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Abstract

Stability, akin to reproducibility, is crucial in statistical analysis. This paper examines the stability

of sparse network inference in high-dimensional graphical models, where selected edges should remain

consistent across different samples. Our study focuses on the Graphical Lasso and its decomposition into

two steps, with the first step involving hierarchical clustering using single linkage. We provide theoretical

proof that single linkage is stable, evidenced by controlled distances between two dendrograms inferred

from two samples. Practical experiments further illustrate the stability of the Graphical Lasso’s various

steps, including dendrograms, variable clusters, and final networks. Our results, validated through both

theoretical analysis and practical experiments using simulated and real datasets, demonstrate that single

linkage is more stable than other methods when a modular structure is present.

1 Introduction

Interpretability, reproducibility and stability have become central challenges in statistics due to the recent
advances in massive data and black-box models [36]. From a learning theory perspective, stability is crucial
for generalization [7] while in practice, stability is fundamental for interpretability. This paper focuses
on algorithmic stability, which pertains to the robustness of a procedure against data perturbation: does
a method provide the same results on two perturbed data sets? Data perturbation techniques such as
jackknife, sub-sampling or bootstrap have been extensively studied both theoretically and practically to
assess the stability of statistical methods. [27] propose a framework for evaluating the stability of data
set and predictive algorithms, concluding that even an inherently unstable method can appear stable over
generated data if under the model. Recent methods are driven by the concept of stability [35, 34]. Stability
in prediction has been explored accross various models, including random forests for interaction studies [3],
bagging [30], and feature selection [26].

Network inference is a domain within statistics where stability is particularly critical. When performing
network inference on two data sets derived from the same model with a small sample size using classical
methods, the resulting inferred networks are often markedly different. This variability arises from the large
number of parameters that need to be estimated and the complexity of the optimization task involved. How-
ever, without stability, interpretability becomes challenging, which undermines one of the major advantages
of graphical models. This is especially pertinent in the context of regulatory networks derived from real omics
data, where observations are typically limited [13, 19, 24]. As a result, practitioners have often criticized
the developed methods, opting instead to manually select an appropriate subset of variables to focus on.
However, such external knowledge is not always available and could be enhanced by a deeper understanding
of the data and the application of machine learning tools.

Among various tools, graphical models are popular for network inference, and particularly valued for their
interpretability. Gaussian Graphical Models (GGMs) are famous for embodying the Markov property. This
property links the edges of the corresponding dependency graph between variables to the non-zero coefficients
of the inverse covariance matrix. Hence, GGMs facilitate understanding the complex relationships among
variables by translating statistical dependencies into a graphical representation, where each edge signifies a
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direct conditional dependency between variables. The Graphical Lasso [14, 37] is a classical estimator that
provides a sparse inverse covariance matrix Θ = Σ−1, solution of the following optimization problem: for a
sample (y1, . . . ,yn) coming from a random variable Y ∼ Np(0,Σ), and its sample covariance estimate S,

Θ̂GL(λ;S) = argmax
Θ

{log detΘ− tr(SΘ)− λ‖Θ‖1}

over nonnegative definite matrices Θ, and where λ is a nonnegative tuning parameter. Many algorithms
have been proposed for solving the Graphical Lasso problem, but we focus here on the decomposition given
in [33, 22]:

Step 1 Identify the connected components of the undirected graph with adjacency matrix A associated to the
thresholded sample covariance;

Step 2 Perform Graphical Lasso with parameter λ ≥ 0 on each connected component separately.

This approach has been practically used in [10, 18] to reduce the number of parameters to estimate for a
fixed level of regularization, thereby improving computational efficiency. In [31], it was demonstrated that
identifying the connected components in the Graphical Lasso solution (first step) is equivalent to performing
single linkage hierarchical clustering based on a similarity matrix derived from the absolute values of the
elements of the sample covariance matrix S. This decomposition allows flexibility in the choice of linkage
in hierarchical clustering. [31] switched to average linkage, critiquing the chain effect of single linkage, and
selected a model with two clusters, inferring a sparser model within each module. Conversely, [11] retained
single linkage but provided non-asymptotic theoretical foundations for selecting the number of clusters.

In this paper, we argue that this decomposition into two steps enhances the stability of network inference.
We experimentally illustrate this improvement and theoretically prove that single linkage is stable, whereas
other classical linkages, such as average linkage, are not.

