

...

public void iTrustSecurityRule2() {

boolean checkAnnotation = this.verifySecureCommunication();

if (!checkAnnotation)

log "[iTrust - SecurityRule 2] -> Security rule violated";

...

}

private boolean verifySecureCommunication() {

boolean check = false;

// Verify if the MessageFlow has a security annotations

for (BPMNAssociation asso: select BPMNAssociation from bpmnModelAccess) {

if (asso.targetRef == messageFlow)) {

for (BPMNTextAnnotation annot: select BPMNTextAnnotation from

bpmnModelAccess) {

if (asso.sourceRef == annot) {

// Verify if the CommunicationPath has a encrypted security annotation

if (communicationPath.encrypted != null && (annot.text.contains("

NonRepudMF") || annot.text.contains("ConfidentialityMF") || annot.text.

contains("IntegrityMF")))

check = true;

}

...

return check;

}

}

Listing 1: iTrust - SecurityRule-2

In Listing 2, we present an excerpt of the implementation of
the SecurityRule-1 by the behavior securityRule1 of the concept
PoolArtifactCorrespondence. First, the rule verifies whether there
exists a DataObject containing a confidentiality, integrity or pri-
vacy annotation between the flow elements belonging to the Pool.
If such a DataObject exists, the behavior then proceeds to call
verifyExistenceConsistentInstance to examine whether the two
artifacts corresponding to the two Pools are deployed on different
devices, and, if so, it verifies whether the communication between
them occurs through an encrypted channel. To accomplish this, it
calls other behaviors:

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSSP ’24, September 4–6, 2024, München, Germany Chahrazed Boudjemila, Fabien Dagnat, and Salvador Martínez

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

• verifyExistenceArtifactAssociated returns the list of arti-
facts associated with the artifact specified as parameter in
the deployment model.

• verifyExistenceCorresp returns a list of artifacts that are a
part of the instance of the ITrustSecurityFederation model.

• getPool selects the corresponding pool in the BPMNmodel
for each selected associated artifact.

• getDeployementDevice returns the devices in the Deploy-
ment model where the artifact is deployed.

• getCoomunicationPath returns the communicationPath link-
ing the device specified in the parameters with other de-
vices.

• compareDevices compares the devices provided as parame-
ters.

• getSharedMessageFlows returns a list of MessageFlows ex-
changed between the two selected pools in the BPMNmodel.

• verifySecureCommunication evaluates the SecurityRule-2. It
checks whether any of the sharedMessageFlows obtained
through getSharedMessageFlows contain instances of
MessageFlowCommuncationPathCorrespondence.

public concept PoolArtifactCorrespondence {

BPMNParticipant pool ...;

DeploymentArtifact artifact ...;

...

public void securityRule1() {

boolean checkConfidentialData = false;

// Get the MessageFlow for the Pool in the BPMN model

flowElts = container.getFlowElementsOfPool(pool);

// Verify if exists a confidential dataObjects among the flow elements

checkConfidentialData = container.verifyDataObjectAnnotation(flowElts);

// This security rule request to verify the securityRule2

if (checkConfidentialData == true && !this.verifyExistenceConsistentInstance

())

log "[iTrust - SecurityRule 1] -> Security rule violated" ;

...

}

public boolean verifyExistenceConsistentInstance() {

// Get associated artifacts

List<DeploymentArtifact> assoArtifacts = container.

verifyExistenceArtifactAssociated(artifact);

List<DeploymentArtifact> assoArtifactsFilter = container.

verifyExistenceCorresp(assoArtifacts);

// Get Devices where the Artifact is deployed

List<EMFObjectIndividual> devices = container.getDeploymentArtifact(artifact

);

// Get the communicationPath of the devices

List<DeploymentCommunicationPath> commPath = container.getCommunicationPath(

devices);

// Get MessageFlow outgoing from Pool to the associated Pool

for (DeploymentArtifact assoArtifactFilt : assoArtifactsFilter)

BPMNParticipant associatedPool = container.getPool(assoArtifactFilt);

List<EMFObjectIndividual> devicesArtifactsFilter = container.

