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Abstract: We theoretically and experimentally study the noise correlations in an array of lasers
based on a VECSEL (Vertical External Cavity Surface Emitting Laser) architecture. The array
of two or three lasers is created inside a planar degenerate cavity with a mask placed in a
self-imaging position. Injection from each laser to its neighbors is created by diffraction, which
creates a controllable complex coupling coefficient. The noise correlations between the different
modes are observed to be dramatically different when the lasers are phase-locked or unlocked.
These results are well explained by a rate equation model that takes into account the class-A
dynamics of the lasers. This model permits the isolatation of the influence of the complex
coupling coefficients and of the Henry α-factor on the noise behavior of the laser array.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Integration of lasers into communication technologies and computational systems is growing
every day. One example of such applications of lasers relies on laser arrays. Indeed, such a
system of many coupled oscillators recently became a promising device to solve several types of
problems. For example, utilization of the far-field emission of the laser addresses applications to
beam shaping [1–3]. The observation of the laser steady-state can be used to solve complicated
optimization problems by searching the global steady-state solution of the system [4–9]. Besides,
it was recently demonstrated numerically that coherent laser arrays exhibit collective neural
computing capabilities [10,11], where the individual lasers act as the array nodes, and the
coupling strength between the lasers plays the role of the weight coefficients. Moreover, emission
from such laser arrays can find applications in other extremely important areas, such as data
transmission [12,13], optical memories [14–17], tweezers for atom arrays [18,19], and others.

However, it is well known that noise plays a crucial role in the dynamics of lasers [20]. In
the case of the use of a laser array as an analog computing machine, the multiplicative noise
(transfer of noise from pump) can greatly affect the phase-locking of lasers by reducing the
number of phase-locked lasers. This will limit the scalability of the simulator, and thus the
capability of solving large-scale problems. Further, noise can prevent the laser simulator from
dissipating into a minimal loss (ground state) state of phase-locked lasers, thus, it will not be able
to find an optimal solution of a given problem. Therefore, to improve the performance of a laser
simulator, it is very important to study the role of noise in such laser arrays. Moreover, a complete
characterization of such noise requires not only to measure the noise of individual lasers in the
array, but also their correlations. Such correlations have, for example, already been shown to
play an important role in dual-frequency lasers used in atomic clock applications [21–23], and
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also to be able to reveal the dynamics of lasers, depending in particular on whether they belong
to the class-A or class-B dynamical regime [24,25].

Diagnosing the behavior of an array of coupled lasers by using its intensity noise properties
requires to use a relatively quiet laser. However, till now, laser array phase-locking was mainly
investigated in solid-state Nd:YAG lasers [26], fiber lasers [27,28], laser diodes [29–31], and CO2
gas lasers [32], which are usually quite noisy systems. In spite of their versatility in the context
of arrays of lasers based on degenerate cavity architectures [33], Nd:YAG lasers are not the best
candidates to achieve low noise operation. Indeed, they are intrinsically very noisy because
they belong to the class-B dynamic class [34]. On the contrary, VECSELs (Vertical External
Cavity Surface Emitting Lasers) are well known to be extremely quiet lasers, because their
class-A dynamical behavior filters out the pump noise above the cavity cut-off frequency [35–37].
Besides, the external cavity operation allows to implement a degenerate cavity configuration
[38]. However, one must take into consideration the fact that the semiconductor gain medium of
VECSELs exhibits a non-negligible Henry α-coefficient (also called phase-amplitude coupling
coefficient or linewidth enhancement factor), which tends to affect the laser phase-locking
behavior [39]. Indeed, the value of this linewidth enhancement factor in different types of
semiconductor gain chips typically ranges from 3 to 10 [40–43] and can even be much larger (up
to 60) for shallow quantum wells chips [44]. These values are much larger than those of Nd:YAG
lasers (α ∼ 0.3) [45].

The aim of this paper is thus to study noise correlations in both independent and phase-locked
VECSEL laser arrays. More precisely, we aim at analyzing the influence of the phase-locking
behavior on the laser intensity noise properties. The experimental implementation of the laser
array is based on the division of a degenerate cavity into several independent lasers using a loss
mask. The amount of coupling between the channels is controlled by the loss-mask displacement,
contrary to degenerate cavity VECSEL configurations in which the mask is deposited on the gain
medium [46]. The experiments performed below are also compared to the predictions of our
model that takes into account the three particular aspects of our VECSEL-based laser array: i)
the class-A dynamics; ii) the large α-factor, and iii) the complex nature of the coupling coefficient
between the lasers induced by diffraction.

2. Experiment: phase-locking of laser array and noise

Before entering the theoretical and experimental description of the laser noise, this section aims
at describing the experimental scheme, discussing the coupling mechanism between the lasers in
the array, and observing the phase-locking behavior of lasers.

2.1. Experimental setup

The experimental setup is schematized in Fig. 1. The VECSEL array is based on a gain chip
obtained by MOVPE in a VEECO-D180 reactor on GaAs substrate. It consists of a multi-layered
semiconductor structure consisting of a distributed Bragg reflector (DBR), a gain region consisting
of twelve InGaAs/GaAsP quantum wells, and an antireflection coating. Excitation of the chip is
provided by optical pumping at 808 nm with 0.86 W power. Heat is extracted from the gain chip
by attaching it to a Peltier cooler using thermal paste. The Peltier cooler itself is mounted with
thermal glue on a copper radiator, in which cooling water is circulated. The Peltier temperature is
maintained at 20◦C. Heat dissipation plays a significant role in preventing structure deformation
and efficiency rollover [47]. In our case, since no particular heat treatment method is applied to
the gain chip [47], the thermal profile induces a positive lens that dominates over the negative
electronic lens [48].