Several methods have been proposed to stabilize variable selection in GGMs, primarily based on resam-
pling. In [1, 23], the authors suggest subsampling the observations, running a model on each sample, and
retaining variables selected consistently across all or most samples. Both papers provide theoretical results
that guarantee good performance asymptotically with increasing sample sizes. Building on [1], [9] evaluate
the stability and accuracy of gene regulatory network inference using bootstrap aggregation. Additionally,
[17], drawing from [1, 23], focuses specifically on bootstrap sampling for network inference. More recently, [6]
proposed a score to measure the overall stability of the set of selected features, introducing a new calibration
strategy for stability selection. In a broader context, [20] introduced ESCV, while [2] proposed removing the
most influential observations to achieve stable networks, akin to the jackknife method.

However, these methods require substantial computation because they rely on subsampling. Furthermore,
large sample sizes are necessary to ensure good performance with subsampling techniques.

Our main idea is that estimators can be stable by construction and do not necessarily require

additional steps to achieve stability. This intrinsic stability can lead to more efficient and robust
network inference.

In this paper, we make the following contributions:

• We derive theoretically the stability of the decomposition of the network into independent modules
using hierarchical clustering;

• We show experimentally on simulated data and on real data sets the stability of the hierarchical
clustering, of the subsequent clusters, and of the inferred network.

The remainder of the paper is organized as follows. In Section 2, we introduce the main theoretical result,
about the stability of the hierarchical clustering. Section 3 investigates the numerical stability through several
experiments on simulated and real dataset: study of the hierarchical clustering for several linkages, study of
the considered clusters when selecting a model in the dendogram, and study of the inferred network.
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2 Theoretical result for the stability of the modular decomposition

In this section, we are interested in the stability of the hierarchical clustering, in the sense that, if two samples
are observed generated from the same distribution, we want to measure how close are the two dendograms
provided by the hierarchical clustering. Let (y1, . . . ,yn) and (y1, . . . ,yi−1, ỹi,yi+1 . . . ,yn) be two samples in
R

p from the same multivariate normal distribution with density φp(0,Σ) where Σj,j = 1 for all j ∈ {1, . . . , p}.
We assume that observations are standardized, and we focus on empirical correlations matrices.

We start by the definition of a dendogram.

Definition 1. A dendrogram over {1, . . . , p} is an application θ : [0,∞) → P({1, . . . , p}), where P({1, . . . , p})
is the set of all partitions of {1, . . . , p}, such that

1. θ(0) is the partition with only singletons;

2. there exists M > 0 such that for all t > M , θ(t) = {1, . . . , p};
3. for every t1 ≤ t2, the partition θ(t1) is a refinement of the partition θ(t2); and

4. for all t0 > 0, there exists ǫ > 0 such that for all t ∈ [t0, t0 + ǫ], θ(t) = θ(t0).

In other words, θ defines a nested family of partitions of {1, . . . , p} which, according to the two other
properties, starts with only singletons and ends with the whole space. The last condition ensures right-
continuity, which allow the existence of some minimums (for example, in the definition of Ψ that follows).
We denote Θp the set of all dendrograms on {1, . . . , p}.

We work here with ultrametrics, that are associated to dendrograms through a one-to-one mapping.
Ultrametric spaces are metric spaces which satisfy a stronger type of triangle inequality.

Definition 2. A metric space (X,u) is called an ultrametric space if, for all (x, x′, x′′) ∈ X3,

max(u(x, x′), u(x′, x′′)) ≥ u(x, x′′).

For a finite set {1, . . . , p}, we denote Up the set of all ultrametrics on {1, . . . , p}.
Theorem 9 in [8] gives a one to one correspondence

Ψ: Θp → Up

where, for θ ∈ Θp, u = Ψ(θ) is the ultrametric on {1, . . . , p} defined for all (x, y) ∈ {1, . . . , p}2 by

u(x, y) = min {t ≥ 0 | x and y are in the same subset in the partition θ(t)} .

Note that u = Ψ(θ) is also, by definition, the cophenetic distance associated to the dendogram θ: u(i, j)
corresponds to the height at which stage i and j are merged together. We compare those cophenetic distances
for two dendograms using the following distance.

Definition 3. The distance dcoph is defined by, for two dendograms θ1, θ2 ∈ Θp, and their associated
ultrametrics u1 = Ψ(θ1) and u2 = Ψ(θ2),

dcoph(θ1, θ2) = max
1≤i,j≤p

|u1(i, j)− u2(i, j)|. (2.1)

The inverse θ = Ψ−1(u) for u ∈ Up is given, for t ≥ 0, by θ(t) to be the partition obtained from the
equivalence relation ∼u,t where, for (x, y) ∈ {1, . . . , p}2,

x ∼u,t y ⇐⇒ u(x, y) ≤ t.

