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Abstract: In this paper, we design an output-feedback controller to stabilize n + m hetero-
directional transport partial differential equations (PDEs) coupled on both domain boundaries
to ordinary differential equations (ODEs). This class of systems can represent, for instance,
actuator and load dynamics at the boundaries of a hyperbolic system. The actuator is located
at the connection point between the PDE and one of the ODEs, and we consider anti-
collocated PDE measurements. We first design a state-observer by combining the backstepping
methodology with time-delay system approaches. We then introduce a state feedback controller
using analogous techniques before designing the wanted output-feedback control law.
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1. INTRODUCTION

Several recent contributions have focused on the control
of interconnected systems encompassing hyperbolic par-
tial differential equations (PDEs) and ordinary differen-
tial equations (ODEs), given their prevalence in diverse
industrial processes, such as electric power transmission
systems (Schmuck et al., 2014) and traffic networks (Yu
and Krstić, 2023). This category of networks is particularly
adept at modeling complex industrial processes as the
propagation of torsional waves in drilling systems (Aarsnes
and Shor, 2018) or deepwater construction vessels (Stens-
gaard et al., 2010). These interconnected networks are
commonly referred to as ODE-PDE-ODE systems, where
the ODEs capture the dynamics of actuators and loads.

Most constructive control methodologies for intercon-
nected PDE-ODE systems predominantly adopt the back-
stepping approach. In the seminal paper (Krstic and
Smyshlyaev, 2008), a re-interpretation of the classical Fi-
nite Spectrum Assignment (Manitius and Olbrot, 1979)
was proposed, modeling ODEs with input delays as PDE-
ODE interconnections. The consequential impact of this
innovative approach has been far-reaching, enabling the
formulation of methodologies for designing observers, con-
trollers, and parameter estimation methods across a di-
verse spectrum of interconnected systems. Noteworthy ap-
plications include systems with varying delays (Bekiaris-
Liberis and Krstic, 2013; Bresch-Pietri, 2012) and cascades
of PDEs (Auriol et al., 2019; Redaud et al., 2021), or cas-
caded interconnections of hyperbolic PDE-ODE systems,
such as (Aamo, 2012; Deutscher and Gabriel, 2021; Auriol
et al., 2018; Hasan et al., 2016; Zhou and Tang, 2012).
More recently, constructive results have emerged for non-
cascaded PDE-ODE systems. In particular, a stabilizing
state-feedback control law has been proposed in (Di Meglio

et al., 2018; Wang et al., 2018). A PDE-ODE-PDE config-
uration was considered in (Auriol et al., 2020).

For ODE-PDE-ODE configurations, an output-feedback
controller has been designed in (Deutscher et al., 2018)
based on assumptions that guarantee the existence of a
Byrnes–Isidori normal form for one of the ODE. These
restrictions are partially avoided in (Bou Saba et al.,
2019), where the control design relies on a rewriting of
the interconnection as a time-delay system. This approach
was later extended in (Wang and Krstic, 2020; Auriol
and Bribiesca Argomedo, 2022; Redaud et al., 2024) to
encompass a state observer. Some recent developments
have also been obtained for interconnected PDE systems
with non-linear ODEs using a modular design of tracking
controllers (Irscheid et al., 2021). In all these contributions,
the authors assumed the control input was acting on the
ODE state. The cases where the control input acts at
the connection point between the PDE and one of the
ODEs have not been well studied in the literature, and
most of the contributions neglect the actuator dynamics
in such a configuration (Auriol et al., 2018; Auriol and
Di Meglio, 2020; de Andrade et al., 2018). In (Deutscher
et al., 2018), a state observer was designed for an ODE-
PDE-ODE system where the measurement corresponds to
the PDE state. In the case of a 2 × 2 PDE system, a
stabilizing controller was designed in (Auriol et al., 2023).

In this paper, we extend these results to design a stabiliz-
ing output-feedback controller for a system of n+m linear
first-order hyperbolic Partial Differential Equations cou-
pled with Ordinary Differential Equations at both bound-
aries of a one-dimensional spatial domain. The control
input acts at one of the PDE boundaries, and the available
PDE measurements are anti-collocated. The presented ap-
proach expands upon the methodology introduced in (Au-



riol et al., 2023) by combining the backstepping technique
with time-delay approaches. Using an invertible integral
transformation, we map the system into a simpler target
system. Then, we design a state observer for this target
system using a time-delay representation. A state-feedback
controller is obtained using analogous techniques. Finally,
the output-feedback controller is obtained by combining
the state-feedback controller with the previously designed
observer after adding an adequate low-pass filter to guar-
antee the existence of robustness margins (Auriol et al.,
2023).