The cavity is closed by a planar output coupler with a 0.8% transmission at the λ = 1.06 µm
laser wavelength. Spatial degeneracy and stability of the cavity are provided by an intracavity
telescope in 4f-configuration. Two positive lenses (focal lengths f1 = 5 cm and f2 = 20 cm)
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Fig. 1. Experimental setup. Lenses 1,2 form intracavity telescope (f1 = 5 cm, f2 = 20 cm).
The metal mask placed at self-imaging position forms the laser array. Near-field and far-field
of the array are captured by CCD cameras (u-eye UI-3240 NIR). Fabry-Perot interferometer
(FPI) – FPI100 (FSP – 1 GHz, finesse - 280) is used for the spectral measurements. Noise
measurements are performed with amplified photodiodes PDA015C/M (380 MHz bandwidth,
180 µm2) with signal amplifiers ZFL-1000LN+ Low Noise Amplifier (0.1-1000 MHz, 20 dB
gain).

provide a magnification of 4 in the 50-cm long cavity. The positions of lens 1 and of the output
coupler are slightly adjusted with respect to strict geometric degeneracy in order to compensate for
the thermal lens in the structure, as confirmed by an ABCD matrix analysis [49]. The setup allows
one to capture the near-field, far-field, optical spectrum, and intensity signals simultaneously
with the time synchronization accuracy of electronic devices. The laser array is created using
a metal mask placed very close to the output coupler. It consists of circular holes of diameter
σ = 200 µm with an edge-to-edge separation a = 50 µm. The near-field and far-field images
of the laser array emission are captured by a CCD camera (u-eye UI-3240 NIR, exposition
time 9µs). A Fabry-Perot interferometer (1 GHz free spectral range, finesse = 290) is used for
spectral diagnostics. Intensity noise measurements are performed with a series of preamplified
photodiodes PD1, PD2 (Thorlabs PDA015C/M: bandwidth 380 MHz, sensor area 180 µm2)
followed by low noise signal amplifiers (Mini-circuits ZFL-1000LN+: bandwidth 1-1000 MHz,
gain 20 dB).

2.2. Calculation of the field overlap of adjacent lasers

Phase-locking of the lasers is achieved using injection locking from each laser to its neighbours
thanks to diffraction from the mask. Diffracted light of each laser creates a coupling channel
with its neighbors after reflection on the output coupler. In this case, the coupling strength is
proportional to the field overlap between the two considered modes [32,50]. To calculate this
overlap, we consider as shown in Fig. 2(a) a uniform constant field of amplitude E0 for one of the
lasers at the mask surface and propagate it over one round-trip to the output coupler and back to
the mask using the following Huygens-Fresnel equation:

E(ρ′) =
2π
Bλ

E0

∫ σ/2

0
ρ exp

{︂
−i

π

Bλ
(Aρ2 + Dρ′2)

}︂
J0

(︃
2π
Bλ

ρρ′

)︃
dρ , (1)

where the ABCD matrix describes propagation from the mask to the mirror and back, σ is the
hole diameter, and ρ and ρ′ are the radial coordinates for the input and output fields, respectively,
described in cylindrical coordinates. Since the output coupler is flat, the matrix elements are
simply A = D = 1, C = 0, and B = 2l, where l is the distance between the mask and the mirror.
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It is worth noticing that a similar result would be obtained by considering propagation of the
field in the opposite part of the cavity, i. e. from the mask, through the lenses to the gain chip
and back to the mask, because the cavity degeneracy ensures that the ABCD matrix in this case
would only differ by the sign of B.

Fig. 2. Evolution of the mode overlap coefficient κ versus propagation distance l between
the mask and OC (a). (b,c) Absolute value (blue) and argument (red) of κ, calculated with
Eqs. (1,2) for l much shorter than the Talbot distance.

After propagation using Eq. (1), the fraction of complex field injected in the neighboring laser
is obtained using the following expression:

κ =
4

πσ2E0

∫ 2π

0
dϕ2

∫ σ/2

0
ρ′′ E

(︃√︂
c2 + 2cρ′′ cos ϕ2 + ρ′′2

)︃
dρ′′ , (2)

where c = σ + a, with a the distance between the edges of the two neighbor holes (see Fig. 2(a)).
Figure 2 shows the evolution of the complex overlap coefficient κ calculated according to

Eqs. (1) and (2) with the propagation distance l between the mask and the OC. This calculation is
performed with the parameters of the experiment. The important thing to notice here is that κ is
complex, with an argument θ evolving very quickly with l. Of course, we are here in the regime
where l is very small compared to the Talbot distance zT = 2(σ + a)2/λ = 62 mm, explaining
why |κ | ≪ 1.

The main conclusion of this section is that the phase-locking analysis that will be performed in
section 3. requires to consider complex coupling coefficients.