We will denote by Cp the complete simple graph with {1, . . . , p} as set of vertices and a path in Cp with
ν vertices will be encoded by a map η : {1, 2, . . . , ν} → {1, 2, . . . , p} where, for all k ∈ {1, 2, . . . ν}, η(ν) yields
the kth vertex of the path. We introduce in the next definition the application uA and then show that it is
an ultrametric on {1, . . . , p}.
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Definition 4. Let A ∈ R
p×p be a symmetric matrix with positive nondiagonal entries, and zeros on the

diagonal. We define the following application.

uA : {1, . . . , p}2 −→ R

(i, j) 7−→







0 if i = j,

min
η a path from i to j in Cp

{

max
k

(Aη(k),η(k+1))

}

elsewhere.

Proposition 1. Let A ∈ R
p×p be a symmetric matrix with positive nondiagonal entries, and zeros on the

diagonal. The application uA defines an ultrametric on {1, . . . , p}.
Proof. We check all the properties of an ultrametric.

Positive definiteness: for all (i, j) ∈ {1, 2, . . . , p}2, uA(i, j) ≥ 0 and, by assumption, uA(i, j) = 0 if and
only if i = j.

Symmetric: since a is symmetric, uA is also symmetric.
Strong triangle inequality: let us prove that for all (i, j, k) ∈ {1, 2, . . . , p}3,

uA(i, k) ≤ max(uA(i, j), uA(j, k)).

Fix (i, j, k) ∈ {1, 2, . . . , p}3 and consider two paths in the complete graph Cp

η1 : {1, 2, . . . , k1} → {1, 2 . . . , p},
η2 : {1, 2, . . . , k2} → {1, 2, . . . , p},

such that

uA(i, j) = max
l∈{1,...,k1−1}

(

aη1(l),η1(l+1)

)

,

uA(j, k) = max
l∈{1,...,k2−1}

(

aη2(l),η2(l+1)

)

.

Then, if we set k = k1 + k2 − 1 and η1 · η2 the path η1 followed by η2 (which is a path from i to k in Cp),
then η has k vertices and we have

uA(i, k) = min
η

max
l∈{1,...,k−1}

(

aη(l),η(l+1)

)

≤ max
l∈{1,...,k−1}

(

aη1·η2(l),η1·η2(l+1)

)

(η1 · η2 is a path from i to k)

= max

(

max
l∈{1,...,k1−1}

(

aη1(l),η1(l+1)

)

, max
l∈{1,...,k2−1}

(

aη2(l),η2(l+1)

)

)

= max (uA(i, j), uA(j, k)) .

Hence, uA is an ultrametric on {1, 2, . . . , p}.

For a symmetric matrix A ∈ R
p with positive nondiagonal entries and zeros on the diagonal, we denote

by θA = Ψ−1(uA) the dendrogram associated to the ultrametric uA.
Remark that, if the matrix A is associated to a distance d, the dendogram θA is exactly the one obtained

by the single linkage hierarchical clustering with the distance d (see [8, Corollary 14]). One can particularly
use A = 1 − |S1|, with S1 the sample covariance matrix and 1 corresponds to the matrix with 1 for each
coefficient, which is the one constructed in the first step of the Graphical Lasso [31].

The next proposition gives a control on the distance introduced in Definition 3, between dendograms
induced by two different matrices.

Proposition 2. Let A1, A2 ∈ R
p×p be two symmetric matrices with positive entries, and zeros on the

diagonal. Then
dcoph(θA1

, θA2
) ≤ ‖A1 −A2‖max

where ||.||max corresponds to the maximum element of the matrix.
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Proof. Set m = ‖A1 − A2‖max. Let (i, j) ∈ {1, 2, . . . , p}2 and let η2 : {1, 2, . . . ,K2} → {1, 2, . . . p} be a path
such that

uA2
(i, j) = max

k∈{1,...,K2−1}
[A2]η2(k),η2(k+1).

Then we have,

uA1
(i, j) ≤ max

k∈{1,...,K2−1}
[A1]η2(k),η2(k+1) (by definition of uA1

)

≤ max
k∈{1,...,K2−1}

(

m+ [A2]η2(k),η2(k+1)

)

(by definition of m)

= m+ uA2
(i, j) (by choice of η2).