Notations The state space is χ = Rp × L2([0, 1];R)n+m ×
Rq, where p, n,m, q are positive integers. For (X0, u, v,X1) ∈
χ, we introduce the corresponding χ−norm

||(X0, u, v,X1)||2χ = ||X0||2Rp + ||u||2L2 + ||v||2L2 + ||X1||2Rq .

We denote s, the Laplace variable.

2. PROBLEM STATEMENT

2.1 Presentation of the system

In this paper, we consider a n+m linear hetero-directional
hyperbolic system coupled through its boundaries with
linear ODEs:

Ẋ0(t) =A0X0(t) + E0v(t, 0), (1)

u(t, 0) =C0X0(t) +Qv(t, 0) + U(t), (2)

ut + Λ+ux =Σ++(x)u(t, x) + Σ+−(x)v(t, x), (3)

vt − Λ−vx =Σ−+(x)u(t, x) + Σ−−(x)v(t, x), (4)

v(t, 1) =Ru(t, 1) + C1X1(t), (5)

Ẋ1(t) =A1X1(t) + E1u(t, 1), (6)

defined for a.e. (t, x) ∈ [0,+∞) × [0, 1]. The state of
the system is (X0(t), u(t, ·), v(t, ·), X1(t)) ∈ χ. The initial
condition is taken as ((X0)0, u0, v0, (X1)0) ∈ χ and we
consider weak solutions to (1)-(6) (Bastin and Coron,
2016). The open-loop system is well-posed in the sense
of (Bastin and Coron, 2016, Theorem A.6, page 254).
The matrices Λ+ and Λ− are diagonal and represent the
transport velocities. We have Λ+ = diag (λi) and Λ− =
diag (µi) and we assume that their coefficients satisfy
−µm < · · · < −µ1 < 0 < λ1 < · · · < λn. The case of equal
transport velocities or zero velocities can be overcome
under additional assumptions following the methodology
presented in (de Andrade et al., 2024; Chen et al., 2023).
The spatially-varying matrices Σ·· are continuous (each
coefficient of the matrix is a continuous function). With no
loss of generality, we assume that the matrices Σ++ and
Σ−− have zero diagonal elements (Hu et al., 2019). The
different coupling matrices satisfy A0 ∈ Rp×p, E0 ∈ Rp×m,
C0 ∈ Rn×p, A1 ∈ Rq×q, E1 ∈ Rq×n, C1 ∈ Rm×q,
R ∈ Rm×n, Q ∈ Rn×m. The control input U(t) belongs to
Rn. We consider the case of anti-collocated measurement,
i.e., the measurement y(t) is defined by

y(t)
.
= u(t, 1). (7)

Due to the symmetry of the system, measuring the v(t, 0)-
state would not change the nature of the problem. Com-
pared to (Deutscher et al., 2018), we consider that the con-
trol input is located at the junction between the ODE X0

and the PDE. This configuration has not been well-studied
in the literature and requires specific control approaches.
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Fig. 1. Schematic representation of the system (1)-(6).

2.2 General objectives and assumptions

The objective of this paper is to design an output feedback
controller for the system (1)-(6) based on the available
measurement y(t) given by equation (7). Even if the veloc-
ities are considered constant here, the proposed method-
ology could be extended to the case of spatially-varying
transport velocities (following the approach given in (Hu
et al., 2019)). We now make the following assumption

Assumption 1. The system defined for all i ∈ [1, n] by

z(t) =

m∑
k=1

n∑
ℓ=1

QikRkℓz(t−
1

µk
− 1

λℓ
), (8)

is exponentially stable.