2.3. Laser array phase-locking

The coupling calculated in the preceding subsection permits to control the phase-locking of the
laser array, as is now going to be evidenced. Figure 3 represents near-field (NF) and far-field (FF)
images of the VECSEL output in different conditions: (a) without any mask, (b,c) with a mask
consisting of two holes, and (d, e) with a mask consisting of three holes in a triangular geometry.
In all cases, the diameters of the holes are equal to σ = 200 µm with an edge-to-edge separation
a = 50 µm. With such hole diameter, and with the low VECSEL gain and the losses introduced
by the mask and the intracavity lenses, we could obtain only a maximum number of three lasers
in the array. Of course, increasing the number of lasers would be highly desirable, provided we
can reduce the thermal effects in the gain structure.

As predicted in the preceding subsection, the coupling between the lasers can be changed by
translating the mask along the laser axis. This permits to change from an unlocked (Figs. 3(b,d)) to
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500 

Fig. 3. Near-field (NF) and far-field (FF) images of the laser emission. (a) No mask, (b) two
unlocked lasers, (c) two phase-locked lasers, (d) three unlocked lasers, (e) three phase-locked
lasers.

a locked (Figs. 3(c,e)) regime, as can be seen from the far-field patterns. To obtain phase-locking,
the distance between the mask and the output coupler is of the order of 500 µm.

Throughout this paper, the laser array typically operates around r = 1.1 to r = 1.2 times above
the threshold. The output power ranges between 0.32 and 3.12 mW, depending on the number of
lasers in the array, the mask position, etc. Without the mask, the VECSEL has less losses and its
output power is measured to be 53 mW, which corresponds to r = 1.79.

It is worth mentioning that in all cases the independence of the different lasers of the array can
be checked by blocking each of them individually without affecting the powers of the other ones.
By trying different masks, we could also notice that the number of spatial modes sustained by
each laser and the laser array spectrum significantly depend on the diameter of the holes. Each
hole corresponds to a single nearly Gaussian fundamental mode only when the hole diameter σ
is no larger than 200 µm. In the perfectly degenerate cavity [51], the frequency detuning between
the different lasers is supposed to be close to 0. But in practice the intracavity aberrations create
some spurious detuning between the lasers. However, when the lasers are locked, they share
the same frequency and operate in a single-frequency regime. This is evidenced by the optical
spectrum shown in Fig. 4. The phase-locking of the laser array makes it remarkably robust:
the laser single-frequency operation remains stable without any mode hop for several seconds
in a standard laboratory environment. On the contrary, in the case where the laser array is
unlocked, the laser spectrum is more unstable. This single-frequency operation will allow us in
the following to establish a simple analytical model to describe the laser evolution. Moreover, it
simplifies the understanding of the origin of laser noise by excluding mode beating and other
effects related to multimode operation.
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Fig. 4. Black line: optical spectrum obtained from the FPI for the array of two phase-locked
lasers. Gray line: scan voltage of ramp applied to FPI. The free spectral range of the FPI is
1 GHz.

2.4. Noise of the laser array

The measurements of the relative intensity noise (RIN) spectrum of one of the lasers in the array
of two lasers are reproduced in Fig. 5. The laser whose intensity noise is measured is the one in
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the left of Figs. 3(b,c). In each case, the RIN spectrum of the other laser is very similar. Figure 5
compares the laser RIN when the two lasers are locked (blue line) and unlocked (red line). Apart
from a difference in noise levels, which can be attributed to several reasons, such as a variation of
the laser losses and power between the two cases, no significant difference appears between the
two situations. We also checked that the same kind of RIN spectrum is obtained for an array of
three lasers. In all cases, these spectra are typical of a class-A laser with a photon lifetime of the
order of 30 ns, much longer than the carrier lifetime in the gain structure (a few ns). When one
compares the laser RIN spectrum with the pump RIN spectrum (black line in Fig. 5), the filtering
effect of the cavity above a 3 dB cut-off frequency of the order of 500 kHz is clearly visible.

Fig. 5. Experimental RIN spectra of one of the lasers in the array of two lasers, while
phase-locked (blue, laser output power of the order of 2 mW) and unlocked (red, laser output
power of the order of 0.4 mW). Grey curve: noise floor. Black curve: pump laser RIN. Thin
peaks originate from some spurious modulations of the laser power.

The difference between the RIN levels of the locked and unlocked laser arrays in Fig. 5 is due
to the presence of extra losses in the unlocked case. Indeed, we observe experimentally that it is
very easy to obtain phase-locking of the array as soon as the mask is introduced inside the cavity
and creates a small coupling. The unlocked behavior of the laser array can only be obtained by
slightly translating the mask inside the cavity, thus creating extra losses and decreasing the laser
power.

Much more information on the laser array behavior can be gained by measuring the spectrum
of the correlations between the intensity noises of the different lasers of the array. Figure 6
shows a few examples of such measurements. Figures 6(a) and 6(c) correspond to the amplitude
of the normalized correlation spectrum between the intensity noises of two of the lasers in the
array, while Figs. 6(b) and 6(c) display the phase of this correlation. In each plot, the blue (red)
curve corresponds to the situation where the lasers of the array are phase-locked (unlocked).
Figures 6(a,b) correspond to an array of two lasers while Figs. 6(c,d) was obtained for an array of
three lasers.

