
HAL Id: hal-04611626
https://hal.science/hal-04611626v1

Submitted on 28 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Shape differentiation for Poincaré maps of harmonic
fields in toroidal domains

Robin Roussel

To cite this version:
Robin Roussel. Shape differentiation for Poincaré maps of harmonic fields in toroidal domains. The
Journal of Geometric Analysis, 2024, 35 (1), pp.19. �10.1007/s12220-024-01849-6�. �hal-04611626�

https://hal.science/hal-04611626v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Shape differentiation for Poincaré maps of harmonic fields in toroidal
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October 28, 2024

Abstract

In this article, we study Poincaré maps of harmonic fields in toroidal domains using a shape variational

approach. Given a bounded domain of R3, we define its harmonic fields as the set of magnetic fields which

are curl free and tangent to the boundary. For toroidal domains, this space is one dimensional, and one may

thus single out a harmonic field by specifying a degree of freedom, such as the circulation along a toroidal

loop. We are then interested in the Poincaré maps of such fields restricted to the boundary, which produce

diffeomorphisms of the circle. We begin by proving a general shape differentiability result of such Poincaré

maps in the smooth category, and obtain a general formula for the shape derivative. We then investigate

two specific examples of interest; axisymmetric domains, and domains for which the harmonic field has a

diophantine rotation number on the boundary. We prove that, in the first case, the shape derivative of the

Poincaré map is always identically zero, whereas in the second case, assuming an additional condition on

the geometry of the domain, the shape derivative of the Poincaré map may be any smooth function of the

circle by choosing an appropriate perturbation of the domain.
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Introduction

When designing external magnetic fields for confinement in fusion reactors, such as tokamaks or stellarators,
dynamical properties of the field lines play a key role in the stability properties of the plasma. In this context,
spacial variations of the magnetic field magnitude lead to a drift of charged particles. However, introducing
a twist in the magnetic field lines is known to average out the drift along the trajectories of charged particles
[IGPW20][Chapter 5][Lit83, HS05][Chapter 7]. To quantify this notion of twist, an important object in reactor
design is the so-called rotational transform [IGPW20][Chapter 7]. Assuming the magnetic field is foliated by
two-dimensional tori, the rotational transform is defined on each leaf by the average ratio of poloidal turns
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and toroidal turns along the field lines. Mathematically, this is given by the rotation number of the Poincaré
map on each leaf.

In addition to giving information on the stability of charged particles in the plasma, the rotational transform
is also useful in studying the topological and dynamical stability of the magnetic field itself. Indeed, due to
errors arising from the coil design and fluctuations in the plasma, the actual magnetic field inside a reactor
will be a perturbation of the theoretical one. Loosely speaking, KAM theory and Hamiltonian representations
of magnetic fields lead to non-degenerate leaves of the magnetic field with a diophantine rotational transform
being preserved after perturbations, whereas leaves with rational rotational transform may lead to chaotic
regions and magnetic islands [IGPW20][Chapter 10][LHL90].

Mathematically, however, the assumption of a foliated magnetic field leads to complications. Indeed,
the existence of such foliated magnetic fields is still closely linked to open questions. The most notable
problem related to existence of foliations is Grad’s conjecture [Gra67], which states that foliated smooth
MHD equilibria with non-constant pressure should be axisymmetric. Theoretical results as well as a solid
mathematical framework are therefore scarce when it comes to the study of rotational transform profiles. We
still refer to a series of articles by Enciso, Luque and Peralta-Salas [EPS15, ELPS20, ELP23], which study the
dynamical properties of Beltrami fields. These articles develop a thorough theory to study Poincaré maps of
Beltrami fields with small eigenvalue in thin toroidal tubes, and deduce several interesting results from this,
such as the construction of non-trivial stepped pressure MHD equilibria in [ELP23].

In this paper, we are more specifically interested in the study of harmonic fields. Given a domain Ω of R3,
we say that a vector field on Ω is harmonic if it is divergence free, curl free, and tangent to the boundary.
When Ω has the topology of a full torus, the space of harmonic fields is one dimensional, and we may therefore
single out a generator of this space by picking a normalization criterion, such as the circulation along a toroidal
loop. From a physical point of view, harmonic fields are important in the design of stellarators, which aim
to stabilize plasma without inducing current inside it. This therefore leads to magnetic fields with small curl
inside the plasma domain, which may be approximated by harmonic fields. The fact that one may assign
a harmonic field to each toroidal domain can lead to stellerator design using shape optimization techniques.
This is what was done for example in [RR24] to optimize magnetic helicity of harmonic fields, which is another
way to quantify the twist of a magnetic field from a topological point of view instead of a dynamical one.

Although, to the author’s knowledge, there is no clearly established conjecture in this direction, there seems
to be no result on the existence of non-trivial foliated harmonic fields. To simplify things, we therefore choose
to study the Poincaré maps of harmonic fields on the boundary only. Indeed, since harmonic fields of Ω are
by definition tangent to the boundary, they define a flow on ∂Ω. Therefore, if Ω is a toroidal domain, the
Poincaré map of the harmonic field restricted to the boundary is a circle diffeomorphism, to which we may
associate a rotation number. Since one may assign a harmonic field to each toroidal domain, the approach of
this article is to investigate properties of the Poincaré maps of harmonic fields on the boundary using a shape
differentiation approach, that is, to study how variations of the domain may lead to variations of the Poincaré
map in the space of diffeomoprhisms of the circle. To avoid technicalities related to regularity, we choose to
work in the smooth category throughout the article. We will therefore only be working with smooth domains,
use smooth functions and vector fields, and prove smoothness of the studied objects when needed.

General approach and main results

Before discussing the contributions of the article, we give a formal introduction to the main objects we will
study. The precise definitions will be given in Section 1. Let Ω be a smooth toroidal domain, that is, a smooth
open set of R3 such that Ω̄ is diffeomorphic to the full torus S1 ×D2, where D2 is the closed unit disk of R2,
and S1 = R/Z. Given a curve γ which generates the first homology group of Ω̄, there exists a unique harmonic
field B(Ω) verifying

ˆ

γ

B(Ω) · dl = 1.

As will be further explained in Section 1, this can bee seen by identifying harmonic fields as representatives
of the first De Rham cohomology space of Ω, and using De Rham’s theorem. In order to define the Poincaré
map of B(Ω) on the boundary as a diffeomorphism of the circle, we need the following data:

• γ, a generator of the first homology group of Ω̄,

• Σ, a poloidal cut of ∂Ω,

• Coordinates on Σ, that is, a diffeomorphism between S1 and Σ.
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Furthermore, Σ needs to be a Poincaré cut of B(Ω)|∂Ω. All the required data and assumptions will be given by

the notion of admissible embeddings of the torus in R3, which we denote Embad
(

T2;R3
)

(see Definition 1.3).
We are thus able to consider the mapping

Π : Embad
(

T2;R3
)

→ Diff(S1),

which associates with each admissible embedding the Poincaré map of B(Ω), where Ω is the smooth toroidal
domain whose boundary is the image of the embedding. We also note that we model S1 as R/Z throughout
the paper, so that S1 is equipped with canonical coordinates inherited from R.

Although Π is not, strictly speaking, a shape function (as it also depends on the coordinates on the
boundary), the techniques we will use to study it are largely inspired by shape differentiation. Let E be an
admissible embedding, and t 7→ Pt a differentiable path of smooth diffeomorphisms of R3 with P0 = id. Let
V in Vec

(

R3
)

be the derivative of t 7→ Pt at time t = 0. As will be further explained later in the article,
Et := Pt ◦E is then admissible as well for t small enough. Our goal is then to study the derivative of t 7→ Π(Et)
in the space of circle diffeomorphisms. More precisely, we will show that there exist a linear map V 7→ Π′(E ;V )
such that

Π(Et) = Π(E) + tΠ′(E ;V ) + o(t).

