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Abstract

Consistency models are promising generative models as they distill the multi-step
sampling of score-based diffusion in a single forward pass of a neural network.
Without access to sampling trajectories of a pre-trained diffusion model, consistency
training relies on proxy trajectories built on an independent coupling between the
noise and data distributions. Refining this coupling is a key area of improvement
to make it more adapted to the task and reduce the resulting randomness in the
training process. In this work, we introduce a novel coupling associating the input
noisy data with their generated output from the consistency model itself, as a
proxy to the inaccessible diffusion flow output. Our affordable approach exploits
the inherent capacity of consistency models to compute the transport map in a
single step. We provide intuition and empirical evidence of the relevance of our
generator-induced coupling (GC), which brings consistency training closer to score
distillation. Consequently, our method not only accelerates consistency training
convergence by significant amounts but also enhances the resulting performance.
The code is available at: https://github.com/thibautissenhuth/consistency GC.

1 Introduction

Diffusion and score-based models (Ho et al., 2020; Song et al., 2021; Karras et al., 2022) have
emerged as state-of-the-art generative models for image generation. Since they are costly to use at
inference time, as they require several neural function evaluations, many distillation techniques have
been explored (Salimans and Ho, 2022; Meng et al., 2023; Sauer et al., 2023). A most remarkable
approach is the one coined as consistency models (Song et al., 2023; Song and Dhariwal, 2024).
Consistency models lead to high-quality one-step generators, that can be trained either by distillation
of a score-based model, or as standalone generative models. In this paper, we study consistency
models trained without a pre-trained score model.

At the core of the training of consistency models, an independent coupling (IC) between data and
noise distribution is used. Indeed, when training a consistency model without a pre-trained score
model, any point from the data distribution is matched to any point from the noise distribution in
order to construct trajectories. However, Pooladian et al. (2023) identified those as a potential issue
in flow matching models (Lipman et al., 2023). Notably, the authors demonstrated that IC leads to
high variance of the gradient estimator of such generative models. They resort to batch coupling with
optimal transport (OT) tools and prove that it improves performance. Dou et al. (2024) show that
this approach can successfully be adopted in consistency models, and we actually confirm this in
our experiments. However, discrete OT has its flaws. Most notably, it converges slowly to the true
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Figure 1: We leverage the current consistency model predictions to compute a new coupling used
for its own training. Using the original independent coupling (IC) (x, z) and intermediate points
(xi, xi+1) we derive a generator-induced coupling (GC) (fθ(xi, σi), z) and intermediate points
(x̃i, x̃i+1). In purple, we illustrate that using generator-induced trajectories instead of the usual inde-
pendent trajectories results in pairs of points closer to the ideal PF-ODE update of the corresponding
point at i+ 1.

Wasserstein distance in high dimension, and increasing the size of the coupling sets leads to increased
running time, since solvers (e.g. Hungarian matching algorithm) typically have a cubic complexity.

Consistency models map any point on a given reverse diffusion trajectory to the initial data point
by minimizing the distance between the outputs of adjacent points on the trajectory. Training a
consistency model in such a setting relies on constructing trajectories from an IC between data and
noise distributions, and selecting pairs of intermediate points from each single trajectory (Song et al.,
2023). Drawing inspiration from Pooladian et al. (2023), we aim at constructing better couplings
between data and noise distributions. Instead of using discrete OT tools, we take another direction
and propose to use the generator itself to construct trajectories. From an intermediate point computed
from an IC, we let the consistency model predict the corresponding endpoint, supposedly close to the
data distribution. This predicted endpoint is used to construct a new coupling, from which two points
are selected to train the consistency model itself. Our approach is illustrated in Figure 1. Our claim
is that this approach provides couplings that are better aligned to the actual diffusion updates and
thus approximate better the true loss function of a consistency model. As shown in our experimental
section, this procedure results in faster convergence and often leads to better performance of the
resulting model.

Let us summarize our contributions below:

• We propose a novel type of coupling, denoted generator-induced coupling (GC), that allows
to draw generator-induced trajectories used to construct pairs of points for the training of
consistency model. We carefully identify and select the main design components of our
method through experiments.