Assumption 1 constitutes a reasonable assumption since
it prevents system (1)-(6) from having an asymptotic
chain of eigenvalues with non-negative real parts (Hale
and Verduyn Lunel, 1993; Auriol and Di Meglio, 2019).
It has been shown in (Logemann et al., 1996) that hav-
ing an open-loop transfer function with an infinite num-
ber of poles on the closed right half-plane implies no
(delay-)robustness margins in closed-loop (i.e., the in-
troduction of any arbitrarily small delay in the actua-
tion will destabilize the closed-loop system). Therefore,
Assumption 1 is slightly stronger than a necessary con-
dition for delay-robust stabilization. If the delays are
rationally independent 1 , Assumption 1 is equivalent to
the following condition (Hale and Verduyn Lunel, 1993):

sup
θkℓ∈[0,2π]n×m

Sp (
∑m

k=1

∑n
ℓ=1 QikRkℓ exp(jθkℓ)) < 1, where

Sp denotes the spectral radius, j is the imaginary unit, and
the θkℓ belong to [0, 2π]n×m. This condition is simplified
if the delays are rationally dependent. Furthermore, since
the spectral radius of a matrix is upper-bounded by any
norm of the matrix, easy to compute sufficient conditions
for this spectral radius condition to hold can be derived
using different norms of the matrices involved at the cost of
increased conservatism. Similarly to what has been done
in (Auriol et al., 2023), we will need additional stabiliz-
ability and detectability conditions (Assumptions 2 and 7)
that will be given later.

3. OBSERVER DESIGN

This section is dedicated to designing a state observer for
the system governed by equations (1)-(6), leveraging the
available measurement given in equation (7). To simplify

1 Extending the variable z, it is always possible to rewrite the system
in a form with either a single delay, or where all delays are rationally
independent (Hale and Verduyn Lunel, 1993, Chapter 9).



the computations and the design of the observer, we
will work with a target system obtained from (1)-(6)
using a backstepping transformation. This transformation
relocates the in-domain coupling terms, denoted as Σ··, to
the actuated boundary.

3.1 Backstepping transformation

Inspired by (Hu et al., 2019), we use an integral transfor-
mation to move the local coupling terms Σ·· to the actu-
ated boundary (in the form of integral terms). Consider the
Volterra transformation T , similar to the one introduced
in (Hu et al., 2019; Auriol and Di Meglio, 2019; Auriol and
Bribiesca Argomedo, 2022)

X0(t) = ξ(t)−
∫ 1

0

L1(ν)α(ν) + L2(ν)β(ν)dy, (9)

u(t, x) = α(t, x)−
∫ 1

x

Lαα(x, ν)α(ν)dν

−
∫ 1

x

Lαβ(x, ν)β(ν)dν + γα(x)X1(t), (10)

v(t, x) = β(t, x)−
∫ 1

x

Lβα(x, ν)α(ν)dy,

−
∫ 1

x

Lββ(x, ν)β(ν)dν + γβ(x)X1(t), (11)

X1(t) =X1(t), (12)

where the kernels are bounded functions defined either on
Tu = {(x, z) ∈ [0, 1]2, x ≤ z}, or [0, 1]. This transforma-
tion rewrites (X0, u, v,X1) = T (ξ, α, β,X1). Denoting Λ =

diag(Λ+,−Λ−), Σ =
(

Σ++ Σ+−

Σ−+ Σ−−

)
and L =

(
Lαα Lαβ

Lβα Lββ

)
,

γ = (γα, γβ), we obtain

ΛLx + LνΛ = Σ(x)L, Λγx(x) = Σ(x)γ − γ⊤A1, (13)

(L1(x))xΛ
+ = A0L1(x) + E0L

βα(0, x), (14)

(L2(x))xΛ
− = −A0L2(x)− E0L

ββ(0, x), (15)

with the boundary conditions

ΛL(x, x)− L(x, x)Λ = Σ(x), (16)

L1(0) = 0, L2(0)Λ
− = L1(0)Λ

+Q+ E0, (17)

and γα(1) = 0, γβ(1) = C1. Finally, we define Lαα
ij (0, ν)

for i ≤ j by

Lαα
ij (0, ν) = (QLβα(0, ν) + C0L1(ν))ij . (18)

To this set of equations, we add arbitrary values for

Lαα
ij (x, 1) (when i > j) and Lββ

ij (x, 1) (when i > j) and

Lββ
ij (0, ν) (when i ≤ j). Reinterpreting the ODEs in (14)-

(15) as PDEs evolving in the triangular domain Tu with
horizontal characteristic lines (since there is only an evo-
lution along the x axis), it is possible to adjust the results
from (Di Meglio et al., 2018, Theorem 3.2) to guarantee
that the set of PDEs and ODEs (13)-(18) has a unique
solution which is piecewise continuous. The boundedness
of transformation (10)-(12) is a direct consequence of the
structure of the transform (identities, integral operator
and matrices) and the regularity of the different kernels.
Its invertibility is a consequence of the structure of the
transformation, which is block triangular with the blocks
on the diagonal being either identities (for the ODEs) or
invertible Volterra operators (for the PDEs).