Hence, uA1
(i, j) − uA2

(i, j) ≤ m and symmetrically, uA2
(i, j) − uA1

(i, j) ≤ m. Therefore, for all (i, j) ∈
{1, 2, . . . , p}2, |uA1

(i, j)− uA2
(i, j)| ≤ m. Thus,

max
i,j

|uA1
(i, j)− uA2

(i, j)| ≤ m.

Finally, we control the stability of the dendogram constructed in the first step of the Graphical Lasso in
the following proposition.

Proposition 3. Let two samples (y1, . . . ,yn) and (y1, . . . , ỹi, . . . ,yn) where ỹi ∼ yi ∼ Y and are iid, and
S and S̃ the corresponding sample covariance matrices. Then, for α ∈ (0, 1), with probability 1− α,

‖S − S̃‖∞ ≤ 2p

(n− 1)
√
α
.

Proof. For 1 ≤ j, k ≤ n,

[S − S̃]j,k =
1

n− 1
(yi,jyi,k − ỹi,j ỹi,k) .

From [25], we know the distribution function of YjYk:

fYjYk
(z; ρ) =

1

π
√

1− ρ2
exp

(

ρz

1− ρ2

)

K0

( ‖z‖
1− ρ2

)

,

where ρ = Σj,k is the correlation between Yj and Yk. Eventually, we can compute the first two moments of

[S − S̃]j,k:

E([S − S̃]j,k) = 0,

V ar([S − S̃]j,k) = V ar

(

1

n− 1
(yi,jyi,k − ỹi,j ỹi,k)

)

=
2

(n− 1)2
V ar (yi,jyi,k)

=
2

(n− 1)2
(1 + Σ2

j,k),

where the second line comes from the independence of y and ỹ, and the last equality comes from [15], which
characterizes the moments of the product of zero mean correlated normal random variables. We need to
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control ‖S − S̃‖∞. The union bound gives:

P(‖S − S̃‖∞ ≥ η) = P(max
j,k

|Sj,k − S̃j,k| ≥ η)

≤
∑

j,k

P(|S − S̃|j,k ≥ η)

=
∑

j,k

P(
1

n− 1
|yi,jyi,k − ỹi,j ỹi,k| ≥ η)

≤
∑

j,k

2 ·
1 + Σ2

k,j

(n− 1)2η2
,

where the last inequality comes from Tchebychev’s inequality. Using that the correlations are bounded by 1,
we get that

P(‖S − S̃‖∞ ≥ η) ≤ 4p2

(n− 1)2η2
.

This result is derived for a fixed sample size. Non-asymptotically, we have a control on the difference
between the two dendrograms. Moreover, note that we used the Tchebychev inequality, but there may exist
tighter concentration inequality.

Proposition 3 gives a stability result about the ultrametric induced by the empirical correlation matrix.
Using the one-to-one correspondence Ψ, it can also be interpreted in terms of stability of the induced
dendrogram as explained in Carlsson and Mémoli [8, Section 3.5]. It leads to the following theorem, which
is our main theoretical contribution.

Theorem 1. Let two samples (y1, . . . ,yn) and (y1, . . . , ỹi, . . . ,yn) where ỹi ∼ Y and are iid, and S and S̃
the corresponding sample covariance matrices. Then, for α ∈ (0, 1), with probability 1− α,

dcoph(|θ1−|S||, θ1−|S̃|) ≤
2p

(n− 1)
√
α
.

Proof. By Proposition 2 we have

dcoph(|θ1−|S||, θ1−|S̃|) ≤
∥

∥

∥
1− |S| −

(

1− |S̃|
)
∥

∥

∥

max
=

∥

∥

∥
|S| − |S̃|

∥

∥

∥

max
.

By the triangular inequality, the last term is less or equal to ‖S − S̃‖max and then Theorem 1 follows from
Proposition 3.

Asymptotically, the two collections of modules detected by the Graphical Lasso on two samples where
only one observation differs, varying the regularization parameter λ, are the same. This means that the
single linkage used in the first step of the Graphical Lasso is a good choice, with respect to the stability of
the collection of models that is considered.

Similarly to Carlsson and Mémoli [8, Remark 17], we can show that the complete linkage and the average
linkage are unstable: small perturbations of the matrix A may lead to large perturbations of the corresponding
ultrametric.