We refer to Π′(E ;V ) as the shape derivative of the Poincaré map at E in the direction V .
In this article, we establish this shape differentiability result and we study the image of the map V 7→

Π′(E ;V ) in specific cases. The first case we will study is the one where E is the usual embedding of the
standard axisymmetric torus. In this case, we will show that Π′(E ;V ) actually vanishes for all V . This result
is given in Theorem 3.1. Then, we will study the case where Π(E) is a diophantine rotation. In this case, we
will show that under an additional assumption on the geometry of the domain, the mapping V 7→ Π′(E ;V ) is
surjective. This result is given in Theorem 4.1.

Outline of the article

The article is organized as follows.

• In Section 1, we give a proper definition of the objects we will study throughout the paper. Firstly, we
define in Section 1.1 a way to associate a harmonic field with each toroidal domain. We then give a
weak formulation for this harmonic field, which will be used during the shape differentiation process. In
Section 1.2, we then define the notion of Poincaré map we will be studying. This is done first by defining
a notion of admissible embeddings of the torus in R3 which provides the necessary data, and then by
describing how we construct the Poincaré map from an admissible embedding.

• In Section 2, we study the general shape differentiability of the Poincaré map of harmonic fields. The more
demanding step is to prove shape differentiability of the harmonic fields in the smooth category, which is
given by Theorem 2.1 of Section 2.1. The classical method to obtain Lagrangian shape differentiability
of PDE solutions is to pull the weak formulation back onto a fixed domain, and to use an implicit
function theorem argument (see for example [HP18][Chapter 5]). This approach was already taken to
study the shape differentiability of harmonic fields in [RR24]. However, this method generally leads
to shape differentiability in the variational space of the PDE, which in our case is H-curl. Since we
want to differentiate the flow of this vector field, this regularity is not sufficient. We therefore proceed
by identifying the correct shape derivative, and then estimate the associated first-order remainder in
Ck norms using elliptic regularity results to obtain shape differentiability in the smooth category. In
Section 2.2, we then obtain the shape derivative of the Poincaré map, which is relatively straightforward
using the results of the previous section. We also provide a useful formula for the case in which the
coordinates on the boundary linearize the harmonic field, which will be used in Sections 3 and 4.

• In Section 3, we study the particular case of a standard axisymmetric torus. For axisymmetric domains
the harmonic field is explicitly known, greatly simplifying the computations. We prove in Theorem 3.1
that, in this case, the shape derivative of the Poincaré map always vanishes. This implies that around
these domains, it is necessary to go to second-order in order to find local information about the Poincaré
map of harmonic fields. The geometry of the domain plays a role in two steps of the proof. First through
the explicit expression of the harmonic field and its relation with the curvature of the boundary, and
second, through symmetries of the solution to a PDE which appears in the expression of the shape
derivative of the harmonic field.
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• In Section 4, we study the case where the Poincaré map has diophantine rotation number. Under
an additional assumption relating the curvature of the boundary and the harmonic field, we prove
Theorem 4.1, which states that the shape derivative of the Poincaré map can be any smooth function of
the circle if we choose a correct perturbation of the embedding. For this, we use cohomological equations
to prove that the shape derivative of the Poincaré map can be any zero average function of the circle,
and a specific normal perturbation to generate the last remaining dimension.

Notations

• S1
ℓ = R/(ℓZ) and S1 = S1

1 . We also define T2 = R2/Z2 ∼= S1 × S1 and denote the closed unit disk of R2

as D2.

• For two vectors u and v in R3, u · v is their Euclidean scalar product.

• Given a smooth manifold M with (possibly empty) smooth boundary and k in N ∪ {∞}, Ck(M) is the
space of real valued k times differentiable functions on M , and Vec(M) is the set of smooth vector fields
of M .

• Given a smooth manifold M and a continuous family of vector fields s ∈ R 7→ Xs ∈ Vec(M), we denote

−→exp
ˆ t

0

Xsds,

as the flow of s 7→ Xs at time t when it is well-defined. In our case, the manifold will always be compact
without boundary, so that there is global existence of flow.

• Let X,Y be topological spaces and f : X → Y a continuous function. For k in N, Hk(X) is the k-th
singular homology group of X , and f∗ : Hk(X) → Hk(Y ) is the group morphism associated to f . We
refer to [Hat02][Chapter 2] for the precise definitions of these objects. We note however that only basic
homological notions will be used so that an intuitive understanding of singular homology and its relation
with De Rham cohomology will be sufficient to understand its use in the paper.

• Suppose Ω is a smooth toroidal domain of R3, that is an open set such that Ω̄ is smoothly diffeomorphic
to S1 ×D2, and (φ, θ) : ∂Ω → T2 are smooth coordinates on ∂Ω.

– n is the unit normal outward pointing vector field on ∂Ω.

– div Γ is the divergence on ∂Ω, and ∇Γ the tangential gradient. Both are defined using the metric
on ∂Ω inherited from the Euclidean metric on R3.

–
√
g is the square root of the determinant of the metric matrix in the (φ, θ) coordinates. As such,

the surface form on ∂Ω is given by
√
gdφdθ.

– Given ~ω = (ω1, ω2) in R2 and f in C∞(∂Ω), we denote 〈~ω,∇T2f〉 = ω1∂φf + ω2∂θf .

– Given a tangent vector u on ∂Ω, u⊥ := n× u.

1 Definitions

1.1 Harmonic fields

Let Ω be a smooth toroidal domain of R3, that is, an open set of R3 such that Ω̄ is smoothly diffeomorphic to
S1 ×D2. We define the space of harmonic fields of Ω as follows

K(Ω) =
{

u ∈ L2(Ω)3 | curlu = 0, div u = 0 and u · n = 0
}

,

where the curl and divergence should be understood in the weak sense. We now explain how one may single
out a harmonic field in K(Ω). Using the classical identification between vector fields and differential one-forms,
we can relate the set of harmonic vector fields K(Ω) to the set of harmonic one forms on Ω̄. Furthermore, from
a classical result of Hodge theory (see [Sch95][Theorem 2.6.1]) harmonic one forms are representatives of the
first De Rham cohomology spaces of Ω̄. From this, we deduce that K(Ω) is one dimensional. Then, choosing a
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generator γ of the singular homology group H1

(

Ω̄
) ∼= Z, we know from De Rham’s theorem that there exists

a unique harmonic field B(Ω) ∈ K(Ω) such that

ˆ

γ

B(Ω) · dl = 1.

This harmonic vector field in fact also depends on the choice of generator γ, so that B(Ω) is a slight abuse of
notation. However, if we were to choose a different generator γ̃ = ±γ, we would have

ˆ

γ̃

B(Ω) · dl = ±1,

so that changing the generator of H1(Ω̄) can only change the harmonic field B(Ω) by a sign. We also note
that, using the previously mentioned identification with harmonic one forms, we know from [Sch95][Theorem
2.2.7] that B(Ω) is in fact smooth up to the boundary, that is, it is in Vec

(

Ω̄
)

.
Although this definition is sufficient to characterize B(Ω), it will also be useful for shape differentiation to

have a weak formulation for the harmonic field. Since Ω is a smooth toroidal domain, there exists a smooth
embedding F : S1 ×D2 ∋ (φ, x) 7→ F(φ, x) ∈ Ω̄. We define the cutting surface Σ of Ω as

Σ =
{

F(0, x) | x ∈ D2
}

.

Therefore, F defines a diffeomorphism from (0, 1)× S1 to Ω̄\Σ. Ω\Σ is then a simply connected pseudo-
Lipschitz domain [ABDG98][Definition 3.1]. Given a function u in H1(Ω\Σ), u ◦ F is in H1((0, 1)×D2), and
we can define its traces on {0} ×D2 and {1} ×D2. This allows us to define the jump of u across Σ as

[[u]]Σ =
(

(u ◦ F)|{1}×D2

)

◦ F−1 −
(

(u ◦ F)|{0}×D2

)

◦ F−1,

which is a function of H1/2(Σ). We now define for c ∈ R

Vc(Ω\Σ) =
{

u ∈ H1(Ω\Σ) | [[u]]Σ = c
}

.