• We provide insights into the advantages of this coupling on both synthetic and image datasets.
Most notably, we show that trajectories drawn from GC are closer to ideal trajectories defined
by a pre-trained score model than standard trajectories drawn from IC.

• We experimentally demonstrate the benefits of this coupling in image generation benchmarks.
When combined with standard trajectories from IC, GC leads to faster convergence and
often improves the performance of the generative model.

2 Preliminaries

Notation. We consider an empirical data distribution p⋆ and noise distribution pz (e.g. Gaussian)
defined on Rd. We note q a joint distribution of samples from p⋆ and pz . We use a distance function
D to measure the distance between two points from Rd. sg denotes the stop-gradient operator.
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In consistency models, we consider a discrete formulation of diffusion models with N intermediate
timesteps. A vector from an intermediate timestep can be sampled as xi = αix+ σiz, where x ∼ p⋆,
z ∼ pz , and (αi) (resp. monotonous (σi)) are data (resp. noise) schedules. In the commonly used
EDM process (Karras et al., 2022), αi = 1 and can thus be omitted. We denote (pσi

)i∈[0,N ] the
corresponding intermediate noisy distributions between pσ0

≈ p⋆ and pσN
≈ pz , such that xi ∼ pσi

.

2.1 Score-Based Diffusion Models

Score-based diffusion models (Ho et al., 2020; Song et al., 2021) can generate data from noise
via a multi-step process consisting in numerically solving either a stochastic differential equation
(SDE), or an equivalent ordinary differential equation (ODE) called the probability flow ODE (PF-
ODE). Although SDE solvers generally exhibit superior sampling quality, the PF-ODE has desirable
properties. Notably, it defines a deterministic map from noise to data. In this context, the diffusion
process based on the EDM formulation (Karras et al., 2022) with αi = 1 defines it as follows:

dx = −σ∇x log pσ(x) dσ, (1)
where ∇x log pσ, a.k.a. the score function, can be approximated with a neural network sΦ(x, σ)
(Vincent, 2011; Song and Ermon, 2019).

2.2 Consistency Models

Numerically solving the PF-ODE is costly because of multiple expensive evaluations of the score
function. To alleviate this issue, Song et al. (2023) proposed to leverage the deterministic property of
the PF-ODE in a consistency model fθ, learning the output map of the PF-ODE, such that:

fθ(xi, σi) = x0, (2)
for all (xi, σi) ∈ RD × [σ0, σN ] that belong to the trajectory of the PF-ODE ending at (x0, σ0).

Equation (2) is equivalent to (i) enforcing the boundary condition fθ(x0, σ0) = x0 and (ii) ensuring
that fθ has the same output for any two samples of a single PF-ODE trajectory—the consistency
property. (i) is naturally satisfied by the following model parametrization:

fθ(xi, σi) = cskip(i)xi + cout(i)Fθ(xi, σi) (3)
where cskip(0) = 1, cout(0) = 0, and Fθ is a neural network. (ii) is achieved by minimizing the
distance between the outputs of two same-trajectory consecutive samples with the consistency loss:

Lconsistency-distillation(θ) = Ei∼U([0,N ]),xi+1∼pσi+1

[
D
(
sg(fθ(xi, σi)

)
, fθ(xi+1, σi+1)

)]
, (4)

where xi is computed by discretizing the PF-ODE of Equation (1) with the Euler scheme as follows:
xi = xi+1 − (σi − σi+1)σi+1∇xi+1

log pσi+1
(xi+1). (5)

The latter loss can be directly used to distill a score model sΦ(xi+1, σi+1) ≈ ∇ log pσi+1
(xi+1) into

fθ. In the case of consistency training, Song et al. (2023) circumvent the lack of score function
by noticing that ∇ log pσi+1

(xi+1) = E
[
xi+1−x
σ2
i+1
|xi+1

]
. This results in selecting pairs of points

xi = x+ σiz and xi+1 = x+ σi+1z with the same independent (x, z) ∼ qI = p⋆(x)pz(z):

Lconsistency(θ) = E(x,z)∼qI,xi=x+σiz,xi+1=x+σi+1z

[
D
(
sg(fθ(xi, σi)

)
, fθ(xi+1, σi+1)

)]
, (6)

which provably converges to the distillation loss of Equation (4) when N →∞.