3 Experiments

In this section, we evaluate in practice the stability of each step of the Graphical Lasso. First we provide the
experimental design, describing the data generation process, and the two real dataset we are studying. Then,
we illustrate 1/ the stability of dendograms using hierarchical clustering, varying the linkage (illustrating
exactly Theorem 1), 2/ the stability of the clusters get by cutting the dendogram with some model selection
criterion, 3/the stability of the network inference.
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Table 1: Stability of dendograms using hierarchical clustering with several linkages on generated data, BRCA
and equities. We display the normalized distance and its standard deviation in parenthesis. Best results are
bolded.

cophn AL CL ML SL WL
Generated data 0.53 (0.12) 0.72 (0.12) 0.54 (0.12) 0.33 (0.06) 0.72 (0.14)

BRCA 0.81 (0.08) 0.91 (0.05) 0.85 (0.06) 0.59 (0.12) 1.01 (0.10)
Equities 0.87 (0.05) 0.97 (0.03) 0.89 (0.05) 0.73 (0.09) 1.18 (0.27)

3.1 Experimental design

The design of the simulations is as follows. For a fixed structured covariance matrix Σ with a block diagonal
structure, we simulate V samples of n observations from a p-variate normal distribution with a mean of
zero and the structured covariance matrix Σ. We then compare the inferred networks pairwise, resulting in
V (V − 1)/2 comparisons. The number of variables is set to p = 100, the sample size to n = 70, and the
number of samples to V = 17 per fixed covariance matrix. We consider R = 5 different covariance matrices
(generated randomly, each with the same block decomposition), with the number of blocks in the diagonal
matrix set to K = 15, and each block containing 6 or 7 variables.

Two real datasets are considered.
The BRCA dataset is a gene expression dataset for patients with breast cancer, measured with RNA-
Sequencing. The data are generated by the TCGA Research Network: http://cancergenome.nih.gov/,
and downloaded from the web portals https://tcga-data.nci.nih.gov/tcga/ using the TCGA2STAT
tool [32]. We have n = 1212 samples and p = 9191 genes, but we focus on the p = 200 most variable genes.
We construct 17 batches of size 70, leading to 1190 observations.
Equities dataset includes stock market data available in the R package huge and has been studied in [31]. It
contains closing prices of 452 stocks over 1258 trading days. We focus on the p = 200 most variables stocks’
close prices and we construct 17 patches of size 70.

3.2 Stability of hierarchical clustering: which linkage method?

In this section, we validate the theoretical results obtained in Section 2. When applying hierarchical cluster-
ing, various linkage methods can be used. We compare the performance in stability of the most well-known
methods: average linkage (AL), complete linkage (CL), McQuitty linkage (ML), single linkage (SL), and
Ward linkage (WL). The measure used to compare dendograms is the distance introduced in Definition 3,
which we normalize to facilitate the analysis: for two matrices A1, A2, and their associated dendograms
θA1

, θA2
,

dNcoph(θA1
, θA2

) = max
1≤i,j≤p

∣

∣

∣

∣

uA1
(i, j)

max(uA1
)
− uA2

(i, j)

max(uA2
)

∣

∣

∣

∣

.

Table 1 presents the stability of dendrograms generated using hierarchical clustering with various linkage
methods across different data sets: generated data, BRCA and equities. The table displays the normalized
distance dNcoph along with its standard deviation in parentheses. The best results in each row are highlighted
in bold.

When the covariance matrix has a block-diagonal structure, as in the generated data, single linkage (SL)
is clearly the most stable method, exhibiting the lowest normalized distance with a relatively low standard
deviation. This indicates that single linkage is less sensitive to small perturbations in the data, maintaining
consistent clustering structures.

For the real data sets, the conclusion holds consistently. In the BRCA data, single linkage again demon-
strates superior stability, compared to other methods, suggesting its robustness in clustering biological data
where sample variability is often high. Similarly, in the equities data set, single linkage achieves the best
stability, indicating its effectiveness in financial data clustering, which often involves high-dimensional and
noisy data.

7
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Table 2: ARI between the clusters get by hierarchical clustering using several linkages and several model
selection criterion on generated data, BRCA and equities. Best results are bolded.

Data criterion single average complete ward mcquitty
Generated data K 0.19 0.45 0.33 0.65 0.45

2K 0.85 0.8 0.69 0.78 0.81
2 0.07 0.02 0.02 0.40 0.02

SH 0.80 0.65 0.66 0.68 0.68
BIC 0.10 0.05 0.03 0.47 0.05

BRCA 2 0.09 0.10 0.02 0.78 0.05
SH 0.57 0.49 0.32 0.37 0.44
BIC 0.39 0.26 0.11 0.27 0.17

Equities 2 0.00 -0.01 0.04 0.61 0.00
SH 0.36 0.35 0.26 0.22 0.31
BIC 0.21 0.18 0.09 0.15 0.16

Analyzing the methods in order of stability across all three data sets, single linkage (SL) is the most
stable, followed by average linkage (AL), McQuitty linkage (ML), complete linkage (CL), and Ward’s linkage
(WL). The higher values for average, McQuitty, complete, and Ward’s linkages suggest these methods are
more sensitive to data perturbations, resulting in less stable dendrograms. Ward’s linkage, in particular,
shows the highest values and standard deviations, indicating it is the least stable method in this context.