From [ABDG98][Lemma 3.11], we know that for u in Vc(Ω\Σ), ∇u extends to a curl free vector field of Ω,
which we denote ∇̃u. There is also a natural identification between V0(Ω\Σ) and H1(Ω). This allows us to
construct the harmonic field in the following way, as is done for example in [ABDG98, ARCR+18].

Proposition 1.1. There exists a unique zero average solution to the following weak formulation. Find u ∈
V1(Ω\Σ) such that for all v ∈ H1(Ω)

ˆ

Ω

∇u · ∇v = 0. (1)

Furthermore, ∇̃u is a harmonic field of Ω.

Moreover, the jump condition across Σ leads to the equality

ˆ

F∗γ

∇̃u · dl = 1,

where u is given by Proposition 1.1, γ is the canonical generator of H1

(

S1 ×D2
)

and F∗ is the isomorphism

between H1

(

S1 ×D2
)

and H1

(

Ω̄
)

associated to F . Therefore, ∇̃u is the harmonic field B(Ω) associated to

the generator F∗γ of H1

(

Ω̄
)

.

Remark 1.2. This jump condition on u arises from the fact that, using Poincaré’s lemma, B(Ω) is locally a
gradient vector field, but this is not true globally. We note that one may also use a multivalued, or S1-valued,
function u to circumvent this jump condition. However, as mentioned earlier, this jump condition approach
is already common for defining weak formulations of harmonic fields, and allows us to work in usual Sobolev
spaces.
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1.2 Poincaré map

We now wish to define the Poincaré maps of harmonic fields on the boundary of toroidal domains. In order
to do so, we proceed by specifying coordinates on the boundary. Indeed, having such coordinates allows us to
define a Poincaré cut and coordinates on this Poincaré cut, which is the required data to obtain the Poincaré
map as a diffeomorphism of S1. This is done by working with the set of smooth embeddings of T2 into R3,
which we denote by Emb

(

T2;R3
)

. We recall that, with an element E of Emb
(

T2;R3
)

, we can associate an
isomorphism E∗ between the singular homology groups of T2 and the ones of E(T2). We denote by γφ and γθ
the canonical generators of the homology group H1(T

2). In order to be able to define the Poincaré map, we
need to make some further assumptions on the embedding which are given by the following definition.

Definition 1.3. Let E be in Emb
(

T2;R3
)

. We say E is admissible if it satisfies the following conditions.

• E(T2) bounds a smooth toroidal domain Ω in R3.

• E is toroidal, that is

– E∗γφ is trivial in H1 (Ω
c) and generates H1

(

Ω̄
)

,

– E∗γθ is trivial in H1

(

Ω̄
)

and generates H1 (Ω
c).

• E is transverse, that is, if B(Ω) is the harmonic field of Ω associated to the generator E∗γφ then, B(Ω)φ

is positive on ∂Ω, where (φ, θ) = E−1 are the coordinates induced on ∂Ω by E.

We denote by Embad
(

T2;R3
)

the set of admissible embeddings of T2 into R3.

Remark 1.4. Here are a few remarks which may help the reader to interpret the definition of admissible
embeddings:

• The first condition of Definition 1.3 is not redundant. Indeed, although a smoothly embedded torus in S3

always bounds a full torus, this result is not true for embeddings in R3. We refer to [Arn10][Definition
3] for a description of such domains, referred to as knotted anti-toi, as well as [CDG02][Figure 13] for
an illustration of such embedded tori.

• The second condition of Definition 1.3 essentially states that (φ, θ) = E−1 define toroidal and poloidal
coordinates respectively on the boundary of Ω. Although it is only necessary to assume that E∗γφ generates
H1

(

Ω̄
)

to define the Poincaré map, the additional assumptions are here to ensure that the Poincaré map
we will construct corresponds to what we may expect geometrically. For example, the assumption that
E∗γθ is trivial in H1

(

Ω̄
)

means that curves of constant φ correspond to poloidal cuts of ∂Ω.

• If F : S1 × D2 → R3 is a smooth embedding and i : T2 → S1 × D2 is the canonical injection
onto ∂

(

S1 ×D2
)

, we obtain that F ◦ i verifies the first two assumptions of Definition 1.3 with Ω =

F
(

S1 ×D2
)

.

• The last condition of Definition 1.3 ensures that B(Ω) is transverse to poloidal cuts, that is, nowhere
tangent to curves of constant φ. Therefore, its Poincaré map may be defined on such cuts.

We now explain how we can define the Poincaré maps of harmonic fields. Let E be an admissible embedding,
Ω be the toroidal domain such that ∂Ω = E

(

T2
)

, B(Ω) the harmonic field of Ω, and (φ, θ) the coordinates on
∂Ω associated with E . First, to define the Poincaré map, it is useful to normalize the harmonic field. This is
done by defining the following vector field on ∂Ω:

X(E) = B(Ω)

B(Ω)φ
. (2)

From this definition, and the fact that B(Ω)φ is positive, we know that the field lines of X(E) correspond to
the ones of B(Ω) up to an order-preserving reparametrization of time. Furthermore, we get that X(E)φ = 1,
so that the field lines of X(E) evolve linearly in φ. This implies that if a field line starts on the poloidal cut
φ = 0 at time t = 0, it will return to the same cut at time t = 1, which is precisely what we need for the
Poincaré map.
We may therefore define the Poincaré map of B(Ω) as the one time flow of X(E) restricted to the cut φ = 0.
However, it is more convenient to work on the fixed space S1 in order to study variations of the Poincaré map.
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This can be done once again using the (φ, θ) coordinates associated with E . Let S1 ∋ φ 7→ Xφ(E) ∈ Vec(S1)
be the one-parameter family of vector fields given by

Xφ(E)(θ) = X(E)θ(φ, θ)eθ, (3)

where eθ is the canonical unit vector field of S1. We then define the Poincaré map Π(E) as

Π(E) = −→exp
ˆ 1

0

Xφ(E)dφ, (4)

which is a diffeomorphism of the circle. It will also prove to be useful to define the same flow at time φ, which
we denote by Πφ(E).

2 Shape differentiation

In this section, we consider an admissible embedding E , Ω its corresponding domain, and t 7→ Pt a differentiable
family of diffeomoprhisms of R3 with P0 = id. We denote

V :=
d

dt
∣

∣t=0
Pt,

which is a smooth vector field of R3. Denoting Et = Pt ◦ E , our goal is to prove that t 7→ Π(Et) is differentiable
in Diff(S1). More precisely, we will identify a linear map V 7→ Π′(E ;V ) such that

Π(Et) = Π(E) + tΠ′(E ;V ) + o(t).

2.1 Shape differentiation of harmonic fields in the smooth category

Before studying the shape differentiability of the Poincaré map, we need to prove that t 7→ B(Ωt) is itself
shape differentiable. Here, Ω is the domain associated with E and Ωt = Pt(Ω) is the one associated to Et.

The classical approach for such problems, that is, shape differentiability of solutions to PDEs, is to define
a certain way to pullback the solutions onto the fixed domain Ω, and to use an implicit function argument on
the pulled-back weak formulation [HP18][Chapter 5]. However, this only leads to shape differentiability in the
variational space of the PDE, which in the case of Proposition 1.1 is H(curl ,Ω). One therefore needs to use
elliptic regularity results to obtain shape differentiability in the smooth category. This is done for example
in [HP18][Section 5.5] for a Poisson problem with Neumann boundary conditions using the weak formulation
restricted to Hk spaces and an implicit function argument. We however, will estimate the difference between
the solution to our PDE and its first-order approximation with respect to the deformation directly in Hk

norms, which in the end uses similar results of elliptic regularity.
Before stating the main result of this section, we note that the way in which we choose to pullback the

harmonic field onto the fixed domain Ω affects the final result for the shape derivative formula. We will use
two ways of pulling back Bt onto Ω. The first one is obtained by taking the pushforward by P−1

t of Bt as a
vector field. This has the advantage of preserving the field lines of Bt, which is precisely what we want in order
to study the change in dynamics of the harmonic fields. The second one is obtained by taking the pullback
by Pt of Bt when the latter is seen as a one-form on Ωt. This is given by the transformation (Pt)

∗
1 which we

will introduce in Definition 2.2. Although this transformation does not preserve field lines, we will see that it
behaves well with respect to the weak formulation for harmonic fields given in Proposition 1.1. Moreover, this
transformation maps gradient fields to gradient fields, and curl-free fields to curl-free fields1. This property
will be used in order to reduce the shape differentiability problem to elliptic regularity estimates on a classical
PDE with scalar-valued solutions. Although we will not be using it here, another natural way to transform
the harmonic fields is to take the pullback by Pt when Bt is seen as a two-form. This is what was done in
[RR24] to prove shape differentiability of the harmonic field in a less regular context. We refer the reader to
[HL13] for elements of shape differentiation using the differential forms formalism.