3.2 Target system

The invertible backstepping transformation (10)-(12) maps
the original system (1)-(6) to the following target system

ξ̇(t) = A0ξ(t) +G3α(t, 1) +G4X1(t), (19)

α(t, 0) = Qβ(t, 0) + C0ξ(t) + (Qγβ(0)− γα(0))X1(t)

+

∫ 1

0

Fα(ν)α(t, ν) + F β(ν)β(t, ν)dν + U(t), (20)

αt(t, x) + Λ+αx(t, x) = G1(x)α(t, 1), (21)

βt(t, x)− Λ−βx(t, x) = G2(x)α(t, 1), (22)

β(t, 1) = Rα(t, 1), Ẋ1(t) = A1X1(t) + E1α(t, 1). (23)

The functions G1 and G2 satisfy

G1(x) =

∫ 1

x

Lαα(x, ν)G1(ν) + Lαβ(x, ν)G2(ν)dν

− Lαα(x, 1)Λ+ + Lαβ(x, 1)Λ−R− γα(x)E1, (24)

G2(x) =

∫ 1

x

Lβα(x, ν)G1(ν) + Lββ(x, ν)G2(ν)dν

− Lβα(x, 1)Λ+ + Lββ(x, 1)Λ−R− γβ(x)E1. (25)

The set of equations (24)-(25) has a unique solution
(Volterra equations of the second kind (Yoshida, 1960)).
The matrices G3 and G4 are defined by G3(x) =

L2(x, 1)Λ
−R−L1(x, 1)Λ

++
∫ 1

0
(L1(x)G1(x)+L2(x)G2(x))dx,

and G4(x) = E0γβ(0). Finally, the matrix F β the matrix
Fα are defined by Fα(ν) = Lαα(0, ν) − QLβα(0, ν) −
C0L1(ν), and F β(ν) = Lαβ(0, ν)−QLββ(0, ν)−C0L2(ν).
Note that Fα is strictly lower triangular due to equa-
tion (18). The measurement y(t) remains unchanged.

3.3 Time-delay formulation

Applying the method of characteristics (see (Auriol and
Di Meglio, 2019; Auriol et al., 2023)), we can show that
for all t > τ = 1

λ1
+ 1

µ1

α(t, 1) =

N∑
i=1

Fα
i α(t− τi, 1) +

n∑
i=1

F ξ
i ξ(t−

1

λ i
)

+

n∑
i=1

FX
i X1(t−

1

λ i
) +

∫ τ

0

H(ν)α(t− ν, 1)dν

+

n∑
i=1

FU
i U(t− 1

λ i
), (26)

where N ∈ N, and where the τi ≤ τ are positive delays

that depend on the λi and µi, the matrices Fα
i , F

ξ
i , F

X
i ,

FX
i , FU

i , and H can be explicitly computed following the
methodology of (Auriol and Di Meglio, 2019). Since the
functions U(t) and y(t) = α(t, 1) are known, we can
consider y1 as an available measurement, where y1 is
defined by

y1(t) = y(t)−
N∑
i=1

Fα
i y(t− τi)−

∫ τ

0

H(ν)y(t− ν)dν

−
n∑

i=1

FU
i U(t− 1

λi
)

=

n∑
i=1

FX
i ξ(t− 1

λ i
) + FX

i X1(t−
1

λ i
). (27)



Define Z as the concatenation of the vectors ξ and X1 and

introduce the matrix Ao =

(
A0 G4

0q×p A1

)
. We obtain

Ż(t) = A0Z(t) +GZα(t, 1), (28)

where GZ =

(
G3

E1

)
. Defining F o

i =
(
F ξ
i FX

i

)
, we have

y1(t) =
∑n

i=1 F
o
i Z(t − 1

λi
). Applying Duhamel’s formula

to equation (28), we obtain for t > 1
λ1

y1(t) =

n∑
i=1

F o
i e

−Ao
λi

(
Z(t)−

∫ t

t− 1
λi

eAo(t−ν)GZy(ν)dν
)
.

We make the following assumption

Assumption 2. There exists Lo such that the matrix Ao+

Lo

∑n
i=1 F

o
i e

−Ao
λi is Hurwitz.

This assumption can be seen as a detectability condition
necessary to reconstruct the ODE states.