3 Data-Noise Coupling

As seen in Section 2.2, consistency models compute vectors from intermediate timesteps through
an IC qI = p⋆(x)pz(z) of data and noise, in a similar fashion to flow matching (Lipman et al.,
2023). This IC takes root in score-based diffusion models which have inspired these more recent
approaches (Kingma and Gao, 2024). Indeed, approximating the score function with a neural network
entails sampling data points perturbed by a Gaussian kernel (Vincent, 2011). Accordingly, the
diffusion-equivalent Denoising Diffusion Probabilistic Model (DDPM, Ho et al., 2020) initiates
by independently sampling x ∼ p⋆ and z ∼ pz . However, recent work has shown the benefits of
choosing more adapted couplings in flow matching then in consistency models, thereby going beyond
the original inspiration from diffusion models.
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Beyond Independent Coupling (IC). The reliance on IC in consistency and flow models is
increasingly recognized as a limiting factor. Recent advancements (Liu et al., 2023; Pooladian et al.,
2023) suggest that improved coupling mechanisms could enhance both training efficiency and the
quality of generated samples in flow matching. By reducing the variance in gradient estimation,
enhanced coupling can accelerate training. Additionally, improved coupling could decrease transport
costs and straighten trajectories, yielding better-quality samples.

The OT Approach. Prompted by these findings, Pooladian et al. (2023) have explored OT
methods to devise batch couplings within the framework of flow matching models. They show that
deterministic and non-crossing paths enabled by OT with infinite batch size lowers the variance
of gradient estimators. Experimentally, they assess the efficacy of OT solvers, such as Hungarian
matching and Sinkhorn algorithms, in coupling batches of noise and data points. Dou et al. (2024)
have adopted this approach in consistency models, underscoring the utility of batch OT in boosting
model performance. However, a significant challenge remains in the generative modeling of images,
where the coupling’s effectiveness is limited by the meaningfulness of distances between noise and
natural images, and by the batch size.

Another line of works using OT tools with score-based models relies on the Schrodinger Bridge
formulation (De Bortoli et al., 2021; Shi et al., 2024; Korotin et al., 2024). However, it has mostly
proven benefits on transfer tasks rather than standard generative tasks.

Re-using ODE Couplings. An alternative strategy, termed ReFlow (Liu et al., 2023), leverages
existing couplings provided by the ODE in a flow framework. Here, the ODE is defined as dx =
v(xt, t) dt with intermediate points calculated as xt = tx+ (1− t)z and t ∈ [0, 1]. Once a neural
network vθ is trained using these ICs, solving the backward ODE defines a deterministic function
mapping each sample noise to a sample from the approximated data distribution. Notably, Liu et al.
(2023) show that this new coupling can reduce transport costs and straighten trajectories, and can
be used iteratively for training models from straighter and straighter trajectories. The authors note
however that using this procedure with a PF-ODE solver would not guarantee decreasing transport
costs and straightening trajectories. Nonetheless, in this iterative procedure, errors can accumulate
due to approximation errors from vθ and the discretization in the ODE solver.

4 Consistency models with Generator-Induced Coupling (GC)

In this section we introduce our method, named GC, leveraging the generator outputs during training.
It consists in using the consistency model itself to re-define the standard independent coupling (IC).
We run a series of experiments motivating the use and giving intuition of GC. Notably, we show that
the resulting trajectories are closer to the ideal PF-ODE updates than with standard IC.