Throughout this section, we will often decompose vector fields in the canonical Cartesian basis. Moreover,
if u and v are vector fields in a domain of R3, Du is the Jacobian matrix field of u in Cartesian coordinates,
and (Du)v is the matrix vector product in Cartesian coordinates, whenever these objects are well defined.

1In the language of differential forms; exact forms to exact forms, and closed forms to closed forms
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Theorem 2.1. The mapping
{

R → Vec
(

Ω̄
)

t 7→
(

P−1
t

)

∗
Bt

is differentiable at zero, and its derivative is given by

B′
V = [V,B0] +∇uV , (5)

where uV ∈ C∞(Ω) verifies
{

∆uV = 0 in Ω,

∇uV · n = div Γ (B0 (V · n)) on ∂Ω.
(6)

In order to prove Theorem 2.1, we define ways to pullback functions and vector fields of Ωt onto the fixed
domain Ω. Although these transformations are quite common for shape differentiation of classical boundary
value problems, we choose to introduce them in a way which clarifies their link with pullbacks of differential
forms. This is what was done for example in [RR24].

Definition 2.2. Let v0 be in L2(Ωt) and v1 in L2(Ωt)
3. We define

(Pt)
∗
0v0 = v0 ◦ Pt,

(Pt)
∗
1v1 = DPT

t v1 ◦ Pt.

The proof of Theorem 2.1 will come in two steps. First, we will prove that t 7→ (Pt)
∗
1Bt is shape differen-

tiable. As we will see, this way of pulling back Bt onto Ω behaves well with respect to the weak formulation
given in Proposition 1.1 to construct the harmonic fields. Also, using the transformations of Definition 2.2
and the aforementioned weak formulation, we will be able to write the difference between t 7→ (Pt)

∗
1Bt and its

first-order expansion at t = 0 as the gradient of a function ϕt. Furthermore, we will show that ϕt satisfies a
linear elliptic PDE, on which we will use classical elliptic regularity results in order to prove that ϕt is o(t) in
Ck for all k. The rest of the proof will then come by composing the correct transformations in order to recover
(P−1

t )∗Bt from (Pt)
∗
1Bt, and differentiating.

Before studying the shape differentiation of Bt, we give some useful properties of the pullbacks introduced
in Definition 2.2. We will be using the objects introduced in Section 1.1 to define the weak formulation in Ω
with an additional t in subscript for the corresponding objects in the domain Ωt. We recall that H(curl ,Ω) is
the space of square integrable vector fields of Ω which have square integrable curl.

Lemma 2.3. Let c be a real number. Then, the diagram

Vc(Ωt\Σt) H(curl ,Ωt)

Vc(Ω\Σ) H(curl ,Ω)

∇̃

∇̃

(Pt)
∗

0 (Pt)
∗

1
(7)

is commutative.

Proof. As was mentioned earlier, the horizontal arrows of (7) are given by [ABDG98][Lemma 3.11]. We thus
begin by proving that the vertical arrows are well-defined. For the first arrow, take u in H1(Ωt\Σt). It is then
straightforward that Φ0

tV u = u ◦ Pt is in H1(Ω\Σ). Furthermore, we have using Ft = Pt ◦ F

[[(Pt)
∗
0u]]Σ =

(

((Pt)
∗
0u ◦ E)|D2×{1}

)

◦ E−1 −
(

((Pt)
∗
0u ◦ E)|D2×{0}

)

◦ E−1

=
[(

(u ◦ Et)|D2×{1}

)

◦ E−1
t −

(

(u ◦ Et)|D2×{0}

)

◦ E−1
t

]

◦ Pt

= [[u]]Σt ◦ Pt,

so that if u is in Vc(Ωt\Σt), (Pt)
∗
0u is in Vc(Ω\Σ). To prove that (Pt)

∗
1 maps H(curl ,Ωt) to H(curl ,Ω) and

that the diagram is commutative, the computations are exactly the same as in the proof of [RR24][Proposition
4], so we do not give the details here.
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Lemma 2.4. Let u and v be in L2(Ωt)
3. Then

ˆ

Ωt

u · v =

ˆ

Ω

(α(t)(Pt)
∗
1u) · ((Pt)

∗
1v),

where α(t) = det (DPt)DP−1
t DP−T

t . Furthermore t ∈ R 7→ α(t) ∈ C∞
(

Ω̄,M3(R)
)

is differentiable at zero,

and its derivative verifies, for every u in Vec
(

Ω̄
)

,

α′(0)u = (div u)V + curl (u× V )− curlu× V −∇(V · u).

Proof. The first equality can be found by a simple change of variables, and algebraic manipulation. For
the second statement, we first notice that R ∋ t 7→ DPt ∈ C∞

(

Ω̄,M3(R)
)

is differentiable at zero, and its
derivative is DV . Moreover, for t = 0, DPt is constant on Ω̄ equal to the identity matrix. Also, M 7→ det(M),
M 7→ M−1 and M 7→ M−T are differentiable at the identity. We deduce that t 7→ α(t) is indeed differentiable
at 0. Its derivative is then given by

α′(0) = tr (DV ) I−DV −DV T ,

= div (V )I−DV −DV T .

Given u in Vec
(

Ω̄
)

and combining the identities

∇(V · u) = DV Tu+DuTV,

curl (u× V ) = DuV −DV u− (div u)V + (div V )u,

(Du−DuT )V = curlu× V,

we find the desired formula.

Proposition 2.5. Let ϕt be defined as

ϕt = (Pt)
∗
0ut − u0 − t(uV + V ·B0), t ∈ R

Where ut is the solution to the weak formulation given in Proposition 1.1 in the deformed domain Ωt. Then,
ϕt is a function in H1(Ω) which solves

{

−div (α(t)∇ϕt) = div (α1(t)B0) + tdiv (α0(t)∇(uV + V · B0)) in Ω,

(α(t)∇ϕt) · n = − (α1(t)B0) · n− t (α0(t)∇(uV + V ·B0)) · n on ∂Ω,
(8)

with α0(t) = α(t) − I and α1(t) = α(t) − I− tα′(0).

Proof. First, we know from the definition of ut and the commutativity of (7) that u0 and (Pt)
∗
0ut are in

V1(Ω\Σ). Therefore, (Pt)
∗
0ut − u0 is in V0(Ω\Σ) ∼= H1(Ω). We deduce that ϕt is indeed in H1(Ω).

Now, we identify a weak formulation for (Pt)
∗
0ut on the fixed domain Ω. We recall that ut is a function of

V1(Ωt\Σt) such that for all v in H1(Ωt)
ˆ

Ωt

∇ut · ∇v = 0.

Using (7) and Lemma 2.4, we therefore find
ˆ

Ω

(α(t) (∇(Pt)
∗
0ut)) · (∇(Pt)

∗
0v) = 0.