Comparison of the two cases in this figure shows a dramatic difference between phase-locked
and independent lasers. Indeed, while the correlation between the intensity noises between the
lasers cannot be distinguished from noise when the lasers are unlocked (see the red curves in
Figs. 6(a) and 6(c), these intensity fluctuations become almost completely correlated when the
array is phase-locked (blue curves). This illustrates, by a measurement different from the one
of Figs. 3 and 4, the fact that the lasers behave like completely independent oscillators when
they are unlocked and that the laser array behaves like a single super-laser in a single supermode
when the lasers are phase-locked. In the next section, we build a model to describe this abrupt
change of behavior theoretically.
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Fig. 6. Measured correlation spectra between the intensity fluctuations of two lasers in the
array. (a,c) Amplitude and (b,d) phase of the correlation. Blue curves: phase-locked laser
array, red curves: unlocked laser array; light gray curves: noise floor. (a,b) array of two
lasers, (c,d) array of three lasers.

3. Analytical model

The model used to describe the intensity and phase noise of the lasers is based on a system of
rate equations. In the following we present how the model is established in the simplest case of
an array of two lasers coupled via diffraction on the intracavity mask. For simplicity, we suppose
here that the two lasers are perfectly symmetric (same losses, same pumping rate). For the sake
of conciseness, we do not give here the more general version of the model, which describes the
behavior of larger laser arrays. But some results derived from this general model will be shown
below.

3.1. Rate equations

We are interested in the influence of the pump noise on the laser array dynamics and noise
characteristics. This noise is introduced as a fluctuation δri(t) in the pumping rate r + δri(t) of
the laser i in the array, where r is the average pumping rate common to all the lasers. All other
sources of noise such as spontaneous emission, vacuum fluctuations entering the resonator, etc,
have a negligible effect in our experiments. Thermal noise is also neglected, since it was shown to
have a significant influence on the laser phase noise only and not on the intensity noise [21–25].

The nanosecond carrier lifetime, much shorter than the photon lifetime in the cavity, lets
us adiabatically eliminate the population inversion from the laser equations. Therefore, the
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dynamics of the laser array is governed by the following rate equations (RS):

∂A1
∂t

= −
A1
2τ

(︄
1 −

r + δr1(t)
1 + A2

1/Fsat

)︄
+

|η |

τ
cos(ψ + θ)A2,

∂A2
∂t

= −
A2
2τ

(︄
1 −

r + δr2(t)
1 + A2

2/Fsat

)︄
+

|η |

τ
cos(ψ − θ)A1,

∂ψ

∂t
=

α

2τ

(︄
r + δr2(t)

1 + A2
2/Fsat

−
r + δr1(t)

1 + A2
1/Fsat

)︄
−

|η |

τ

(︃
A2
A1

sin(ψ + θ) +
A1
A2

sin(ψ − θ)

)︃
+ 
 ,

(3)

where A1 and A2 are the amplitudes of the two laser fields, normalized in such a way that their
squares correspond to the respective photon numbers. The third variable ψ is the phase difference
between the lasers, Fsat the saturation photon number. The complex coupling introduced by
diffraction from the mask corresponds to the term η eiθ . We assume, that the coupling coefficient
η is proportional to the mode overlap coefficient κ of Fig. 2. The fact that the value of |η |

introduced in the simulations to reproduce the experimental results is systematically larger than
the calculated value of |κ | is attributed to the imperfections of the experimental setup (rough
edges of holes in the mask, non-flat top profile etc.). The present model is applicable to any laser
array geometry and any mask position by adjusting the value of η.

Phase-locking of two lasers requires the absolute value of the coupling strength to exceed the
critical value |ηcr | = 
τ

2 [52]. This formula is valid in the case where the lasers have identical
parameters in terms of pumping rate, losses, cavity lifetime, and real-valued η. In the case where
η is no longer real but complex, i.e., η = |η |eiθ , phase-locking occurs above the critical value its
critical value gives |η | ≥ |ηcr | = 
τ/2 cos θ.

The fluctuations of the lasers around their steady-state solutions are obtained by linearizing
Eqs. (3) around the steady state. Following Ref. [24], the three variables are written in vector form
as A = {A1,st, A2,st,ψ21,st} + δA, where the vector δA = {δA1, δA2, δψ} contains the fluctuations
around the steady-state values {A1,st, A2,st,ψst}. The pump fluctuations around the average value
r0 are written as a vector δr = {δr1, δr2}. Then the RS system of Eqs. (3) can be formally written
as:

Ȧ(t) = RS(A, r)(t) = RS(Ast + δA, r0 + δr) (4)

Linearization consists in expanding the right-hand side up to the first order in δr and δA,
leading to:

̇δA(t) = RS(r0, Ast)⏞       ⏟⏟       ⏞
=0

+
∂RS(r, A)

∂A
|r0,AstδA +

∂RS(r, A)

∂r
|r0,Astδr . (5)

The steady-state solution for the system of two lasers, in the case where they are phase-locked,
depends on the frequency detuning 
 between the lasers. For small values of 
, the steady-state
phase difference is:

ψst =

⎧⎪⎪⎨⎪⎪⎩
π − arcsin ηcr

η + 2πn , if η<0 ,

arcsin ηcr
η + 2πn , if η>0 ,

(6)

where n ∈ Z. In the following, since the experiment doesn’t provide us any mean to measure the
value of 
, we will simply take 
 = 0. In this case the steady-state solution becomes:

ψst = π , (7)
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A1,st = A2,st =

√︃
Fsat

r
1 − 2η cos θ

− 1 . (8)