4.1 Generator-Induced Coupling (GC) Training

The solution proposed in this work, illustrated in Figure 1, consists in leveraging the consistency
model itself to build a novel type of coupling. The idea is to leverage the properties and the
accumulated knowledge from the consistency model itself, fθ, to construct pairs of points. To do so,
the first step is to sample an intermediate point, which is done as usual with x ∼ p⋆, z ∼ pz and an
IC between the two distributions, and then predicting its endpoint x̂ via the consistency model:

(x, z) ∼ qI, xi = x+ σiz, x̂ = sg(fθ(xi, σi)). (7)

and this x̂ is coupled to z, thereby defining our generator-induced coupling q, to construct the pair of
points (x̃i, x̃i+1):

(x̂, z) ∼ q, x̃i = x̂+ σiz, x̃i+1 = x̂+ σi+1z. (8)

The loss function is defined on this generator-induced pair of points:

Lg-consistency = E(x̂,z)∼q,x̃i=x̂+σiz,x̃i+1=x̂+σi+1z

[
D
(
sg(fθ(x̃i, σi)), fθ(x̃i+1, σi+1)

)]
. (9)

The overall procedure is illustrated in Figure 1 and presented in Algorithm 1.
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Algorithm 1: Training of consistency models with generator-induced trajectories.
Input: Randomly initialized consistency model fθ, number of timesteps k, noise schedule σi,

loss weighting λ(·), learning rate η, distance function D, noise distribution pz .
Output: Trained consistency model fθ.
1 while not converged do
2 x ∼ p⋆ ; // set of real data points
3 z ∼ pz ; // set of noise vectors

4 i ∼ multinomial
(
p(σ0), . . . , p(σN )

)
; // sampling timesteps

5 xi ← x+ σiz ; // computation of intermediate points

6 x̂← sg
(
fθ(xi, σi)

)
; // endpoint prediction from the consistency model

7 x̃i ← x̂+ σiz, x̃i+1 ← x̂+ σi+1z ; // generator-induced intermediate points

8 L(θ) = λ(σi)D
(
sg(fθ(x̃i, σi)), fθ(x̃i+1, σi+1)

)
; // compute consistency loss

9 θ ← θ − η∇θL(θ) ; // back-propagate consistency loss

Generator-induced trajectories satisfy the boundary conditions of diffusion processes. Let
us note two following important properties of the distribution px̃i

of x̃i: px̃0
= p0 ≈ p⋆ and px̃N

=
pσN
≈ pz . The first property is achieved thanks to the boundary condition of the consistency model

(c.f. Section 2.1), and the second property by construction of the GC q preserving the marginal noise
distribution.

4.2 Experimental Insights into Model Properties

In this section, we propose to experimentally validate the soundness of our proposed coupling
procedure by evaluating key quantities. Sections 2.2 and 3 expose three key properties that could
play a role in accelerating the training and improve the performances of consistency models: (i) a
lower variance of the gradient estimator; (ii) a lower data to noise coupling transport cost; and (iii)
pairs (x̃i, x̃i+1) closer to the PF-ODE trajectory, as in the distillation setting, than (xi, xi+1) in IC.

Experimental settings. To observe whether our proposed method verify these properties in practice,
we run experiments on two synthetic settings where the data distribution p⋆ is a mixture of 2 Gaussians
with equal weight, and the noise distribution pz is either a single Gaussian or a mixture of 2 Gaussians
with equal weight. The goal of the first (resp. second) setting is to map a 1-mode (resp. 2-mode) noise
distribution to a 2-mode data distribution; we denote this setting 1m-2m (resp. 2m-2m). The 2m-2m
setting, inspired by Liu et al. (2023), facilitates the visualization of intersecting trajectories. We then
compare our GC training to the standard IC training.

(i) Lower variance of the gradient. In this experiment, we propose to measure how the variance
of the estimator of the gradient of the GC training compares to the one of the standard IC training.
As highlighted in Section 3 a lower variance could positively impact the training and performances.
We then run a full training, in both 1m-2m and 2m-2m settings for both GC and IC trainings, and
log the variance for each batch. As shown in Figure 2, the GC procedure lowers the variance of
the gradient’s estimator in both settings. Note that, particularly in the 2m-2m setting, using an
Exponential Moving Average (EMA) of the parameters of the network on top of our method smoothes
the variance specifically at the beginning of the training (around iteration 200) and lowers it as well.