getDeploymentArtifact(assoArtifactFilt);

// Verify if the devices are deployed in the same node

if (!container.compareDevices(devices,devicesArtifactsFilter))

// Get the MessageFlow from the pool

List<BPMNMessageFlow> messageFlowsPool = container.getMessageFlows(pool)

;

List<BPMNMessageFlow> messageFlowsAssociatedPool = container.

getMessageFlows(associatedPool);

List<BPMNMessageFlow> sharedMessageFlows = container.

getSharedMessageFlows(messageFlowsPool,messageFlowsAssociatedPool);

for (BPMNMessageFlow dataflow : sharedMessageFlows)

// VerifySecureCommunication --> SecurityRule2

for (MessageFlowCommunicationPathCorrespondence item: container.

listInstancesMessageComm) {

if (dataflow == item.messageFlow && commPath.contains(item.

communicationPath))

if (!item.verifySecureCommunication())

return false;

return true;

}

}

Listing 2: iTrust - SecurityRule-1

4.1.1 Evolution scenarios: Once security rules are attached to the
correspondences, our security federation is ready to be used. This
means that we can modify any of the federated models and get
an automatic evaluation of its consistency regarding security, as
shown in Figure 3 of Section 3. In Openflexo, a behavior defined on
the federation itself is in charge of receiving and analyzing model
changes to trigger the corresponding security rules. We illustrate
this usage with two evolution scenarios:

(1) Evolution scenario 1: Moving an artifact from a trusted de-
vice to a non-trusted one. The change occurs in the Deploy-
ment model and consists of redeploying the Doctor arti-
fact in the MobileDevice. This change triggers a change
analysis process that effectively determines which element
has changed and identifies the impacted correspondences.
In the iTrustSecurityFederation, this process identifies the
PoolArtifactCorrespondence instances to which the arti-
fact Doctor is connected. Then, the behaviors attached to
this concept and representing security consistency rules
are executed. Concretely, the behavior corresponding to
SecurityRule-1 is launched. Additionally, the behavior re-
quests to evaluate SecurityRule-2 because correspondence1
depends on correspondence3.
The result of the analysis of the changes indicates that both
security rules are violated. Indeed, the BPMNmodel shows
that the pool Doctor communicates with the pool iTrust to
recover a prescription which is annotated with Integrity.
However, the artifacts Doctor and iTrust may be deployed
in different devices, and the communication path between
these two devices is annotated Internet, which may violate
the integrity of the prescription.

(2) Evolution scenario 2 : Adding a new user. In this scenario, a
new user is added to the data model without being associ-
ated with a role.
As in the previous evolution scenario, the first step is a
change analysis process which determines that in our se-
curity federation we need to deal with the concept User-
RoleCorrespondence.This concept contains a behavior that
evaluates the security consistency rule SecurityRule-3 (note
that this rule considers inheritance for the verification of
assigned roles). If the added user does not inherit from an
existing one, a security consistency error is triggered, as
no role is assigned.

4.2 Holiday Booking
Holiday booking is a reservation system for travel agencies to book
flights and hotels for its clients. This use case is taken from [2]
in which the authors follow an MDA (Model-Driven Architecture)
forward engineering approach for the integration of non-functional
requirements (including security) in SOA (Service Oriented Archi-
tecture) and MDE. Concretely, the use case is made up of three
models, a BPMN model representing travel agency processes as

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Maintaining Security Consistency During System Development with Security-Oriented Model Federation ICSSP ’24, September 4–6, 2024, München, Germany

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

a CIM (Computation Independent Model), a SOAML (SOA Model-
ing Language) model as a PIM (Platform Independent Model) and
a WDSL model as a PSM (Platform Specific Model). All the models
carry security information.

In this use case the SOAML model is derived from the BPMN
model, and the WSDL model from the SOAML model by using
model transformations. We reuse these model transformations to
extract thematching rules required by ourmethodology. Concretely,
we have used the following matching rules:

• MatchingRule-1APool in the BPMNmodelmay correspond
to a Participant in the SOAML model.