Taking the Fourier transform of Eq. (5) leads to the following algebraic expression:

˜︂δA(ω) =

[︃
iω −

∂RS(r, A)

∂A
|r0,Ast

]︃−1
∂RS(r, A)

∂r
|r0,Ast

˜︁δr(ω) (9)

where the tilde denotes the Fourier transformed variables. The intensity fluctuations in the
frequency domain are then obtained as follows:

˜︁δI(ω) = 2Ast

[︃
iω −

∂RS(r, A)

∂A
|r0,Ast

]︃−1
∂RS(r, A)

∂r
|r0,Ast

˜︁δr(ω) , (10)

from which one can deduce the RIN spectra of the two lasers and the cross-correlation spectrum
between their amplitude fluctuations, in the following way:

CC(˜︁δI1, ˜︁δI2) =
Cov(δ˜︂A1, δ˜︂A2)√︂

Var(δ˜︂A1)Var(δ˜︂A2)

, (11)

in which Var holds for the variance and Cov for the covariance.
Some RIN spectra numerically calculated from Eq. (3) with parameter values typical of our

experimental setup are shown in Fig. 7. This figure contains three RIN spectra, all obtained with
the same parameter values, except for the value of the coupling coefficient η, which is 0 for the
red curve, real for the light green curve, and complex for the dark blue curve. The two lasers are
unlocked in the former case and phase-locked in the two latter cases. One notices that these RIN
spectra exhibit the typical first-order filter shape of class-A laser, as observed experimentally
in Fig. 5. The difference between the phase-locked and unlocked situations consists of a small
change in the noise level and the noise cutoff frequency. The small change in cutoff frequency
can be easily understood from the analytical expressions above. Indeed, Eq. (5) corresponds
to a linearization around a steady-state solution, whose expression depends on the coupling
coefficient according to Eq. (6).

The difference between the three situations is much more striking when one considers the
correlations between the noises of the two lasers, as shown by the simulations results reproduced
in Fig. 8. A very good agreement is obtained with the experimental results of Fig. 6: the
correlation is almost zero when the two lasers are unlocked and much larger when the two lasers
are locked with α = 6, which is a typical value for the gain chip we used in our experiments.
Moreover, the phase of this correlation is zero, showing that the correlated parts of the intensity
noises of the two modes are in phase, as observed experimentally.

Concerning the analytical model based on linearization of the laser behavior around steady-
state, some typical RIN spectra obtained from Eq. (10) are shown in Fig. 9, but will be more
thoroughly discussed in the next subsection.

3.2. Role of the Henry α-factor

The comparison of the light green and blue curves in Fig. 8(a) illustrates the role of the phase
of the coupling coefficient η on the amplitude noise correlation. The question that we wish to
address in the present section is to know whether this sensitivity to the coupling phase is linked
with the large value of Henry’s α factor in our VECSEL active quantum wells.

To this aim, we simulated the noise behavior of an array of two lasers for different values of
α and for both real and complex values of the coupling coefficient η. The results are shown in
Fig. 9. In each of the plots of Fig. 9, the dashed lines correspond to cases where η is real (θ = 0)
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Fig. 7. Theoretical laser RIN spectra for an array of two lasers. The two curves correspond to
two different coupling coefficients between neighboring lasers. The spectra were calculated
with α = 6, r = 1.1, η = 0 and 0.07, τ = 30 ns, and 
/2π = 0. The pump noise spectra
are taken to be white and fully uncorrelated in the considered frequency range with a
RIN = −135 dB. The presented data corresponds to the averaging of over 1000 noise spectra.

Fig. 8. Laser noise amplitude and phase correlation spectrum between the intensity noises
of the two lasers obtained with the numerical model. The data were calculated with the same
parameters as Fig. 7. The presented data corresponds to the averaging of over 1000 noise
spectra.
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Fig. 9. (a) RIN spectrum of one of the lasers and (b) amplitude and (c) phase of the
correlation spectrum between the intensity noises of the two lasers obtained with the
analytical model. The data were calculated for r = 1.1, η = 0.07, τ = 30 ns, and 
/2π = 0.
The blue data set (α = 6) should be compared with the blue curve in Fig. 7.

while full lines correspond to a complex value for η, with an argument θ = −1.05 π. In these
figures, the curves of different colors correspond to different values of α, ranging from 3 to 9.

First of all, Fig. 9(a) shows that the RIN spectrum of the lasers hardly depends on α and θ.
However, the situation is different when one looks at the correlation amplitude between the
intensity fluctuations of the two modes, as shown in Fig. 9(b). Indeed, in this figure, the fact that
the three dashed lines are perfectly superimposed shows that α has no impact on the correlation
amplitude as long as θ = 0, i.e., as long as the coupling coefficient η is real. On the contrary, the
three full lines in Fig. 9(b) show that as soon as η is complex, the correlation amplitude strongly
increases with α. Besides, Fig. 9(c) shows that in all cases the phase of the correlation remains
close to 0, at least in the frequency range where the correlation amplitude is significant.

The physical explanation behind this α-dependence of the correlation amplitude when η is
complex lies in the fact that a complex coupling coefficient breaks the system symmetry, while
the α factor enhances any system asymmetry. The same kind of phenomenon can be shown to
occur if there is an unbalance between some parameters of the two lasers, such as for example
the pump fluctuations δri.