(ii) Lower transport costs. As stressed in Section 3, a line of works has brought evidence that
reducing the data-noise coupling transport cost could fasten the training and help produce better
samples. We compare the quadratic transport costs of mapping an intermediate point to its associated
true or synthetic data, formally E[∥x − xt∥22] and E[|x̂ − x̃t|22]. The consistency model used for
generating x̃t has been trained for 2000 steps and has not reached convergence yet. We run this
experiment on both 1m-2m and 2m-2m synthetic settings. Results of the 2m-2m setting are depicted
in Figure 3; the same conclusions hold for the 1m-2m settings (see Appendix Figure 8). We observe
that E[∥x−xt∥22] ≥ E[|x̂− x̃t∥22]. Additionally, we observe that GC alters the marginal probabilities,
such that px̃i

̸= pσi
for i ∈ [1, . . . , N − 1]. Notably, after intersections, the trajectories tend to be

attracted to paths between the closest modes. This point is confirmed on the right part of the plot
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Figure 2: Evolution of the variance of the estimator of the gradient during training of both 1m-2m and
2m-2m synthetic settings. Generator-induced Coupling (GC) training reduces the variance compared
to IC training used in the original consistency training algorithm.
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Figure 3: GC and IC trainings on 2m-2m. (a) GC samples ( ▲) are closer to the shortest paths between
noise and data distributions than IC (★). (b) Generator-induced trajectories have lower transport cost
than standard trajectories. In both cases, transportation cost has two modes.

where the expected cost is far lower for GC and the two modes in the cost tend to disappear for larger
timesteps (denoting that intermediate points x̃t are mapped to nearest mode).

(iii) Closer to the PF-ODE trajectories. As discussed in Section 2.2, the goal of consistency
models enforcing consistency on pairs of points that belong to a trajectory of the PF-ODE, but pairs
of points (xi, xi+1) built on IC do not satisfy this property. We hypothesize that our (x̃i, x̃i+1) built
on GC are closer to actual PF-ODE trajectories. To do so, we first learn a score-based model sΦ in
both the 1m-2m synthetic setting and on the CIFAR-10 dataset1 with an EDM setting. Given sΦ
we can compute a PF-ODE update from any point using Equation (5). We then train consistency
models with either standard IC training or GC training. We define true PF-ODE updates xΦ

i =
xi+1 − (σi − σi+1)σi+1sΦ(xi+1, σi+1) and x̃Φ

i = x̃i+1 − (σi − σi+1)σi+1sΦ(x̃i+1, σi+1). Then,
we compare their distance with the training pairs, resp. E[∥xi − xΦ

i ∥2] and E[∥x̃i − x̃Φ
i ∥2]. The

smaller this quantity, the closer the update to the ideal update obtained from the score-based model.
As shown in Figure 4, GC pairs are consistently closer to actual PF-ODE trajectories than IC ones.

5 Experiments on Unconditional Image Generation

In the previous section we validate experimentally several key properties and visualize the impact of
our proposed GC training on two synthetic settings. In this section, we experiment GC training to
learn consistency models on unconditional image generation tasks without a pre-trained score model.

1For this experiment the 2m-2m setting would require a bridge process.
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Figure 4: Distance to score-based updates of standard IC pairs (xi, xi+1) and GC pairs (x̃i, x̃i+1)
during training. GC pairs are closer to the ideal updates than IC ones.

5.1 Experimental Setting

We apply our approach to three image datasets used in an unconditional setting: CIFAR-10
(Krizhevsky et al.), 64×64 CelebA (Liu et al., 2015), and 32×32 1k-ImageNet (Deng et al., 2009). We
compare our model with standard IC consistency training setting with IC and denote this baseline IC.
The baseline IC model is built on the training principles and techniques outlined by Song and Dhari-
wal (2024). Experiments were conducted on NVIDIA A100 40GB GPUs. More details can be found
in the Appendix and the codebase is available at https://github.com/thibautissenhuth/consistency GC.