• MatchingRule-2 A DataObject in the BPMN model may
correspond to a Message in the WSDL model.

• MatchingRule-3 An Interface in SOAML may correspond
to an Interface in the WSDL model.

• MatchingRule-4 An Operation in SOAML may correspond
to an Operation in the WSDL model.

Figure 7 shows excerpts of the Holiday Booking use case mod-
els and the correspondences established using the matching rules
aforementioned.

As in the previously discussed use case, once the models and
the matching rules are available the security federation is created.
First, we create a Virtual Model called HolidayBookingModelFed-
eration. Next, we define a set of FlexoConcepts to represent the in-
ter model correspondences (e.g., concept DataObjectMessageCor-
respondence represents the correspondence between a DataOb-
ject element in the BPMN model and a Message element in the
WSDLmodel) together with the corresponding FlexoProperties us-
ing model slots defined to connect with each external model. Ulti-
mately, we define eight security rules tailored for Holiday Book-
ing, aimed to assess the integrity, access control, non-repudiation,
and privacy aspects. In contrast to the iTrust case study, we define
fewer security rules. This variation can be attributed to several fac-
tors, including the security information available in the models,
the number and the kinds of models involved. Among the defined
security rules, we described the security rules below and attached
them to the adequate concept.

• SecurityRule-1: If a message in an operation in the WSDL
model holds a correspondence with a DataObject in the
BMPN model tagged with the integrity annotation, then,
the binding parameter of theWSDL operation must be one
with an encryption mechanism.

• SecurityRule-2: Each Participant element in the SOAML
model associated with a Pool in the BPMN model must
have compatible permissions.

• SecurityRule-3: EveryOperation in the SOAMLmodelmust
have a corresponding Operation in the WSDL model.

The provided FML code excerpt forHolidayBookingSecurityFed-
eration, given in Listing 3, shows a part of the implementation con-
cerning the concept of DataObjectMessageCorrespondence and the
behavior checkSecurityDataTransmissionwhich attempts to verify
the two parts of the SecurityRule-1 by invoking two distinct meth-
ods: 1) checkDataObjectSecurityAnnotations is called to determine
whether the DataObject in the BPMNmodel has an Integrity anno-
tation. 2) checkFaultBinding invoked to assesswhether the Binding
parameters of the WSDL operation, associated with the message

given as parameter, incorporate a secure mechanism.This security
rule verifies the consistency of the security concern, guaranteeing
that confidentiality and integrity aspects are adequately addressed
and maintained in both the BPMN and WSDL models.
public concept DataObjectMessageCorrespondence {

BPMNDataObject dataObject with EMFObjectRole(container=bpmnModelAccess,type=

BPMN_DATAOBJECT);

WSDLElement message with EMFObjectRole(container= wsdlModelAcess, type =

WSDL_ELEMENT);

...

public void checkSecurityDataTransmission() {

// verify the DataObject annotations (Non-repudiation, integrity)

boolean checkAnnotation = container.checkDataObjectSecurityAnnotations(

dataObject);

// verify the Binding protocol of the operation holding message

boolean checkBinding = container.checkFaultBinding(message);

if (checkAnnotation && !checkBinding)

log "[HolidayBooking - SecurityRule 1] -> Security rule violated";

...

}

}

Listing 3: HolidayBooking - SecurityRule-1

4.2.1 Evolution scenario: As with the previous use case, we illus-
trate the usage of the Holiday Booking Security Federation with
an evolution scenario: Adding a new operation, RequestBookTicket,
in the WSDL model. The RequestBookTicket operation has two pa-
rameters: ClientInfo which represents an input message and Bind-
ing Protocol an HTTP Binding protocol. The message parameter
corresponds to the data object ClientInfo, considered private data
in the BPMN model.

The analysis of thismodification identifies that theDataObjectMes-
sageCorrespondence is impacted.This identification is achieved by
verifying the type of the changed element. In this evolution sce-
nario, the parameter of the Operation corresponds to a Message
type. Then, the verification of the instances of this correspondence
determines which of the two cases described below is executed:
if the message ClientInfo is part of the DataObjectMessageCorre-
spondence instance, Case 2 is executed, otherwise, Case 1 is exe-
cuted.