Moreover, we can observe that (Pt)
∗
0 is an isomorphism from H1(Ωt) to H1(Ω) with inverse (P−1

t )∗0. Therefore,
for all v in H1(Ω), we have

ˆ

Ω

(α(t) (∇(Pt)
∗
0ut)) · ∇v = 0. (9)

Now, using ϕt = (Pt)
∗
0ut − u0 − t(uV + V ·B0), we have

ˆ

Ω

(α(t)∇ϕt) · ∇v =

ˆ

Ω

(α(t) (∇(Pt)
∗
0ut)) · ∇v −

ˆ

Ω

(α(t)∇u0) · ∇v − t

ˆ

Ω

(α(t)∇ (uV + V ·B0)) · ∇v

=−
ˆ

Ω

∇u0 · ∇v − t

ˆ

Ω

(α′(0)∇u0) · ∇v − t

ˆ

Ω

∇(uV + V ·B0) · ∇v

−
ˆ

Ω

[(α(t)− I− tα′(0))∇u0] · ∇v − t

ˆ

Ω

[(α(t) − I)∇(uV + V · B0)] · ∇v,

9



where we used Eq. (9). Using B0 = ∇̃u0 and the fact that B0 is L2 orthogonal to gradient vector fields, we
obtain

ˆ

Ω

(α(t)∇ϕt) · ∇v =− t

ˆ

Ω

(α′(0)B0) · ∇v − t

ˆ

Ω

∇(uV + V ·B0) · ∇v

−
ˆ

Ω

(α1(t)B0) · ∇v − t

ˆ

Ω

(α0(t)∇(uV + V · B0)) · ∇v.

We now want to prove that the first two terms of the previous equation cancel out. Let us choose a smooth
test function v in C∞

(

Ω̄
)

. Using the definition of uV given in Eq. (6), we have

ˆ

Ω

∇uV · ∇v =

ˆ

∂Ω

div Γ(B0(V · n))v

= −
ˆ

∂Ω

(B0 · ∇Γv)V · n

= −
ˆ

∂Ω

(B0 · ∇v)V · n.

Using Lemma 2.4, we also have

ˆ

Ω

(α′(0)B0) · ∇v =

ˆ

Ω

(divB0)V · ∇v + curl (B0 × V ) · ∇v − (curlB0 × V ) · ∇v −∇(B0 · V ) · ∇v

=

ˆ

Ω

curl (B0 × V ) · ∇v −∇(B0 · V ) · ∇v

= −
ˆ

∂Ω

[(B0 × V )× n] · ∇v −
ˆ

Ω

∇(B0 · V ) · ∇v

=

ˆ

∂Ω

(B0 · ∇v) V · n−
ˆ

Ω

∇(B0 · V ) · ∇v,

where we used the integration by parts formula for the curl, and the identity (a × b) × c = (a · c)b − (b · c)a.
Therefore,

ˆ

Ω

(α′(0)B0) · ∇v +

ˆ

Ω

∇(uV + V ·B0) · ∇v = 0,

which implies

ˆ

Ω

(α(t)∇ϕt) · ∇v = −
ˆ

Ω

(α1(t)B0) · ∇v − t

ˆ

Ω

(α0(t)∇(uV + V · B0)) · ∇v.

Since C∞
(

Ω̄
)

is dense in H1(Ω), the previous formula actually holds for any function v in H1(Ω). Finally,
integrating by parts, we obtain

ˆ

Ω

(α(t)∇ϕt) · ∇v =

ˆ

Ω

div (α1(t)B0)v −
ˆ

∂Ω

[(α1(t)B0) · n] v + t

ˆ

Ω

div (α0(t)∇(uV + V · B0))v

− t

ˆ

∂Ω

[(α0(t)∇(uV + V ·B0)) · n] v,

which is the weak formulation of the desired equation.

Since α0(t) and α1(t) are of order o(t) as t → 0, we expect ϕt to be as well. Classical results from elliptic
regularity allows us to prove the following proposition.

Proposition 2.6. For all k in N, we have as t goes to zero

∥

∥

∥

∥

ϕt −
 

Ω

ϕt

∥

∥

∥

∥

Hk(Ω)

= o(t).

Before proving this proposition, we prove an immediate corollary.
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Corollary 2.7. The mapping
{

R → Vec
(

Ω̄
)

t 7→ (Pt)
∗
1Bt

is differentiable at zero, and its derivative is given by

d

dt
∣

∣t=0
(Pt)

∗
1Bt = ∇uV +∇(V · B0).

Proof. From Proposition 2.6, we have for each k in N

‖∇ϕt‖Hk(Ω) = o(t).

Now, using Sobolev injections, we deduce that for all k in N

‖∇ϕt‖Ck(Ω̄) = o(t). (10)

Finally, from the expression of ϕt and the commutativity of diagram (7), we get

∇ϕt = (Pt)
∗
1Bt −B0 − t(∇uV +∇(V · B0)).

We thus obtain the desired result from Eq. (10).

Proof of Proposition 2.6. Since uV solves
{

∆uV = 0 in Ω,

∇uV · n = div Γ (B0(V · n)) on ∂Ω,

and B0 is smooth on ∂Ω, we know that uV is smooth from elliptic regularity [Gri11][Theorem 2.5.1.1]. Thus,
all the source terms (resp. boundary terms) of Eq. (8) are smooth, and in particular are in Hk(Ω) (resp.
Hk(∂Ω)) for all k. Now define

ϕ̃t = ϕt −
 

Ω

ϕt.

For ξ ∈ R3 and t small enough, we have

(α(t)ξ) · ξ = det (DPt)
∣

∣DP−T
t ξ

∣

∣

2 ≥ C|ξ|2,

where C is positive and independent of t. Therefore, by Lax–Milgram, ϕ̃t is the unique zero average solution
to Eq. (8). To shorten the notations, we define ũV = uV + V ·B0. From [Gri11][Section 2.5.1], we know that
ϕ̃t is in Hk(Ω) for all k, and

‖ϕ̃t‖Hk+2(Ω) ≤ Ck,t

(

‖div (α1(t)B0)‖Hk(Ω) + ‖tdiv (α0(t)∇ũV )‖Hk(Ω) +

‖(α1(t)B0) · n‖Hk+1/2(∂Ω) + ‖t(α0(t)∇ũV ) · n‖Hk+1/2(∂Ω)

)

.
(11)

Furthermore, t 7→ α(t) is uniformly bounded in Ck in any bounded interval containing zero. Since we are only
interested in the behavior of ϕ̃t for small t, we may fix such an interval for the rest of the proof. Therefore,
we deduce that the constant appearing in Eq. (11) may be chosen to be uniform in t. From the continuity of
the trace from Hk+1(Ω) to Hk+1/2(∂Ω), we then obtain

‖ϕ̃t‖Hk+2(Ω) ≤ Ck

(

‖α1(t)B0‖Hk+1(Ω) + ‖tα0(t)∇ũV ‖Hk+1(Ω)

)

Now, one easily checks by induction, that for u ∈ Vec
(

Ω̄
)

and A ∈ C∞
(

Ω̄,M3(R)
)

, we have

‖Au‖Hk(Ω) ≤ Ck‖A‖Wk,∞(Ω)‖u‖Hk(Ω).

Furthermore, by differentiability of t 7→ Pt in C∞, we have

‖α1(t)‖Wk+1,∞(Ω) = ‖α(t)− α(0)− tα′(0)‖Wk+1,∞(Ω) = o(t),

‖tα0(t)‖Wk+1,∞(Ω) = ‖t(α(t) − α(0))‖Wk+1,∞(Ω) = o(t),

so that
‖ϕ̃t‖Hk+2 = o(t),

as claimed.
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Now that we have found the derivative of t 7→ (Pt)
∗
1Bt, we need to relate it to the derivative of t 7→ (P−1

t )∗Bt.
This is achieved using the following lemma.

Lemma 2.8. Let X be a vector field in Vec
(

Ω̄
)

. We have

d

dt
∣

∣t=0
(P−1

t )∗
(

(P−1
t )∗1X

)

= [V,X ]−∇(V ·X)− curlX × V.

Proof. First, we extend X to a smooth vector field of R3, which we also denote X . Now, we compute

(P−1
t )∗1X = D(P−1

t )TX ◦ P−1
t .

We have

X ◦ P−1
t = X − t(DX)V + o(t),

D(P−1
t )T = I − tDV T + o(t),

so that
(P−1

t )∗1X = X − t
((

DV T
)

X + (DX)V
)

+o(t).