To evaluate the contribution of GC w.r.t. the baselines IC and batch-OT, we propose to select a
common base model and optimization strategy based on IC that would be used for all models, based
on its performances on CIFAR-10 and common practices.

Table 1: FID on CIFAR-10.

Forward process Optimizer FID

EDM Adam 13.0
EDM Lion 8.8
Bridge Lion 8.0

Selecting base components. We start with the
standard EDM forward process (Karras et al., 2022;
Song et al., 2023; Song and Dhariwal, 2024) defined
as xi = x + σiz, and compare Adam (Kingma and
Ba, 2015) to Lion (Chen et al., 2024) with a similar
learning rate of 1e−4. We train the IC model with
both optimizers and observe a significant improve-
ment in FID while using Lion. We then compare
EDM and bridge forward processes with Lion. We
define the bridge process as xi = (1 − αi)x + αiz, with αi =

σi

σi+1 and σi taken from the EDM
process. In this way, we conserve a similar signal-to-noise ratio at given timestep i. Results are
presented in Table 1. We observe a superior performance of the bridge process with Lion, and we
thus stick to these two components for the following experiments.

EMA generator-induced trajectories. Another key component of our based model is the EMA
of the network parameters for both evaluation and GC-training. Indeed, the following question arises:
while training, should GC be computed with an EMA model? Like diffusion and score-based models,
previous works (Song and Ermon, 2020) observed that at inference EMA models have steadier and
better performance. We thus use EMA for reporting the results of both IC and batch-OT. Additionally,
and specifically to GC, we gain some insight from previous section experiments that using EMA
during training might reduces the variance of the gradient estimator (see Figure 2). We further report,
in Figure 5(b), an ablation study in our final setting which supports the superiority of the EMA.

5.2 Results

In this section we report the results of our proposed method GC and expose our thought process
towards the final GC training procedure. Note that we do not achieve the performance of Song and
Dhariwal (2024) on CIFAR-10 and 1k-ImageNet due to using smaller models, a smaller batch size
(512 vs 1024 on CIFAR-10, 512 vs 4096 on ImageNet), and fewer training steps (100k vs 400k).
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Figure 5: (a) Timestep scheduling comparison for consistency models trained with generator-induced
trajectories on CIFAR 10. (b) EMA ablation study in GC training for µ = 0.5.

Timestep scheduling. First, we learn a consistency model using the exact same training procedure
as described in Section 4 on CIFAR-10. We compare the performance of GC w.r.t. IC during training
using the exponentially increasing number of timesteps from Song and Dhariwal (2024). We report
in Figure 5(a) the FID of one-step generated images. We observe that, at the beginning of the training,
GC allows for a faster convergence speed than IC. Unfortunately, around the 30k-th iteration, GC
suffers from degraded performance. We hypothesize that the timestep scheduling might not be
optimal for training consistency models with GC and thus train different GC models with a fixed
number of timesteps. Results are reported in Figure 5(a). Interestingly we observe that, with no
scheduling, GC offers a faster convergence without performance degradation. Using 20 timesteps,
we match the performance of the best GC results obtained with standard scheduling.

Mixing procedure. Note that, even though the GC procedure create new pairs (x̃i, x̃i+1), it still
needs to apply the consistency model to xi drawn from IC. Training only on GC can then induce a
distribution shift, as illustrated in Figure 3. This can be the reason why we previously observed a
degraded performance reported in Figure 5(a). We thus propose a simple yet efficient way to reduce
this distribution shift by mixing IC and GC pairs during training, adding only one hyperparameter.
We define a mixing factor µ used to mix standard trajectories with generator-induced trajectories. At
each training step, training pairs are drawn from GC with probability µ, while the remaining pairs
are computed from standard IC. We denote GC (µ = ·) the resulting mixing procedure. Thus, GC
(µ = 0) corresponds to the standard IC procedure and GC (µ = 1) corresponds to the procedure
introduced in Section 4. We run the mixing procedure on the three image dataset and include batch
OT (Pooladian et al., 2023; Dou et al., 2024) as a supplementary baseline.