3.4 Observer equations

We can now design the wanted state-observer for the target
system (19)-(23). Herein, the notation ·̂ is introduced
as a superscript to denote the estimated states, while ·̃
represents the error state, defined as the difference between
the actual state and the observer state. The primary
objective is to achieve the convergence of the estimated
state to the real state, or equivalently, the convergence
of the error state to zero, with respect to the χ-norm.
Subsequently, a state observer is constructed to replicate
these dynamics, incorporating specific output injection

terms. The observer state (ξ̂, α̂, β̂, X̂1) (or equivalently

(Ẑ, α̂, β̂), where Ẑ as the concatenation of ξ̂ and X̂1) is the
solution of a set of equations that is a copy of the original
dynamics to which we add dynamical output injection
gains. We denote ỹ(t) = y(t) − α̂(t, 1), the difference
between the real output and the observer output. The
observer equations read as

˙̂
Z(t) = AoẐ(t) +GZy(t)− Lo(y1(t)−

n∑
i=1

F o
i e

−Ao
λi Ẑ(t))

− Lo

n∑
i=1

F o
i e

−Ao
λi

∫ t

t− 1
λi

eAo(t−ν)GZy(ν)dν, (29)

α̂(t, 0) = Qβ̂(t, 0) + C0ξ̂(t) + (Qγβ(0)− γα(0))X̂1(t)

+

∫ 1

0

Fα(ν)α̂(t, ν) + F β(ν)β̂(t, ν)dy −O0(ỹ(t))

+ U(t), (30)

∂tα̂(t, x) + Λ+∂xα̂(t, x) = G1(x)y(t), (31)

∂tβ̂(t, x)− Λ−∂xβ̂(t, x) = G2(x)y(t), (32)

β̂(t, 1) = Rα̂(t, 1), (33)

with any (arbitrary) initial conditions in χ. The operator
Oo still has to be defined. The error system is obtained by
subtracting the observer dynamics from the real one. We
obtain

˙̃Z(t) = AoZ̃(t) + Lo

n∑
i=1

F o
i e

−Ao
λi Z̃(t), (34)

α̃(t, 0) = C0ξ̃(t) +Qβ̃(t, 0) + (Qγβ(0)− γα(0))X̃1(t)

+

∫ 1

0

Fα(ν)α̃(t, ν) + F β(ν)β̃(t, ν)dν +O0(ỹ(t)), (35)

∂tα̃(t, x) + Λ+∂xα̃(t, x) = 0, (36)

∂tβ̃(t, x)− Λ−∂xβ̃(t, x) = 0, (37)

β̃(t, 1) = Rα̃(t, 1). (38)

To guarantee the exponential stability of the error system,
it is sufficient to show the convergence of ξ̃, α̃(t, 1) and X̃1

to zero. More precisely, we have the following lemma

Lemma 3. If ξ̃(t), α̃(t, 1) and X̃1(t) exponentially converge

to zero, then the state (ξ̃, α̃, β̃, X̃1) converges to zero in the
sense of the χ-norm. This implies the convergence of the
observer state to the real state.

Proof. Due to the stability of the observer operators
and using the transport structure of (36) and (37), the

exponential convergence of X̃1 and α̃(t, 1) to zero imply the

exponential convergence of the states α̃(t, x) and β̃(t, x).

3.5 Design of the operator O0

We now want to define the operator O0 such that ξ̃,
α̃(t, 1) and X̃1 exponentially converge to zero. Since Ao +

Lo

∑n
i=1 F

o
i e

−Ao
λi is Hurwitz due to Assumption 2, we

already have the exponential stability of ξ̃ and X̃1. Follow-
ing the methodology proposed in (Auriol and Di Meglio,
2019), we can apply the method of characteristics to obtain
for t > τ

α̃(t, 1) =

N∑
i=1

Fα
i α̃(t− τi, 1) +

n∑
i=1

F ξ
i ξ̃(t−

1

λ i
) + F̄X

i

X̃1(t−
1

λ i
) +

∫ τ

0

H̄(ν)α̃(t− ν, 1)dν +O0(ỹ(t)), (39)

where the matrices Fα
i , F

ξ
i , F̄

X
i and H̄ are identical to the

ones given in equation (26). Thus, we choose O0(ỹ(t)) as

O0(ỹ(t)) =−
N∑
i=1

Fα
i ỹ(t− τi)

−
∫ τ

0

H(ν)ỹ(t− ν)dν. (40)

We can now write the following theorem

Theorem 4. Consider the operators O0 defined by equa-
tion (40). Consider that Assumption 1 and Assumption 2

are verified. Define the observer state (X̂0, û, v̂, X̂1) = T (ξ̂,

α̂, β̂, X̂1), where (ξ̂, α̂, β̂, X̂1) is the solution of the sys-

tem (29)-(33). Then the state (X̂0, û, v̂, X̂1) exponentially
converges to (X0, u, v,X1) in the sense of the χ-norm.