Now, combining the identities

∇(V ·X) =
(

DV T
)

X +
(

DXT
)

V,

curlX × V =
(

DX −DXT
)

V,

we obtain
(P−1

t )∗1X = X − t(∇(V ·X) + curlX × V ) + o(t).

Finally, defining Yt = (P−1
t )∗1X and using

(P−1
t )∗Yt = Yt + t[V, Yt] + o(t),

we obtain the desired formula.

We have now all the ingredients to prove the main result of this section.

Proof of Theorem 2.1. We have

(P−1
t )∗Bt = (P−1

t )∗
(

(P−1
t )∗1(Pt)

∗
1Bt

)

.

Using Corollary 2.7 and Lemma 2.8, we thus know that R ∋ t 7→ (P−1
t )∗Bt ∈ Vec

(

Ω̄
)

is differentiable at zero
by composition of differentiable maps. Furthermore, its derivative is given by

d

dt
∣

∣t=0
(P−1

t )∗Bt =
d

dt
∣

∣t=0
(Pt)

∗
1Bt + [V,B0]−∇(V ·B0)− curlB0 × V

= ∇uV +∇(V · B0) + [V,B0]−∇(V · B0)

= [V,B0] +∇uV ,

as claimed.

Remark 2.9. Although it will be simpler to work with paths of diffeomoprhisms to obtain shape differentiability
of the Poincaré map, we note that all the techniques used in this section for the shape differentiability of
harmonic fields work in a Fréchet differentiability context. That is, we could obtain estimates of the form

(I + V )
−1
∗ B((I + V )Ω) = B(Ω) + [V,B0] +∇uV + o (‖V ‖Ck) ,

for all k in N, V being a smooth vector field of R3 in the unit ball of C1(R3;R3).
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2.2 Shape differentiation of the Poincaré map

Now that we have obtained the shape differentiability of the harmonic field, we proceed to compute the shape
derivative of its Poincaré map. We denote with an additional t subscript all the objects defined in Section 1
associated with the embedding Et = Pt ◦ E .
Proposition 2.10. For |t| < ε sufficiently small, Et is admissible and the mapping

{

(−ε, ε) → Vec(∂Ω)

t 7→
(

P−1
t

)

∗
Xt

is differentiable at zero, where Xt is the harmonic field normalized in the toroidal direction as defined by
Eq. (2). Furthermore, if (∂φ, ∂θ) is positively oriented, the θ component of its derivative is given by

(X ′
V )

θ
=

1

√
g
(

Bφ
0

)2B
′
V · B⊥

0 , (12)

and we obtain the same formula with opposite sign if the orientation of the coordinates is reversed.

Before proving Proposition 2.10, we introduce some geometrical notations for vector fields on the boundary.
We denote by ∇Γφ (resp. ∇Γθ) the vector field of ∂Ω dual to dφ (resp. dθ). These are therefore defined by
the relations

∇Γφ · v = dφ(v), ∇Γθ · v = dθ(v),

for all vectors v which are tangent to ∂Ω. Contrary to what the notations may suggest, these vector fields are
not gradient vector fields, but are only curl Γ-free. This is similar to the fact that dφ and dθ are not differentials
of global functions, but are closed one-forms. In coordinates we have

∇Γφ = gφφ∂φ + gφθ∂θ, ∇Γθ = gθφ∂φ + gθθ∂θ. (13)

By definition, it is clear that ∇Γφ is orthogonal to ∂θ, and that ∇Γθ is orthogonal to ∂φ. Furthermore, if
(∂φ, ∂θ) is a positively oriented frame on ∂Ω, a straightforward computation in coordinates shows that

∂⊥
φ =

√
g∇Γθ, ∂⊥

θ = −√
g∇Γφ, (14)

with opposite signs if the orientation of the coordinates is reversed. Because of this dependence on orientation
for the sign of orthogonal vectors in coordinates, we will often only treat the case where (∂φ, ∂θ) is positively
oriented. Treating the other case is however a straightforward process, so we will often omit this technicality
when writing the main results.

Proof of Proposition 2.10. For the first point of the proposition, we observe that Et = Pt ◦ E automatically
verifies the first two assumptions of Definition 1.3. We therefore only need to prove that Bφt

t is positive on ∂Ω
for t small enough. To do so, we note that since Et = Pt ◦ E , we have φt = φ ◦ P−1

t , so that

Bφt

t =
((

P−1
t

)

∗
Bt

)φ ◦P−1
t . (15)

We then deduce from the differentiability of t 7→
(

P−1
t

)

∗
Bt in Vec

(

Ω̄
)

and the admissibility of E that Bφt

t is
positive for small enough t, so that Et is admissible.

Now, using Eq. (15), we obtain

(

P−1
t

)

∗
Xt =

(

P−1
t

)

∗

(

Bt

Bφt

t

)

=

(

P−1
t

)

∗
Bt

((

P−1
t

)

∗
Bt

)φ
.

Therefore, from the differentiability of t 7→
(

P−1
t

)

∗
Bt given by Theorem 2.1 and the fact that

((

P−1
t

)

∗
Bt

)φ

is nowhere zero for small enough t, we obtain that t 7→
(

P−1
t

)

Xt is differentiable in Vec(∂Ω) at t = 0, and its
derivative at zero is given by

X ′
V =

1
(

Bφ
0

)2

(

Bφ
0B

′
V − (B′

V )
φ
B0

)

.

13



Now, using the fact that (∂φ, ∂θ) is positively oriented and Eq. (14), we obtain

B⊥
0 =

√
g
(

Bφ
0∇Γθ −Bθ

0∇Γφ
)

,

so that

(X ′
V )

θ
=

1
(

Bφ
0

)2

(

Bφ
0 (B′

V )
θ − (B′

V )
φ
Bθ

0

)

=
1

(

Bφ
0

)2

(

Bφ
0∇Γθ −Bθ

0∇Γφ
)

·
(

(B′
V )

φ
∂φ + (B′

V )
θ
∂θ

)

=
1

√
g
(

Bφ
0

)2B
⊥
0 · B′

V .

We are now able to prove that the Poincaré map is shape differentiable.

Proposition 2.11. The mapping
{

(−ε, ε) → Diff(S1)

t 7→ Πt

is differentiable at zero, and its derivative is given by

Π′(E ;V )(θ) =

ˆ 1

0

T (φ, θ)(X ′
V )

θ(φ,Πφ(θ))dφ,

where

T (φ, θ) = exp

(
ˆ 1

φ

∂θX
θ
0

(

φ′,Πφ′

(θ)
)

dφ′

)

.

Proof. Let xt(·) be the solution to
d

dφ
xt(φ) = Xθt

t (φ, xt(φ)), (16)

with xt(0) = θ ∈ S1, so that Πφ
t (θ) = xt(φ). Using θt = θ ◦ P−1

t , we get

Xθt
t =

((

P−1
t

)

∗
Xt

)θ
,

so that from Proposition 2.10, t 7→ Xθt
t is differentiable in C∞

(

T2
)

. As a consequence, t 7→ xt(·) is also
differentiable, and we can write

xt(φ) = x(0)(φ) + tx(1)(φ) + o(t),

Xθt
t (φ, θ) = Xθ

0 (φ, θ) + t (X ′
V )

θ
(φ, θ) + o(t),

Where o(t) is here a shorthand for a function whose Ck norms on all compact subsets are o(t). Since Πt(θ) =
xt(1), we obtain that t 7→ Πt is differentiable, and its derivative is given by Π′(E ;V ) = x(1)(1). Injecting the
expansions for Xθt

t and xt in Eq. (16), we obtain

d

dφ
x(0)(φ) + t

d

dφ
x(1)(φ) = Xθ

0

(

φ, x(0)(φ)
)

+ t
[

∂θX
θ
0

(

φ, x(0)(φ)
)

x(1)(φ) + (X ′
V )

θ
(

φ, x(0)(φ)
)]

+ o(t),

so that x(1)(·) solves the following linear equation with a drift term

d

dφ
x(1)(φ) = ∂θX

θ
0

(

φ,Πφ
0 (θ)

)

x(1)(φ) + (X ′
V )

θ
(

φ,Πφ
0 (θ)

)

,

with x(1)(0) = 0. Using Duhamel’s formula, we thus obtain

x(1)(1) =

ˆ 1

0

e
´

1

φ
∂θX

θ
0

(

φ′,Πφ′

0
(θ)

)

dφ′

(X ′
V )

θ
(φ,Πφ

0 (θ))dφ,

which is the desired result.
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In the case where B0 is linearized in the (φ, θ) coordinates, that is, (B0)|∂Ω = χ(∂φ + ω∂θ) where χ is a

smooth function of ∂Ω and ω is in R, we have the following formulas for (X ′
V )

θ and Π′(E ;V ).