• Case 1: this modification triggers first, the creation of a cor-
respondence as a consequence of the creation of the mes-
sage parameter (this is a semi-automatic step, as the user
must validate that the correspondence is correct). Then the
security rule attached to the conceptDataObjectMessageCor-
respondence is also activated. If the operation containing
the message parameter declares as second parameter an
unsafe HTTP Binding protocol, a security inconsistency is
detected and reported to the user.

• Case 2: the correspondence is established, the modification
requires only the analysis of the security rule attached to
the Concept DataObjectMessageCorrespondence.

Additionally, the change analysis process identifies that theOp-
eration is a property of the conceptOperationsInterfaceCorrespon-
dence in the HolidayBookingSecurityFederation and the behavior
attached to this concept is activated. Concretely, the SecurityRule-3
that verifies that each operation in the SOAMLmodel corresponds
to an operation in the WSDL model. The result of the analysis re-
veals a violation of the security rule due to the addition of the Re-
questBookTicket operation in the WSDL model.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSSP ’24, September 4–6, 2024, München, Germany Chahrazed Boudjemila, Fabien Dagnat, and Salvador Martínez

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Ag
en

cy

Get
Request

Search
Booking Proposal

<<Integrity,
NonRepudiation>>

Text

C
lie

nt Request
Booking

Accept
Poposal

Receive
Proposal

End

Get
Request

<<Privacy, AccessControl>>
ClientService

BookingRequest(in: BookingInfo)
Confirmation()
Pay()

<<Participant>>
Client

ClientInterface

<wsdl:portType >
 <wsdl:operation name="RequestInfo">
 <wsdl:input message="BookingInfo"/>

 <wsdl:fault name="ProtocolSOAP"/>

 </wsdl:operation>
</wsdl:portType >

Correspondence2

Correspondence1

Correspondence3

<<
Pr
iv
ac
y

A
cc
es
sC

on
tr
ol
>>

Figure 7: Excerpt of Holiday Booking models and the correspondences

4.3 Discussion
Preliminary results indicate that our methodology provides effec-
tive support to the consistency management of multi-model sys-
tems in different model evolution scenarios. However, the evalua-
tion of our methodology is currently based on a limited number of
case studies.

Compared to more classical approaches such as model integra-
tion, model unification andMDA forward engineering ours is more
flexible and allows the evolution of any of the involved models
in any direction while they remain in their technological spaces.
As an example, MDA forward engineering (the approach followed
by the original Holiday Booking use case) supports evolution in
one direction by relaunched transformations and code generators.
However, evolution in the reverse direction is not supported. Sim-
ilarly, we may use UML enriched with security information and
OCL (to encode security rules) to develop secured systems with
support of evolution, but this imposes the use of UML even when
it may not be the most appropriate language to describe certain
aspects of the system. Future work will involve a systematic eval-
uation by referring to the descriptions provided in [27] using a
broader range of case studies to confirm the effectiveness of our
methodology in diverse and complex evolution scenarios.

The degree of usefulness of our methodology depends on the fol-
lowing factors: 1) enough security information should be available
in the models participating in the federation; 2) security and mod-
eling expertise must build a good security federation. This includes
the identification of relevant correspondences and the encoding of
requirements for security consistency management by using the
model’s security information in security rules. We think however
that building security federation reifies implicit security knowledge
and enables its reuse so that building security federations gets eased
as the approach is adopted.

Our methodology does not prescribe a level of granularity for
correspondences or security rules. In this sense, two styles (or a
mix of the two) are possible when building a security federation: a
more local approach uses fine-grained correspondences and more
simple security rules that only use the information of the elements
directly linked by a correspondence. A less local approach allows
security rules to use more information. Global rules may be richer,
but local rules support finer diagnostics. Determining which of the
styles is more effective requires further research.