These results underscore the importance of selecting an appropriate linkage method for hierarchical
clustering, especially when stability is a critical concern. Single linkage’s robustness across different data
types suggests it as a preferable choice for ensuring consistent clustering outcomes in practical applications.

3.3 Stability of a clustering

In this section, the dendrogram is cut to focus on clustering. Given that we are considering Gaussian
Graphical Models, we can recast this task as a model selection problem. We evaluate two model selection
criteria: the Bayesian Information Criterion (BIC) [29] and the slope heuristic (SH) [5, 4]. Additionally,
when knowing the ground truth on generated data, we consider the model with 2 clusters, the true number
of clusters K (for generated data), and twice the true number of clusters, 2K.

Table 2 displays the Adjusted Rand Index (ARI) [28] between clusters derived from hierarchical clustering,
cut according to different model selection criteria. The ARI measures the similarity between two partitions,
with an ARI of 1 indicating a perfect match. We evaluate the following linkage methods: single linkage (SL),
average linkage (AL), complete linkage (CL), McQuitty linkage (ML), and Ward’s linkage (WL).

For the generated data, the single linkage (SL) and Ward’s linkage (WL) show the best performance.
Although Ward’s linkage performs poorly in terms of distance between dendograms, as seen in Section
3.2, it performs well when considering clustering, likely due to high variability in early merges but more
stability with larger clusters. Notably, single linkage combined with 2K clusters achieves the highest ARI,
indicating that considering a higher number of clusters enhances stability. Among non-oracle methods, the
slope heuristic (SH) combined with single linkage performs the best. Generally, SH provides stable results,
whereas BIC performs poorly.

For the real data sets (BRCA and equities), the conclusions are similar: single linkage (SL) and Ward’s
linkage (WL) are the most competitive. Ward’s linkage with 2 clusters is the most stable for both data sets,
but not sparse, followed closely by single linkage combined with the slope heuristic (SH).

Table 3 displays the number of clusters selected on average by the slope heuristic and BIC for each
dataset. The number of clusters selected by BIC is generally smaller, often underestimating the true number
in the simulated data, while the slope heuristic tends to overestimate the number of clusters. Single linkage
tends to select a higher number of clusters, contributing to its stability. As with the 2K scenario, the slope
heuristic’s tendency to overestimate the number of clusters generally contributes to greater stability.
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Table 3: Number of clusters selected (in mean) for several linkages and several model selection criterion on
generated data (100 variables, 15 groups), BRCA (200 variables) and equities (100 variables).

Data criterion single average complete ward mcquitty
simulated SH 25 22 28 22 24

BIC 10 2 2 5 3
equities SH 155 100 70 60 90

BIC 105 40 6 5 28
BRCA SH 112 41 18 18 28

BIC 88 14 5 7 9

These results indicate that the choice of linkage method and model selection criterion significantly impacts
the stability and accuracy of clustering. Single linkage and the slope heuristic generally provide the most
stable results across different data sets and scenarios.

3.4 Stability of inferred networks

In this section, we evaluate the stability of networks inferred by classical methods. Stability is assessed using
the normalized Hamming distance between two graphs G1 and G2, with respective adjacency matrices A1

and A2. The normalized Hamming distance is defined as

dH(G1, G2) =
2‖A1 −A2‖1
‖A1‖1 + ‖A2‖1

. (3.1)

This metric provides a measure of the difference between two graphs, normalized by the total number of
edges in both graphs. Additionally, we report the density of the inferred graphs, which is the proportion of
nonzero coefficients in the adjacency matrix, and the CPU time required for the computations.

For the generated data, we further calibrate the estimation methods using several performance metrics:
sensitivity TP/(TP+FN), specificity TN/(TN+FP), precision TP/(TP+FP), and false discovery rate (FDR)
FP/(TP+FP), where TP denotes true positive, FN denotes false negative, FP denotes false positives, and
TN denotes true negatives. While these metrics do not directly relate to stability, they help identify methods
that infer networks close to the true structure. One prefers a high precision, recall and specificity, a density
close to 0.03 on the generated data (the value on the true graph), a low normalized Hamming distance and
a low CPU time.