Proposition 2.12. Suppose there exist χ in C∞(∂Ω) positive and a real number ω such that (B0)|∂Ω =
χ(∂φ + ω∂θ) with (∂φ, ∂θ) positively oriented. Let ñ be a smooth extension of n to R3 and ~ω = (1, ω)T .
Decomposing V ∈ Vec(R3) as V = fñ+ VΓ where (VΓ)|∂Ω is tangent to ∂Ω, we have

(X ′
V )

θ = f
2II(B0, B

⊥
0 )√

gχ2
+
〈

~ω,∇T2

(

ωV φ
Γ − V θ

Γ

)〉

+
1√
gχ2

B⊥
0 · ∇ΓuV , (17)

where II is the second fundamental form of ∂Ω. Furthermore, we also have

Π′(E ;V )(θ) =

ˆ 1

0

(X ′
V )

θ(φ, θ + ωφ)dφ.

Proof. From Theorem 2.1 and Proposition 2.10, we have

(X ′
V )

θ
=

1√
gχ2

B⊥
0 · B′

V

=
1√
gχ2

B⊥
0 · ([V,B0] +∇uV )

=
1√
gχ2

B⊥
0 · [fñ, B0] +

1√
gχ2

B⊥
0 · [VΓ, B0] +

1√
gχ2

B⊥
0 · ∇ΓuV . (18)

For the first term of Eq. (18), we have

[fñ, B0] = f [ñ, B0]− (B0 · ∇f) ñ,

so that
B⊥

0 · [fñ, B0] = fB⊥
0 · [ñ, B0].

We note that since B0 is in Vec
(

Ω̄
)

and Ω is a smooth domain, we may extend B0 and B⊥
0 to smooth vector

fields of R3 when necessary. Now, denoting by ∇XY the covariant derivative of a vector field Y in the direction
X in R3, and using the fact that the Levi–Civita connection is torsion free, we have

[ñ, B0] = ∇ñB0 −∇B0
ñ.

We also have
∇(B0 · ñ) = ∇ñB0 +∇B0

ñ+ ñ× curlB0 +B0 × curl ñ.

It is straightforward to see that the tangential part of [ñ, B0] does not depend on the choice of extension of the
normal, so that we may choose ñ in a specific way. Since ∂Ω is smooth, we know that the signed distance to
∂Ω (which we denote σ∂Ω) is smooth in a neighborhood U of ∂Ω. Let K be a compact subset of U containing
a neighborhood of ∂Ω, and η be a smooth positive function which is equal to one in K, and has support
included in U . Then, ñ := η∇σ∂Ω is smooth extension of the normal, and curl ñ = 0 in K. Therefore, we have
curl ñ = 0 on ∂Ω. Furthermore, we also have curlB0 = 0 in Ω̄. As such, using that B⊥

0 is tangent to ∂Ω, and
that B0 · ñ is equal to zero on ∂Ω, we have

B⊥
0 · ∇ñB0 +B⊥

0 · ∇B0
ñ = B⊥

0 · ∇(B0 · ñ) = 0,

so that
B⊥

0 · [ñ, B0] = −2B⊥
0 · ∇B0

ñ.

Now, using the fact that the Levi–Civita is compatible with the metric, we write

B0 · ∇(B⊥
0 · ñ) = ∇B0

B⊥
0 · ñ+B⊥

0 · ∇B0
ñ.

Therefore, since B0 · ∇(B⊥
0 · ñ) vanishes on ∂Ω, we have

B⊥
0 · ∇B0

ñ = −∇B0
B⊥

0 · ñ
= −II(B0, B

⊥
0 ).
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We refer to [Lee18][Section 8] for the definition of the second fundamental form of 1-codimensional manifolds
using the Levi–Civita connection. As a consequence, the first term of Eq. (18) is given by

1√
gχ2

[fñ, B0] = f
2II(B0, B

⊥
0 )√

gχ2
.

Now, we compute the second term of Eq. (18). Since VΓ and B0 are tangent vector fields, the tangential part
of [VΓ, B0] is given by the Lie bracket of VΓ and B0 as vector fields of ∂Ω, which we denote [VΓ, B0]∂Ω. We
have B0 = χ(∂φ + ω∂θ) = χX0, so that

[VΓ, B0]∂Ω = VΓ · (∇Γχ)X0 + χ[VΓ, X0]∂Ω.

Since X0 is collinear to B0 it is orthogonal to B⊥
0 which implies

B⊥
0 · [VΓ, B0] = χB⊥

0 · [VΓ, X0]∂Ω.

Now, we write in coordinates

X0 = ∂φ + ω∂θ,

VΓ = V φ
Γ ∂φ + V θ

Γ ∂θ,

which gives us
[VΓ, X0]∂Ω = −(∂φV

φ
Γ + ω∂θV

φ
Γ )∂φ − (∂φV

θ
Γ + ω∂θV

θ
Γ )∂θ.

Finally, using B⊥
0 =

√
gχ(∇Γθ − ω∇Γφ), we get

B⊥
0 · [VΓ, B0] = −√

gχ2(∇Γθ − ω∇Γφ) ·
[

(∂φV
φ
Γ + ω∂θV

φ
Γ )∂φ + (∂φV

θ
Γ + ω∂θV

θ
Γ )∂θ

]

= −√
gχ2

(

∂φV
θ
Γ + ω∂θV

θ
Γ − ω∂φV

φ
Γ − ω2∂θV

φ
Γ

)

,

=
√
gχ2

〈

~ω,∇T2

(

ωV φ
Γ − V θ

Γ

)〉

,

which completes the proof of the first statement. The second result is then a simple consequence of Proposi-
tion 2.11 and the fact that, since (X0)|∂Ω = ∂φ + ω∂θ, we have Πφ(θ) = θ + ωφ.

3 The axisymmetric case

In this section, we consider the embedding of the standard axisymmetric torus defined in Cartesian coordinates
by

E(φ, θ) = ((RT + rP cos(2πθ)) cos(2πφ), (RT + rP cos(2πθ)) sin(2πφ), rP sin(2πθ)) , (19)

where RT and rP are the major and minor radius respectively with rP < RT . We also denote

R(θ) = RT + rP cos(2πθ),

which is the distance of the point E(φ, θ) to the z-axis. The aim of this section is to prove the following
theorem.

Theorem 3.1. Let E be as described above. We have for all V in Vec(R3)

Π′(E ;V ) = 0.

Remark 3.2. Although we only work with the standard axisymmetric embedding given by Eq. (19) for sim-
plicity, one can easily adapt all the proofs so that Theorem 3.1 is in fact valid for all axisymmetric embeddings.

We begin by computing the relevant geometric objects associated with this embedding. The basis vectors
of the coordinates (φ, θ) are given by

∂φ = −2πR(θ) sin(2πφ)∂x + 2πR(θ) cos(2πφ)∂y ,

∂θ = −2πrP sin(2πθ) cos(2πφ)∂x − 2πrP sin(2πθ) sin(2πφ)∂y + 2πrP cos(2πθ)∂z ,
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so that
g = 4π2R(θ)2dφ2 + 4π2r2Pdθ

2.

We also deduce
√
g = 4π2rPR(θ). One also verifies that

n = cos(2πθ) cos(2πφ)∂x + cos(2πθ) sin(2πφ)∂y + sin(2πθ)∂z .