From the security federation usage perspective, when a model
evolves and impacts security consistency, our methodology gives
feedback. This feedback consists of the changed element(s) that
triggered the re-evaluation of the security rules that do not hold
anymore together with the rules themselves.The case studies done
convinced us that this feedback is sufficient for restoring consis-
tency (e.g., by reverting a change) in many evolution scenarios.

5 CONCLUSIONS & FUTUREWORK
In this paper, we have presented a novel approach to tackle the
problem of security consistency in multi-modeling. We have done
so by leveraging model federation. Concretely, we have presented
a methodology to build what we call security federations in which
the security dependencies betweenmodels are reified and equipped
with security rules. We have applied this methodology to several
use cases, demonstrating its feasibility and its ability to detect in-
consistencies due to different evolution scenarios.

As a future work we intend to explore the following research di-
rections: first, we intend to further evaluate the usability aspects of
our methodology and tooling and explore the potential for automa-
tion of some of our steps (e.g., the initial matching of security con-
cepts); second, we plan to extend our methodology to other phases
of the development process (e.g., by including other artifacts such
as configuration scripts of deployed systems); finally, we envisage
the integration of (semi) automatic model repair approaches as a
complement to our methodology.

Acknowledgements:
Theauthors acknowledge theANR (FrenchNational ResearchAgency)
for its financial support of the MODES project n° ANR-23-CE25-
0011-01, This work is also partially funded by Région Bretagne.

REFERENCES
[1] Artur Boronat, Alexander Knapp, José Meseguer, and Martin Wirsing. 2009.

What is a multi-modeling language?. In Recent Trends in Algebraic Development
Techniques: 19th International Workshop, WADT 2008, Pisa, Italy, June 13-16, 2008,
Revised Selected Papers 19. Springer, 71–87.

[2] Abdelhadi Bouain, Abdelaziz El Fazziki, and Mohammed Sadgal. 2014. Inte-
gration of non-functional requirements in a service-oriented and model-driven
approach. In 2014 IEEE Eighth International Conference on Research Challenges
in Information Science (RCIS). IEEE, 1–8.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Maintaining Security Consistency During System Development with Security-Oriented Model Federation ICSSP ’24, September 4–6, 2024, München, Germany

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[3] Chahrazed Boudjemila, Fabien Dagnat, and Salvador Martínez. 2023. Towards
evolving securedmulti-model systemswithmodel federation. In 2023 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). IEEE, 939–943.

[4] Jens Bürger, Stefan Gärtner, Thomas Ruhroth, Johannes Zweihoff, Jan Jürjens,
and Kurt Schneider. 2015. Restoring security of long-living systems by co-
evolution. In COMPSAC 2015, Vol. 2. IEEE, 153–158.

[5] Jens Bürger, Daniel Strüber, Stefan Gärtner, Thomas Ruhroth, Jan Jürjens, and
Kurt Schneider. 2018. A framework for semi-automated co-evolution of security
knowledge and systemmodels. Journal of Systems and Software 139 (2018), 142–
160.

[6] Mahmoud El Hamlaoui, Saloua Bennani, Mahmoud Nassar, Sophie Ebersold,
and Bernard Coulette. 2018. A MDE Approach for Heterogeneous Models Con-
sistency.. In ENASE. 180–191.

[7] Mahmoud El Hamlaoui, Sophie Ebersold, Saloua Bennani, Adil Anwar, Taoufiq
Dkaki, Mahmoud Nassar, and Bernard Coulette. 2021. A Model-Driven Ap-
proach to align Heterogeneous Models of a Complex System. The Journal of
Object Technology 20, 2 (2021), 1–24.

[8] Johannes Geismann, Christopher Gerking, and Eric Bodden. 2018. Towards en-
suring security by design in cyber-physical systems engineering processes. In
Proceedings of the 2018 international conference on software and system process.
123–127.

[9] Fahad R Golra, Antoine Beugnard, Fabien Dagnat, Sylvain Guerin, and
Christophe Guychard. 2016. Addressing modularity for heterogeneous multi-
model systems using model federation. In Companion Proceedings of the 15th
International Conference on Modularity. 206–211.