As shown in Figure 6, we observe an interesting interpolation phenomenon between µ = 0 to µ = 1.
At µ = 0, we recover the steady FID improvement of IC training. When increasing µ, the convergence
of the generative model accelerates. However, when reaching µ = 1, the FID improvement rate
is the fastest at the beginning of the training, but then suffers from performance degradation. For
0.3 ≤ µ ≤ 0.7, we observe a sweet spot where the convergence is faster than IC and, for CIFAR-10
and CelebA, the final FID improves compared to both IC and batch-OT baseline models. We show
in Figure 7 samples from CelebA 64× 64. GC seems to produce sharper and more detailed images
specifically when looking at eyes, mouth, and hairs of generated faces.

Wall-clock Training Time. As illustrated in Figure 6, our method converges faster than IC in
terms of the number of required training steps. However, each training step is more time-consuming,
as it necessitates a forward evaluation of the consistency model without gradient computation.
Regarding wall-clock training time on CIFAR-10, 100k training steps under standard conditions
require approximately 20 hours on an A100 GPU. In contrast, 100k training steps employing GC
extend to about 25 hours. Importantly, despite the increased time per iteration, the hybrid model
achieves the minimum Fréchet Inception Distance (FID) sooner than the consistency model, both on

8



Figure 6: Performance of consistency models using batch-OT or mixed GC (µ = ·) for different
mixing factors µ. GC benefits from an increased convergence rate over standard IC and achieves
better performance than both IC and batch-OT on CIFAR-10 and CelebA for µ equal to 0.5 and 0.7.

(a) Trained with IC = GC (µ = 0). (b) Trained with GC (µ = 0.5).

Figure 7: Uncurated samples from consistency models trained on CelebA 64x64 for fixed noise
vectors. Note that models trained with generator-induced trajectories tend to generate sharper images.

CelebA and CIFAR-10, when considering total wall-clock training time and the number of iterations
needed for reaching the minimum.

6 Conclusion

In this paper, we introduce a generator-induced coupling and new trajectories for training consistency
models without a pre-trained score model. We experimentally give intuition on the interest of those
trajectories. Most notably, they are closer to ideal trajectories from a pre-trained score update than
standard ones. This results in a faster convergence in terms of both the number of training steps and
wall-clock training time. Our approach paves the way for a new type of coupling induced by the
generator itself. Interestingly, our method offers a fresh viewpoint on this problem, which is usually
tackled with traditional OT tools.

Limitations. Training consistency models with generator-induced trajectories leads to intriguing
behaviors that we still do not fully understand. For example, why do they exhibit different behavior
than standard consistency models regarding the scheduling of timesteps during training? This
is surprising since Song et al. (2023) showed that increasing the number of timesteps leads to a
decreased approximation error of the consistency model. Future work should carefully re-examine
hyperparameter choices for consistency models trained with generator-induced trajectories, especially
for scheduling. Another technical limitations of our work is, at this time, the lack of theoretical
support on the benefits of generator-induced trajectories. The advantages they bring are evaluated
experimentally on synthetic settings and computer vision datasets, but then limited to these scopes.
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A Broader Impacts

If used in large-scale generative models, notably in text-to-image models, this work may increase
potential negative impacts of deep generative models such as deepfakes (Fallis, 2020).

B Experimental Details

First, let us recall that the code is available at https://github.com/thibautissenhuth/consistency GC. It
is based on the PyTorch library (Paszke et al., 2019),

Scheduling functions and hyperparameters from Song and Dhariwal (2024). The training of
consistency models heavily rely on several scheduling functions. First, there is a noise schedule
{σi}Ni=0 which is chosen as in Karras et al. (2022). Precisely, σi =

(
σ0

1
ρ + i

N (σN
1
ρ − σ0

1
ρ )
)ρ

with ρ = 7. Second, there is a weighting function that affects the training loss. It is chosen as
λ(σi) = 1