We compare the following strategies, based on or extended from the Graphical Lasso:

• One-step Graphical Lasso methods:

– BIC: Regularization parameter selected using Bayesian Information Criterion [29].

– EBIC: Extended Bayesian Information Criterion with γ = 0.5 [12].

– STARS: Stability Approach to Regularization Selection [21].

– ESCV: Extended Stability Criterion Validation [20].

• Stabilized methods based on the one-step Graphical Lasso:

– BoLasso (BL): Bootstrap Lasso [1], with regularization parameter fixed by cross-validation, using
bootstrap over m = 100 samples of size n subsampled from the observations with replacement

– Stability Selection (SS): [23], with m = 100 samples of size n/2 subsampled without replacement,
and regularization parameter selected such that

√
0.8p variables are chosen.

• Two-step Graphical Lasso methods:
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Table 4: Performance on simulated dataset. We compare the performance in estimation (evaluated by the
precision, Prec, the recall, Recall, and the specificity, Spec, and the density of the graph; the performance
in stability (evaluated by the normalized hamming distance) and the computation time (evaluated by the
CPU time). Best scores are bolded.

1 step BIC EBIC STARS ESCV BL SS
Dens 0.14 0.03 0.06 0.00 0.03 0.01

0.04 0.01 0.00 0.00 0.00 0.00
Hamm 0.37 0.04 0.12 0.00 0.01 0.00

0.07 0.02 0.01 0.00 0.00 0.00
CPU 16 16 386 235 323 1681

2 steps SL-SHBIC SL-SHEBIC SL-SHSTARS SL-SHESCV SL-SHBL AL-2sparse

Dens 0.04 0.04 0.01 0.01 0.02 0.04
0.00 0.00 0.00 0.00 0.00 0.00

Hamm 0.03 0.06 0.02 0.05 0.01 0.06
0.01 0.01 0.01 0.01 0.00 0.01

CPU 12 8 164 102 1334 11

1 step BIC EBIC STARS ESCV BL SS
Prec 0.39 0.93 0.67 1.00 1.00 1.00

0.08 0.04 0.02 0.00 0.00 0.00
Recall 0.76 0.60 0.70 0.26 0.61 0.44

0.03 0.15 0.01 0.00 0.01 0.01
Spec 0.89 1.00 0.97 1.00 1.00 1.00

0.04 0.00 0.00 0.00 0.00 0.00
2 steps SL-SHBIC SL-SHEBIC SL-SHSTARS SL-SHESCV SL-SHBL AL-2sparse

Prec 0.94 0.94 0.99 0.99 1.00 0.83
0.05 0.05 0.01 0.01 0.00 0.03

Recall 0.69 0.69 0.39 0.37 0.57 0.66
0.02 0.02 0.06 0.04 0.02 0.02

Spec 1.00 1.00 1.00 1.00 1.00 0.99
0.00 0.00 0.00 0.00 0.00 0.00

– Single Linkage: As highlighted in theory and practice, cut with the slope heuristic, with regular-
ization parameter selected by BIC, STARS, ESCV, and BoLasso within each module.

– CGL: Average linkage with 2 clusters, where in each module the sparser model is selected [31].

Note that Stability Selection was not run in the two-step Graphical Lasso methods due to high compu-
tational cost.

3.4.1 Results on simulated dataset

Table 4 details the performance of various methods in inferring from simulated data, focusing on metrics
such as normalized Hamming distance, graph density, and CPU time.

In the simulated data context, the single linkage method paired with ESCV achieves the highest stability
as indicated by the normalized Hamming distance. This method is closely followed by single linkage with
BoLasso, which excels in graph density. These approaches, especially those utilizing single linkage, outper-
form both one-step methods and CGL in stability. Important Observation: Graphical Lasso using ESCV
often appears very stable (Hamming distance is zero) but infers an empty network (density is zero), making
it uninteresting.
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Table 5: Performance on BRCA. We compare the density, the performance in stability (evaluated by the
normalized Hamming distance Hamm) and the computation time (evaluated by the CPU time).