[10] Torben Mejlvang Hangensen and Bent Bruun Kristensen. 1992. Consistency
in software system development: Framework, model, techniques & tools. ACM
SIGSOFT Software Engineering Notes 17, 5 (1992), 58–67.

[11] Chadni Islam, Muhammad Ali Babar, and Surya Nepal. 2019. An ontology-
driven approach to automating the process of integrating security software sys-
tems. In 2019 IEEE/ACM International Conference on Software and System Pro-
cesses (ICSSP). IEEE, 54–63.

[12] Jan Jürjens. 2002. UMLsec: Extending UML for secure systems development. In
International Conference on The Unified Modeling Language. Springer, 412–425.

[13] Heiko Klare and JoshuaGleitze. 2019. Commonalities for preserving consistency
of multiple models. In 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, 371–
378.

[14] Dimitrios Kolovos, Richard Paige, and Fiona Polack. 2008. Detecting and re-
pairing inconsistencies across heterogeneous models. In 2008 1st International
Conference on Software Testing, Verification, and Validation. IEEE, 356–364.

[15] Kurt Kosanke. 2006. ISO Standards for Interoperability: a comparison. In Inter-
operability of enterprise software and applications. Springer, 55–64.

[16] Luciano Marchezan, Wesley KG Assuncao, Roland Kretschmer, and Alexander
Egyed. 2022. Change-oriented repair propagation. In Proceedings of the Interna-
tional Conference on Software and System Processes and International Conference
on Global Software Engineering. 82–92.

[17] Andrew Meneely, Ben Smith, and Laurie Williams. 2012. Appendix B: iTrust
electronic health care system case study. Software and Systems Traceability
(2012), 425.

[18] Saraju P Mohanty. 2020. Security and Privacy by Design is Key in the Internet
of Everything (IoE) Era. IEEE Consumer Electron. Mag. 9, 2 (2020), 4–5.

[19] Sven Peldszus, Jens Bürger, Timo Kehrer, and Jan Jürjens. 2021. Ontology-
driven evolution of software security. Data & Knowledge Engineering 134 (2021),
101907.

[20] Sven Matthias Peldszus. 2022. Security Compliance in Model-driven Development
of Software Systems in Presence of Long-Term Evolution and Variants. Springer
Nature.

[21] Qusai Ramadan, Mattia Salnitriy, Daniel Strüber, Jan Jürjens, and Paolo Giorgini.
2017. From secure business process modeling to design-level security verifica-
tion. In 2017 ACM/IEEE 20th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS). IEEE, 123–133.

[22] Mattia Salnitri, Fabiano Dalpiaz, and Paolo Giorgini. 2017. Designing secure
business processes with SecBPMN. Software & Systems Modeling 16 (2017), 737–
757.

[23] Patrick Stünkel, Harald König, Yngve Lamo, and Adrian Rutle. 2021. Compre-
hensive systems: a formal foundation for multi-model consistencymanagement.
Formal Aspects of Computing 33, 6 (2021), 1067–1114.

[24] Patrick Stünkel, Harald König, Adrian Rutle, and Yngve Lamo. 2021. Multi-
model evolution through model repair. (2021).

[25] Weslley Torres, Mark GJ Van den Brand, and Alexander Serebrenik. 2020. A
systematic literature review of cross-domain model consistency checking by
model management tools. Software and Systems Modeling (2020), 1–20.

[26] Burak Ünver and Ricardo Britto. 2023. Automatic Detection of Security Deficien-
cies and Refactoring Advises for Microservices. In 2023 IEEE/ACM International
Conference on Software and System Processes (ICSSP). IEEE, 25–34.

[27] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,
and Anders Wesslén. 2012. Experimentation in software engineering. Springer
Science & Business Media.

11

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Model Federation
	2.2 Security-by-Design
	2.3 Multi-model consistency

	3 Methodology
	3.1 Methodology Meta-Model
	3.2 Create a Security-Oriented Model federation
	3.3 Using the Security-Oriented Model federation

	4 Evaluation
	4.1 iTrust
	4.2 Holiday Booking
	4.3 Discussion

	5 Conclusions & Future Work
	References