4. Conclusion

In conclusion, we have theoretically and experimentally studied the phase-locking and noise
behavior of an array of lasers based on a degenerate cavity VECSEL operating as a class-A laser.
In this system, the lasers are defined by a mask, which is also responsible, through diffraction,
for the coupling between the lasers. The experiments and the model show that depending on
the amount of coupling, the lasers in the array can be phase-locked or not. Moreover, we have
performed measurements of the intensity noises of the lasers and of the correlations between the
noises of different lasers. These measurements show that the correlation amplitude dramatically
depends on whether the lasers in the array are phase-locked or not. A very small correlation
between the laser noises is found when they are unlocked, while they get almost fully correlated
once they get phase-locked. These observations are fully reproduced by our rate equation
model that includes the diffraction coupling between the lasers, the pump noise, and the Henry
phase-amplitude coupling coefficient typical of semiconductor active media. This model shows
that two parameters play an important role in the laser noise dynamics. First, the fact that the
distance between the mask and the cavity mirror is small leads to a complex value of coupling
between the lasers. This has been shown to lead to a modification of the correlations between
the intensity noises of the lasers. Second, the Henry factor is also shown to play an important
role: as soon as the coupling coefficient is complex, it also contributes to increase the correlation
between the laser intensity noises. Moreover, the combination of a complex coupling coefficient
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and a large Henry factor should also lead to an amplification of the effect of asymmetries in the
parameters of the different lasers in the array, such as their gain, losses, etc.

Future work includes the increase of the number of lasers in the array. Among other issues,
this requires the reduction of the thermal lensing effect in the gain chip [47].
Funding. Science and Engineering Research Board (SIR/2022/00019); RENATECH; PAUSE.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. V. Pal, C. Trandonsky, R. Chriki, G. Barach, A. A. Friesem, and N. Davidson, “Phase locking of even and odd

number of lasers on a ring geometry: Effects of topological-charge,” Opt. Express 23(10), 13041–13050 (2015).
2. V. Pal, C. Tradonsky, R. Chriki, A. A. Friesem, and N. Davidson, “Observing Dissipative Topological Defects with

Coupled Lasers,” Phys. Rev. Lett. 119(1), 013902 (2017).
3. V. Dev and V. Pal, “Divergence and self-healing of a discrete vortex formed by phase-locked lasers,” J. Opt. Soc. Am.

B 38(12), 3683 (2021).
4. K. Takata, S. Utsunomiya, and Y. Yamamoto, “Transient time of an Ising machine based on injection-locked laser

network,” New J. Phys. 14(1), 013052 (2012).
5. K. Takata and Y. Yamamoto, “Data search by a coherent Ising machine based on an injection-locked laser network

with gradual pumping or coupling,” Phys. Rev. A 89(3), 032319 (2014).
6. K. Takata, A. Marandi, R. Hamerly, Y. Haribara, D. Maruo, S. Tamate, H. Sakaguchi, S. Utsunomiya, and Y.

Yamamoto, “A 16-bit coherent Ising machine for one-dimensional ring and cubic graph problems,” Sci. Rep. 6(1),
34089 (2016).

7. M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Observing geometric frustration with thousands of coupled
lasers,” Phys. Rev. Lett. 110(18), 184102 (2013).

8. C. Tradonsky, I. Gershenzon, V. Pal, R. Chriki, A. A. Friesem, O. Raz, and N. Davidson, “Rapid laser solver for the
phase retrieval problem,” Sci. Adv. 5(10), eaax4530 (2019).

9. V. Pal, S. Mahler, C. Tradonsky, A. Friesem, and N. Davidson, “Rapid fair sampling of the XY spin Hamiltonian
with a laser simulator,” Phys. Rev. Res. 2(3), 033008 (2020).

10. D. Saxena, A. Arnaudon, O. Cipolato, M. Gaio, A. Quentel, S. Yaliraki, D. Pisignano, A. Camposeo, M. Barahona,
and R. Sapienza, “Sensitivity and spectral control of network lasers,” Nat. Commun. 13(1), 6493 (2022).

11. M.-A. Miri and V. Menon, “Neural computing with coherent laser networks,” Nanophotonics 12(5), 883–892 (2023).
12. K. Grobe, M. H. Eiselt, S. Pachnicke, and J.-P. Elbers, “Access networks based on tunable lasers,” J. Lightwave

Technol. 32(16), 2815–2823 (2014).
13. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked

semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt.
Express 16(9), 6609–6618 (2008).

14. T. Alexoudi, G. Kanellos, and N. Pleros, “Optical RAM and integrated optical memories: a survey,” Light: Sci. Appl.
9(1), 91 (2020).

15. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3(5),
e177 (2014).

16. S. Mitsugi, K. Suzuki, K. Kurihara, and T. Horibe, “Microoptical two-dimensional devices for the optical memory
head of an ultrahigh data transfer rate and density sytem using a vertical cavity surface emitting laser (VCSEL) array,”
Jpn. J. Appl. Phys. 41(Part 1, No. 7B), 4835–4840 (2002).

17. C.-H. Chen, S. Matsuo, K. Nozaki, A. Shinya, T. Sato, Y. Kawaguchi, H. Sumikura, and M. Notomi, “All-optical
memory based on injection-locking bistability in photonic crystal lasers,” Opt. Express 19(4), 3387–3395 (2011).