Proof. We have already shown that X̃1 and ξ̃ exponen-
tially converge to zero. With this choice of operator, α̃(t, 1)
exponentially converges to zero. Consequently, Lemma 3
implies that the state (ξ̃0, α̃, β̃, X̃1) exponentially con-
verges to zero for the χ-norm. Using the invertibility and
boundedness of the linear transformation T , we conclude
the proof.

Note that the observer operator O0 may not be strictly
proper (due to the cancellation of the boundary reflec-
tion terms) and the observer system may consequently



be sensitive to delays in the measurements. Low-pass fil-
tering of the measurement will lead to a strictly proper
observer operator while still guaranteeing the convergence
of the estimated states towards the real states. This will
consequently allow robustness margins to exist (Auriol
et al., 2023). This will be done when designing the output-
feedback controller in the next section.

Compared to (Deutscher et al., 2018), our observer does
not require assumptions that guarantee the existence of
a Byrnes–Isidori normal form for ODE X1. Instead, it
relies on the necessary detectability condition stated in
Assumption 2

4. OUTPUT FEEDBACK CONTROLLER

In this section, we first design a state-feedback controller
to stabilize (1)-(6). This state-feedback controller will be
combined with the state-observer designed in Section 3
to obtain an output-feedback control law. Although the
target system (19)-(23) was helpful in designing the state-
observer, it may be convenient to transform the coupling
term G1(x)α(t, 1) by a term that depends on α(t, 0) to
design a stabilizing controller. Therefore, before designing
the control input, we will first modify the target sys-
tem (19)-(23) using a new backstepping transformation.

4.1 Backstepping transformations and target system

Consider the following transformations defined by

α(t, x) = α̌(t, x)−
∫ 1

x

Ľ(x, y)α̌(t, y)dy (41)

α̌(t, x) = ᾱ(t, x)−
∫ 1

0

L̄(x, y)ᾱ(t, y)dy, (42)

The kernel Ľ is a lower triangular matrix (i.e., (Ľ)ij = 0
if i < j) whose components are bounded piecewise contin-
uous functions. The kernel L̄ is a strictly upper-triangular
matrix (i.e., L̄ij = 0 if i ≥ j) whose components are
bounded piecewise continuous functions. The transforma-
tion (41) is invertible since it is a Volterra transform. The
kernel Ľ satisfies the following set of equations if i ≥ j

Λ+∂xĽ(x, y) + ∂yĽ(x, y)Λ
+ = 0, (43)

Λ+Ľ(x, x)− Ľ(x, x)Λ+ = 0, (44)

(Ľ(x, 1))ij = (G1(x)(Λ
+)−1)ij

+

∫ 1

x

n∑
k=1

Ľik(x, y)Ǧkj(y)
1

λj
dy, (45)

where the matrix Ǧ(x) is strictly upper-triangular (i.e. we
have Ǧi,j(x) = 0 if i ≥ j) and satisfies for all x ∈ [0, 1]

(Ǧ(x))ij = (G1(x))ij

+

∫ 1

x

n∑
k=1

Ľik(x, y)Ǧkj(y)dy if i < j. (46)

Lemma 5. The set of equations (43)-(46) has a unique
solution in Tu, which is bounded and piecewise continuous.

Proof. The proof is a consequence of the triangular struc-
ture of the different matrices appearing in the equations.
For j = 1, equation (45) can be rewritten as

(Ľ(x, 1))i1 = (G1(x)(Λ
+)−1)i,1.

Combining this boundary condition with equation (44), we
can solve equation (43) to compute Ľi1 on its domain of
definition. For j = 2, equation (46) can be rewritten as

(Ǧ(x))12 = (G1(x))12 +

∫ 1

x

Ľ11(x, y)Ǧ12(y)dy,

which is a Volterra equation that can be solved to ob-
tain Ǧ12(y) (Yoshida, 1960). This in turns gives the ker-
nels Ľi2 using (45). Iterating the process allows us to
compute the kernel matrix Ľ and the function Ǧ.