1 step BIC EBIC STARS ESCV BL SS
Dens 0.05 0.00 0.09 0.00 0.01 0.00

0.07 0.00 0.01 0.00 0.00 0.00
Hamm 0.19 0.00 0.20 0.00 0.02 0.01

0.16 0.00 0.01 0.00 0.00 0.00
CPU 73 73 1621 971 1071 7919

2 steps SL-SHBIC SL-SHEBIC SL-SHSTARS SL-SHESCV SL-SHBL AL-2sparse

Dens 0.02 0.02 0.01 0 0.01 0.26
0.01 0 0 0 0 0.03

Hamm 0.04 0.04 0.02 0 0.01 0.68
0.01 0.01 0.01 0 0 0.04

CPU 118 14 250 560 2372 2

Table 6: Performance on equities. We compare the density, the performance in stability (evaluated by the
normalized Hamming distance Hamm) and the computation time (evaluated by the CPU time).

1 step BIC EBIC STARS ESCV BL SS
Dens 0.00 0.00 0.07 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00
Hamm 0.00 0.00 0.20 0.00 0.01 0.01

0.00 0.00 0.01 0.00 0.00 0.00
CPU 67 68 1535 917 990 7690

2 steps SL-SHBIC SL-SHEBIC SL-SHSTARS SL-SHESCV SL-SHBL AL-2sparse

Dens 0.01 0.01 0 0 0.01 0.72
0.00 0 0 0 0 0.01

Hamm 0.03 0.05 0.01 0.01 0.03 0.79
0.01 0.01 0.01 0.01 0.01 0.02

CPU 80 6 112 71 651 187

Graphical Lasso methods using BIC and STARS do not perform well in estimation, producing overly
dense graphs and lacking stability. Among the one-step methods, Graphical Lasso with EBIC, BoLasso,
and Stability Selection demonstrate better performance in both estimation quality and stability, albeit with
slower computation times due to bootstrap procedures.

Two-step methods generally show improved performance with better estimation accuracy and increased
stability. This enhancement is attributed to the block-diagonal network structure inherent in the data
generation process, which aligns well with the decomposition strategy used in these methods. While these
approaches generally require more computation time, they offer superior stability, particularly evident in
methods employing single linkage (SL-SH).

In summary, EBIC emerges as the standout among one-step methods, balancing density, stability, and
computational efficiency. Two-step methods, particularly those leveraging single linkage, enhance stability by
effectively utilizing the network structure. However, the overall choice of method should consider a trade-off
between estimation quality, stability, and computational demands based on specific application requirements.

3.4.2 Real data analysis

Tables 5 and 6 present the performance on the BRCA and Equities datasets, respectively, in terms of density,
normalized Hamming distance (Hamm), and computation time (CPU time in seconds).

One-step Methods: ESCV and EBIC show very high stability (Hamming distance is zero) but infer
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empty networks (density is zero) on both the BRCA and Equities datasets. While stable, they lack practical
utility due to this issue. STARS outperforms BIC and BoLasso in terms of network estimation but comes
with significantly higher computational costs. BoLasso and Stability Selection (SS) show promise in both
stability and network estimation quality. However, they are computationally intensive, especially Stability
Selection.

Two-step Methods: Single Linkage with SH demonstrates notable improvements in stability and es-
timation performance compared to one-step methods. It effectively leverages the block-diagonal network
structure present in the generated data. CGL is generally unstable, confirming theoretical expectations
about the limitations of average linkage methods in this context. Overall, two-step methods improve net-
work estimation and stability across both datasets. They mitigate the limitations observed in one-step
methods, particularly in capturing the block-diagonal structure of the generated data.

In conclusion, while one-step methods like STARS show competitive performance, especially in terms of
estimation accuracy, two-step methods, particularly those utilizing Single Linkage with appropriate selection
criteria, offer superior stability and estimation quality, albeit at increased computational costs. These find-
ings underscore the importance of method selection based on both performance metrics and computational
feasibility in practical applications of graphical model inference.

4 Discussion and conclusion

In this paper, we propose an analysis of stability for several network inference methods, with a focus on
hierarchical clustering methods using different linkages, influenced by the decomposition of the graphical
lasso into two steps. Our study highlights the potential of single linkage in scenarios with a modular structure,
challenging conventional wisdom and opening new avenues for stable network inference methods.

Contrary to the common advice to avoid single linkage due to its chaining property [16], our results
demonstrate that single linkage is more stable than other methods when a modular structure is present.
This finding is supported by both theoretical analysis and practical experiments.

While our theoretical results are robust, we were unable to provide a complete proof of stability for
the full method combining single linkage with any model selection criterion, and particularly considering the
slope heuristic (SL+SH). This challenge arises from the complexity involved in accounting for model selection
within the stability framework. Addressing this limitation remains an open question and a promising direction
for future research.
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