18. L. Anderegg, L. Cheuk, Y. Bao, S. Burchesky, W. Ketterle, K.-K. Ni, and J. Doyle, “An optical tweezer array of
ultracold molecules,” Science 365(6458), 1156–1158 (2019).

19. S. C. Burd, D. T. C. Allcock, T. Leinonen, J. P. Penttinen, D. H. Slichter, R. Srinivas, A. C. Wilson, R. Jördens,
M. Guina, D. Leibfried, and D. J. Wineland, “VECSEL systems for the generation and manipulation of trapped
magnesium ions,” Optica 3(12), 1294–1299 (2016).

20. K. Petermann, Laser Diode Modulation and Noise (Springer, 1991).
21. H. Liu, G. Gredat, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Noise investigation of a dual-frequency

VECSEL for application to cesium clocks,” J. Lightwave Technol. 36(18), 3882–3891 (2018).
22. G. Gredat, D. Chatterjee, G. Baili, F. Gutty, I. Sagnes, F. Goldfarb, F. Bretenaker, and H. Liu, “Fully–correlated

multi–mode pumping for low–noise dual–frequency VECSELs,” Opt. Express 26(20), 26217–26226 (2018).
23. G. Gredat, H. Liu, J. Cotxet, F. Tricot, G. Baili, F. Gutty, F. Goldfarb, I. Sagnes, and F. Bretenaker, “Optimization of

laser dynamics for active stabilization of DF-VECSELs dedicated to cesium CPT clocks,” J. Opt. Soc. Am. B 37(4),
1196 (2020).

24. S. S. De, V. Pal, A. E. Amili, G. Pillet, G. Baili, M. Alouini, I. Sagnes, R. Ghosh, and F. Bretenaker, “Intensity noise
correlations in a two-frequency VECSEL,” Opt. Express 21(3), 2538–2550 (2013).

https://doi.org/10.1364/OE.23.013041
https://doi.org/10.1103/PhysRevLett.119.013902
https://doi.org/10.1364/JOSAB.440587
https://doi.org/10.1364/JOSAB.440587
https://doi.org/10.1088/1367-2630/14/1/013052
https://doi.org/10.1103/PhysRevA.89.032319
https://doi.org/10.1038/srep34089
https://doi.org/10.1103/PhysRevLett.110.184102
https://doi.org/10.1126/sciadv.aax4530
https://doi.org/10.1103/PhysRevResearch.2.033008
https://doi.org/10.1038/s41467-022-34073-3
https://doi.org/10.1515/nanoph-2022-0367
https://doi.org/10.1109/JLT.2014.2312433
https://doi.org/10.1109/JLT.2014.2312433
https://doi.org/10.1364/OE.16.006609
https://doi.org/10.1364/OE.16.006609
https://doi.org/10.1038/s41377-020-0325-9
https://doi.org/10.1038/lsa.2014.58
https://doi.org/10.1143/JJAP.41.4835
https://doi.org/10.1364/OE.19.003387
https://doi.org/10.1126/science.aax1265
https://doi.org/10.1364/OPTICA.3.001294
https://doi.org/10.1109/JLT.2018.2852061
https://doi.org/10.1364/OE.26.026217
https://doi.org/10.1364/JOSAB.389310
https://doi.org/10.1364/OE.21.002538


Research Article Vol. 31, No. 25 / 4 Dec 2023 / Optics Express 41725

25. S. De, G. Loas, A. E. Amili, M. Alouini, and F. Bretenaker, “Theoretical and experimental analysis of intensity noise
correlations in an optically pumped, dual-frequency Nd:YAG laser,” J. Opt. Soc. Am. B 30(11), 2830 (2013).

26. N. Davidson, S. Mahler, A. Friesem, and A. Forbes, “Complex-light lasers,” Opt. Photonics News 33(5), 26–33
(2022).

27. M. Fridman, M. Nixon, N. Davidson, and A. A. Friesem, “Passive phase locking of 25 fiber lasers,” Opt. Lett. 35(9),
1434–1436 (2010).

28. M. Fridman, M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Phase locking of two coupled lasers with many
longitudinal modes,” Opt. Lett. 35(4), 526–528 (2010).

29. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett.
9(4), 125–127 (1984).

30. H. G. Winful and S. S. Wang, “Stability of phase locking in coupled semiconductor laser arrays,” Appl. Phys. Lett.
53(20), 1894–1896 (1988).

31. F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial
filter in a Talbot cavity,” Appl. Phys. Lett. 55(9), 816–818 (1989).

32. A. F. Glova, “Phase locking of optically coupled lasers,” Quantum Electron. 33(4), 283–306 (2003).
33. A. A. Friesem, B. Redding, H. Cao, M. Nixon, and N. Davidson, “Efficient method for controlling the spatial

coherence of a laser,” Opt. Lett. 38(19), 3858–3861 (2013).
34. F. Arecchi, G. Lippi, G. Puccioni, and J. Tredicce, “Deterministic chaos in laser with injected signal,” Opt. Commun.