The kernel L̄ satisfies the following set of equations

Λ+∂xL̄(x, y) + ∂yL̄(x, y)Λ
+ = 0, L̄(1, y) = 0, (47)

(L̄(x, 1))ij = (Ǧ(x)(Λ+)−1)ij if i < j, (48)

Due to its triangular structure, we can obtain a direct
expression of L̄ (and consequently show its existence)
using the method of characteristics. The invertibility of
the transformation (42) is a consequence of the triangular
structure of the kernel L̄. The transformations (41)-(42)
map the system (19)-(23) to the target system

ξ̇ = Ā0ξ +G3ᾱ(t, 1) +G4X1(t), (49)

ᾱ(t, 0) = C0ξ(t) +Qβ(t, 0) + (Qγβ(0)− γα(0))X1(t)+∫ 1

0

F̄α(y)ᾱ(t, y)dy +

∫ 1

0

F β(y)β(t, y)dy + U(t), (50)

∂tᾱ(t, x) + Λ+∂xᾱ(t, x) = G5(x)ᾱ(t, 0), (51)

∂tβ(t, x)− Λ−∂xβ(t, x) = G2(x)ᾱ(t, 1), (52)

β(t, 1) = Rᾱ(t, 1), Ẋ1 = A1X1 + E1ᾱ(t, 1), (53)

where

F̄α(y) =Fα(y) + L̄(0, y) + Ľ(0, y) +

∫ 1

0

Ľ(0, ν)L̄(ν, y)dν

−
∫ 1

0

Fα(ν)L̄(ν, y)dν −
∫ y

0

Fα(ν)Ľ(ν, y)dν

+

∫ 1

0

∫ η

1

Fα(ν)Ľ(ν, η)L̄(η, y)dνdη.

The upper-triangular matrix function G5 is defined by

G5(x) = L̄(x, 0)Λ+ +

∫ 1

0

L̄(x, y)G5(y)dy.

We denote T1 the combination of the transformations (41)-
(42) such that (ξ, ᾱ, β,X1) = T1(X0, u, v,X1). We have the
following lemma

Lemma 6. If ξ(t), ᾱ(t, 0) andX1(t) exponentially converge
to zero, then the state (ξ, α, β,X1) converges to zero in the
sense of the χ-norm. This implies the stabilization of (1)-
(6) .

Proof. The proof is analogous to the proof of Lemma 3.

4.2 Time-delay formulation and state-feedback control law

Similarly to what has been done to obtain equation (26),
we can adjust the methodology from (Auriol and Di Meglio,
2019) to rewrite (ᾱ(t, 0), ξ,X1) as the solution of the fol-
lowing integral differential systems

ᾱ(t, 0) =

N∑
i=1

Pα
i ᾱ(t− τi, 0) +

∫ τ

0

Qα(ν)ᾱ(t− ν, 0)dν



+ C0ξ(t) + (Qγβ(0)− γα(0))X1(t) + U(t), (54)

ξ̇(t) = A0ξ +

n∑
i=1

P ξ
i ᾱ(t− τi, 0)

+

∫ τ

0

Qξ(ν)ᾱ(t− ν, 0)dν +G4X1(t), (55)

Ẋ1(t) = A1X1(t) +

n∑
i=1

PX
i ᾱ(t− 1

λi
, 0)

+

∫ τ

0

QX(ν)ᾱ(t− ν, 0)dν, (56)

where the matrices Pα, P ξ, PX , Qα, Qξ and QX can be
explicitly computed following the methodology of (Auriol
and Di Meglio, 2019). To design a state-feedback control
law, we first simplify equation (54) by choosing

U(t) = Ū(t)−
N∑
i=1

Pα
i ᾱ(t− τi, 0)−

∫ τ

0

Qα(ν)ᾱ(t− ν, 0)dν

− C0ξ(t)− (Qγβ(0)− γα(0))X1(t), (57)

so that we have ᾱ(t, 0) = Ū(t). Note that, due to the

cancellation of the reflection term
∑N

i=1 P
α
i ᾱ(t−τi, 0), the

control law U(t) will not be strictly proper. Consequently,
it may be necessary to low-pass filter it to guarantee the
robustness of the closed-loop system (Auriol et al., 2023).
Inspired by (Bekiaris-Liberis and Krstic, 2010), we define
the following change of coordinates

X̄1(t) = X1(t)+τ2
∫ 1

0

( ∫ x

0

e−A1τ(x−s)QX(τ(1− s))ds
)

Ū(t− (1− x)τ)dx, (58)