σi+1−σi
. Combined with the choice of noise schedule, it emphasizes to be consistent

on timesteps with low noise. Then, Song et al. (2023) proposed to progressively increase the
number of timesteps N during training. In their most recent work, they argue that a good choice
of dicretization schedule is an exponential one, which gives N(k) = min(s02⌊

k
K′ ⌋, s1) + 1 where

K ′ = ⌊ K
log2[s1/s0]+1⌋, K is the total number of training steps, k is the current training step, s0

(respectively s1) the initial (respectively final) number of timesteps. Finally, Song and Dhariwal
(2024) propose a discrete probability distribution on the timesteps which mimics the continuous
probability distribution recommended in the continuous training of score-based models by Karras
et al. (2022). It is defined as p(σi) ∝ erf( log(σi+1)−Pmean√

2Pstd
)− erf( log(σi)−Pmean√

2Pstd
).

In practice, Song and Dhariwal (2024) recommend using: s0 = 10, s1 = 1280, ρ = 7, Pmean = −1.1,
Pstd = 2.0.

Details on bridge process. For the bridge process, note that we first sample σi from σi =
(
σ0

1
ρ +

i
N (σN

1
ρ − σ0

1
ρ )
)ρ

.

On Gaussians experiment, we use ρ = 3, σ0 = 0.001 and σN = 1. Then, we compute αi = σi and
define intermediate points such as xi = αix+ (1− αi)z.

On image experiments, we use ρ = 7, σ0 = 0.001 and σN = 80. Then, we compute αi =
σi

σi+1 and
define intermediate points such as xi = αix+ (1− αi)z.

Details on neural networks architectures. On Gaussians, we use simple MLPs with GELU
activation functions. On image datasets, we use the NCSN++ architecture (Song et al., 2021) and
follow the implementation from https://github.com/NVlabs/edm.

Table 2: Hyperparameters for the Gaussians experiments.

Hyperparameter Value
number of samples 10000
batch size 512
training steps 10000
learning rate 0.00005
s0 30
s1 30
ρ 3
σ0 0.001
σ1 1
model MLP
depth 4
hidden dim 256
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Table 3: Hyperparameters for CIFAR-10. Arrays indicate quantities per resolution of the UNet model.

Hyperparameter Value
batch size 512
image resolution 32
training steps 100000
learning rate 0.0001
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.001
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout 0.3
num blocks 3
embedding type positional
channel multiplicative factor [1,2,2]
attn resolutions ∅

Table 4: Hyperparameters for CelebA. Arrays indicate quantities per resolution of the UNet model.
All models are trained with two learning rates and the best is selected.

Hyperparameter Value
batch size 128
image resolution 64
training steps 150000
learning rate {0.0001, 0.00005}
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.001
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout [0.05,0.05,0.1,0.2]
num blocks [2,3,4,5]
embedding type positional
channel multiplicative factor [1,2,2,2]
attn resolutions ∅

Details on computational ressources As mentioned in the paper, the image dataset experiments
have been conducted on some NVIDIA A100 40GB GPUs. The Gaussians experiments have also
been computed on GPUs (V100 or A100) and run in few minutes.

C Additional Experimental Results on Gaussians

We show for the Gaussian experiment, transportation cost of couplings in the 1m-2m setting in Figure
8.

13



Table 5: Hyperparameters for ImageNet. Arrays indicate quantities per resolution of the UNet model.
All models are trained with two learning rates and the best is selected.

Hyperparameter Value
batch size 512
image resolution 32
training steps 150000
learning rate {0.0001, 0.00005}
optimizer lion
s0 10
s1 1280
ρ 7
σ0 0.001
σ1 80
network architecture SongUNet

(from Karras et al. (2022) implementation)
model channels 128
dropout [0.1,0.3,0.3]
num blocks [4,5,7]
embedding type positional
channel mult [1,1,2]
attn resolutions 16
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Figure 8: GC and IC trainings on 1m-2m. (a) GC samples are closer to the shortest paths between
noise and data distributions than IC. (b) Generator-induced trajectories have lower transport cost than
standard trajectories.
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