51(5), 308–314 (1984).
35. G. Baili, M. Alouini, D. Dolfi, and F. Bretenaker, “Shot-noise-limited operation of a monomode high-cavity-finesse

semiconductor laser for microwave photonics applications,” Opt Lett (2007).
36. G. Baili, F. Bretenaker, M. Alouini, L. Morvan, D. Dolfi, and I. Sagnes, “Experimental investigation and analytical

modeling of excess intensity noise in semiconductor class-A lasers,” J. Lightwave Technol. 26(8), 952–961 (2008).
37. G. Baili, L. Morvan, G. Pillet, S. Bouchoule, Z. Zhao, J.-L. Oudar, L. Ménager, S. Formont, F. V. Dijk, M. Faugeron,

M. Alouini, F. Bretenaker, and D. Dolfi, “Ultralow noise and high-power vecsel for high dynamic range and broadband
RF/optical links,” J. Lightwave Technol. 32(20), 3489–3494 (2014).

38. S. Knitter, C. Liu, B. Redding, M. K. Khokha, M. A. Choma, and H. Cao, “Coherence switching of a degenerate
VECSEL for multimodality imaging,” Optica 3(4), 403–406 (2016).

39. Y. Bouchereau, S. Karuseichyk, R. Guitter, V. Pal, and F. Bretenaker, “Effect of linewidth enhancement factor on the
generation of optical vortices in a class-A degenerate cavity semiconductor laser,” Opt. Express 30(9), 15648–15658
(2022).

40. A. Zilkie, J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz,
K. Malloy, P. W. E. Smith, and J. S. Aitchison, “Time-resolved linewidth enhancement factors in quantum dot and
higher-dimensional semiconductor amplifiers operating at 1.55 µm,” J. Lightwave Technol. 26(11), 1498–1509
(2008).

41. A. Consoli, B. Bonilla, J. M. G. Tijero, and I. Esquivias, “Self-validating technique for the measurement of the
linewidth enhancement factor in semiconductor lasers,” Opt. Express 20(5), 4979–4987 (2012).

42. T. Fordell and A. M. Lindberg, “Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting
laser,” IEEE J. Quantum Electron. 43(1), 6–15 (2007).

43. B. Sinquin and M. Romanelli, “Determination of the linewidth enhancement factor of semiconductor lasers by
complete optical field reconstruction,” Opt. Lett. 48(4), 863–866 (2023).

44. J. Stohs, D. Bossert, D. Gallant, and S. Brueck, “Gain, refractive index change, and linewidth enhancement factor in
broad-area GaAs and InGaAs quantum-well lasers,” IEEE J. Quantum Electron. 37(11), 1449–1459 (2001).

45. A. Thorette, M. Romanelli, and M. Vallet, “Linewidth enhancement factor measurement based on FM-modulated
optical injection: application to rare-earth-doped active medium,” Opt. Lett. 42(8), 1480–1483 (2017).

46. A. A. Bartolo González, “Spatial organization of localized pulses in a self-imaging vertical external cavity surface
emitting laser,” Thesis, Université Côte d’Azur (2022).

47. M. Guina, A. Rantamäki, and A. Härkönen, “Optically pumped VECSELs: Review of technology and progress,” J.
Phys. D: Appl. Phys. 50(38), 383001 (2017).

48. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single–frequency continuously–tunable
compact extended–cavity semiconductor laser,” Opt. Express 17(12), 9503–9508 (2009).

49. A. Bartolo, N. Vigne, M. Marconi, G. Beaudoin, K. Pantzas, I. Sagnes, G. Huyet, F. Maucher, S. V. Gurevich, J.
Javaloyes, A. Garnache, and M. Giudici, “Temporal localized Turing patterns in mode-locked semiconductor lasers,”
Optica 9(12), 1386–1393 (2022).

50. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear talbot-cavity semiconductor lasers,”
Opt. Lett. 16(11), 823–825 (1991).

51. S. Mahler, Y. Eliezer, H. Yilmaz, A. A. Friesem, N. Davidson, and H. Cao, “Fast laser speckle suppression with an
intracavity diffuser,” Nanophotonics 10(1), 129–136 (2020).

52. L. Fabiny, P. Colet, R. Roy, and D. Lenstra, “Coherence and phase dynamics of spatially coupled solid-state lasers,”
Phys. Rev. A 47(5), 4287–4296 (1993).

https://doi.org/10.1364/JOSAB.30.002830
https://doi.org/10.1364/OPN.33.5.000026
https://doi.org/10.1364/OL.35.001434
https://doi.org/10.1364/OL.35.000526
https://doi.org/10.1364/OL.9.000125
https://doi.org/10.1063/1.100363
https://doi.org/10.1063/1.101768
https://doi.org/10.1070/QE2003v033n04ABEH002415
https://doi.org/10.1364/OL.38.003858
https://doi.org/10.1016/0030-4018(84)90016-6
https://doi.org/10.1109/JLT.2008.917756
https://doi.org/10.1109/JLT.2014.2326956
https://doi.org/10.1364/OPTICA.3.000403
https://doi.org/10.1364/OE.456946
https://doi.org/10.1109/JLT.2008.923215
https://doi.org/10.1364/OE.20.004979
https://doi.org/10.1109/JQE.2006.884583
https://doi.org/10.1364/OL.483776
https://doi.org/10.1109/3.958374
https://doi.org/10.1364/OL.42.001480
https://doi.org/10.1088/1361-6463/aa7bfd
https://doi.org/10.1088/1361-6463/aa7bfd
https://doi.org/10.1364/OE.17.009503
https://doi.org/10.1364/OPTICA.471006
https://doi.org/10.1364/OL.16.000823
https://doi.org/10.1515/nanoph-2020-0390
https://doi.org/10.1103/PhysRevA.47.4287