ξ̄(t) = ξ(t)+τ2
∫ 1

0

( ∫ x

0

e−A0τ(x−s)Q̄ξ(τ(1− s))ds
)

Ū(t− (1− x)τ)dx, (59)

where Q̄ξ(ν) = Qξ(ν)−G4τ
∫ 1−ν

τ

0
e−A1(τ(1−s)−ν) QX(τ(1−

s))ds. We obtain

˙̄ξ(t) = A0ξ̄(t) + E0γβ(0)X̄1(t) +
n∑

i=1

P ξ
i Ū(t− τi + Ē0Ū(t)

˙̄X1(t) = A1X̄1(t) +

n∑
i=1

PX
i Ū(t− 1

λi
) + Ē1Ū(t)

where Ē1 = τ
∫ 1

0
e−A1τ(1−s)QX(τ(1 − s))ds and Ē0 =

τ
∫ 1

0
e−A0τ(1−s)Q̄ξ(τ(1− s))ds. Let us denote

Xc(t) =

(
ξ̄(t)
X̄1(t)

)
, Ac =

(
A0 E0γβ(0)
0 A1

)
.

Inspired by (Artstein, 1982), we finally define the state Zc

as

Zc(t) =Xc(t) +

n∑
i=1

∫ t

t−τi

eAc(t−s−τi)

(
P ξ
i
0

)
Ū(s)ds

+

n∑
i=1

∫ t

t− 1
λi

eAc(t−s− 1
λ i

)

(
0

PX
i

)
Ū(s)ds. (60)

Consequently, we obtain Żc(t) = AcZc(t) + B̄Ū(t), with

B̄ =

(
Ē0

Ē1

)
+

n∑
i=1

(
e−AcτiP ξ

i

e
−Ac

1
λi PX

i

)
.

We are led to the following stabilizability assumption

Assumption 7. The pair (Ac, B̄) is stabilizable, i.e., there
exists Kc such that Ac + B̄Kc is Hurwitz.

Theorem 8. Consider that Assumptions 1 and 7 are ver-
ified. Consider the control law U(t) defined by eq. (57)
where Ū(t) = KcZc(t), where Zc is defined from X̄ and Y
using transformations (58)-(59) and (60). Then the closed-
loop system (1)-(6) is exponentially stable.

Proof. The exponential stability of Zc implies that Ū
converges to zero. This implies the exponential stability of
the state ξ (using (59)) and X1 (using (58)). This, in turn,
implies the exponential convergence of the state ᾱ(t, 0) and
consequently of (X0, u, v,X1).

4.3 Output-feedback control law

Theorem 9. Consider system (1)-(6) and that Assump-
tions 1, 7 and 2 are satisfied. Consider the opera-
tor O0 defined by equation (40). Define the observer

states (X̂0, û, v̂, X̂1) = T (ξ̂, α̂, β̂, ν̂), where (ξ̂, α̂, β̂, ν̂) is
the solution of the system (29)-(33). Define the state

(ξ, ᾱ, β,X1) = T1(X̂0, û, v̂, X̂1). Define ZC using trans-
formations (59)-(58) and (60). There exists a low pass
filter w(s) such that the control law defined in the Laplace
domain by

Û(s) = (−
N∑
i=1

Pα
i ᾱ(t− τi, 0)−

∫ τ

0

Qα(ν)ᾱ((t− ν, 0)dν

− C0ξ(t)− (Qγβ(0)− γα(0))X1(t) +KcZC(t))w(s)
(61)

is strictly proper and exponentially stabilizes (1)-(6) .

Proof. The closed-loop stability is implied by Theorems 4
and (8). The existence of a low-pass filter that makes the
control law strictly proper is shown in (Auriol et al., 2023).

As explained in (Auriol et al., 2023), having a strictly
proper controller guarantees the existence of robustness
margins for a broad class of perturbations: input delays,
uncertainties on the ODE parameters, uncertainties on the
transport velocities (Curtain and Zwart, 2012).

5. CONCLUDING REMARKS

In this paper, we have designed an output-feedback con-
troller for a class of n + m linear hyperbolic ODE-PDE-
ODE systems for which the PDE subsystem is actuated
and measured. The proposed approach combines backstep-
ping transformations and a rewriting of the original system
as a time-delay system. We first designed a state observer
that was then combined with a state-feedback control law
to obtain an output-feedback controller. In future works,
we will consider networks of ODE and PDEs with a more
complex structure (star-shaped networks).
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