Computing the second-order derivatives of E , we get

∂2
φE = −4π2R(θ) cos(2πφ)∂x − 4π2R(θ) sin(2πφ)∂y ,

∂φ∂θE = 4π2rP sin(2πθ) sin(2πφ)∂x − 4π2rP sin(2πθ) cos(2πφ)∂y ,

∂2
θE = −4π2rP cos(2πθ) cos(2πφ)∂x − 4π2rP cos(2πθ) sin(2πφ)∂y − 4π2rP sin(2πθ)∂z ,

so that

II =
(

∂2
φE · n

)

dφ2 + 2 (∂φ∂θE · n) dφdθ +
(

∂2
θE · n

)

dθ2,

= −4π2R(θ) cos(2πθ)dφ2 − 4π2rP dθ
2.

(20)

We now turn to the underlying domain Ω, and the associated harmonic field. E(T2) bounds the domain

Ω = {((RT + rPx) cos(2πφ), (RT + rPx) sin(2πφ), rP y) ∈ R3 | (φ, x, y) ∈ S1 ×D2}.

In this case, the harmonic field of Ω is explicitly known, and is given by the formula

B(Ω) =
1

2π

(

− y

x2 + y2
∂x +

x

x2 + y2
∂y

)

,

where the 1/2π constant ensures that B(Ω) has unit circulation along positively oriented toroidal loops.
Moreover, the restriction of B(Ω) to the boundary is given by

B(Ω)|∂Ω =
1

4π2R(θ)2
∂φ. (21)

It is then clear that E is indeed an admissible embedding. We are now able to prove the following proposition.

Proposition 3.3. Let E, B(Ω) and (φ, θ) be as defined above. We then have

• X(E) = ∂φ,

• Π(E) = id,

• II(B(Ω), B(Ω)⊥) = 0.

Proof. The first two statements are straightforward using Eq. (21). As for the third statement, using the fact
that the coordinates (φ, θ) are orthogonal, we know that B(Ω)⊥ is colinear to ∂θ. Furthermore, we know from
Eq. (20) that the second fundamental form is diagonalized in the coordinates (φ, θ), which gives us the desired
result.

Corollary 3.4. Let E and Ω be as defined above, and uV be the solution to Eq. (6). Then

Π′(E ;V )(θ) =
R(θ)2

r2P

ˆ 1

0

∂θuV (φ, θ)dθ.

Proof. Using Proposition 3.3, we know that we can apply Proposition 2.12 with ω = 0. We decompose
V ∈ Vec

(

R3
)

as V = fñ + VΓ, where ñ is a smooth extension of n to R3, and VΓ is tangent to ∂Ω. Since
(∂φ, ∂θ) is positively oriented, we know from Proposition 2.12 and Proposition 3.3 that

(X ′
V )

θ = −∂φV
θ
Γ +

1√
g(B(Ω)φ)2

B(Ω)⊥ · ∇ΓuV .
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Using the fact that v 7→ v⊥ is an isometry on each tangent plane of ∂Ω and that
(

u⊥
)⊥

= −u, we find

B(Ω)⊥ · ∇ΓuV = −B(Ω) · (∇ΓuV )
⊥

= −
(

B(Ω)φ∂φ
)

·
(

1√
g
∂φuV ∂θ −

1√
g
∂θuV ∂φ

)

= B(Ω)φ∂θuV
gφφ√
g
,

where we used ∇ΓuV = ∂φuV ∇Γφ+ ∂θuV ∇Γθ, as well as ∇Γφ
⊥ = 1/

√
g∂θ and ∇Γθ

⊥ = −1/
√
g∂φ, which are

simple consequences of Eqs. (13) and (14). Therefore, we obtain

(X ′
V )

θ
= −∂φV

θ
Γ+

gφφ
(det g)B(Ω)φ

∂θuV

= −∂φV
θ
Γ+

R(θ)2

r2P
∂θuV .

Using once again Proposition 2.12, we obtain

Π′(E ;V ) =

ˆ 1

0

(X ′
V )

θ
(φ, θ)dφ

=
R(θ)2

r2P

ˆ 1

0

∂θuV (φ, θ)dφ.

The proof of Theorem 3.1 follows from Corollary 3.4 taking into account suitable symmetry properties
described in the following lemmas.

Lemma 3.5. Let Ω be as defined above and uV be as in Theorem 2.1. Then, for all θ in S1, we have

ˆ 1

0

∇uV (φ, θ) · ndφ = 0. (22)

Proof. We recall that uV is a harmonic function of Ω satisfying the boundary condition

∇uV · n = div Γ(B(Ω)(V · n)).

A quick computation in coordinates shows that div Γ(B(Ω)) = 0, so that

div Γ(B(Ω)(V · n)) = B(Ω) · ∇Γ(V · n).

Furthermore, since B(Ω) = 1/(4π2R(θ)2)∂φ, we have B(Ω) · ∇Γ(V · n) = 1/(4π2R(θ)2)∂φ(V · n). Finally, we
deduce

ˆ 1

0

∇uV (φ, θ) · ndφ =
1

4π2R(θ)2

ˆ 1

0

∂φ(V · n)(φ, θ)dφ

= 0.

Since uV is harmonic in Ω, we know that ∇uV · n must be of zero average on ∂Ω. Lemma 3.5 then tells
us that ∇uV · n must moreover be of zero average along any toroidal loop. In particular, uV may not be
any harmonic function of Ω̄. This fact is then used to prove the following lemma, for which we introduce the
notation

 

∂Ω

f =

´

∂Ω
f

|∂Ω| =

´

∂Ω
f

´

∂Ω
1
,

where f is an integrable function on ∂Ω.

Lemma 3.6. Let Ω be as defined above and uV be as in Theorem 2.1. Let f be a smooth function on ∂Ω such
that ∂φf = 0. We have

ˆ

∂Ω

fuV =

 

∂Ω

f

ˆ

∂Ω

uV . (23)
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Proof. First, suppose that f has zero average on ∂Ω. We then define v as the zero average solution to

{

∆v = 0 in Ω,

∇v · n = f on ∂Ω.

We now show that ∂φv = 0. Indeed, call RΦ the rotation of angle Φ around the z-axis. We then get that
v ◦RΦ satisfies

∆(v ◦RΦ) = (∆v) ◦RΦ = 0,

because RΦ is an isometry, and
∇(v ◦RΦ) · n = (∇v · n) ◦RΦ = f,

because RΦ is an isometry which leaves Ω unchanged and ∂φf = 0. Therefore, v and v ◦RΦ satisfy the same
PDE, and have the same average. As a consequence, v ◦RΦ = v for all Φ, meaning that ∂φv = 0.

Now, using the equations satisfied by uV and v, and Lemma 3.5, we get

ˆ

∂Ω

fuV =

ˆ

∂Ω

(∇v · n)uV

=

ˆ

Ω

∇v · ∇uV

=

ˆ

∂Ω

v (∇uV · n)

= 4π2rP

ˆ 1

0

R(θ)v(θ)

ˆ 1

0

∇uV · n(φ, θ)dφdθ

= 0.

Finally, if we now take any f in C∞(∂Ω), we can repeat the procedure with f −
ffl

∂Ω f , and get

ˆ

∂Ω

[(

f −
 

∂Ω

f

)

uV

]

= 0,

which gives us our desired result.

We now have all the ingredients to prove Theorem 3.1.

Proof of Theorem 3.1. To prove that Π′(E ;V ) vanishes, we use Lemma 3.6 on approximations of δθ0 . We
define f̃θ0,ε ∈ C∞(S1) so that 4π2rPRf̃θ0,ε is a family of smooth approximations of the Dirac at θ0. We may
take for example

R(θ)f̃θ0,ε(θ) = Cε

∑

k∈Z

exp

(

−ε2(θ − θ0 − k)2

2

)

,

with Cε chosen so that
ˆ 1

0

4π2rPR(θ)f̃θ0,ε(θ)dθ = 1.

Then, defining fθ0,ε(φ, θ) = f̃θ0,ε(θ) and using
√
g = 4π2rPR(θ), we get

ˆ

∂Ω

fθ0,εuV =

ˆ 1

0

ˆ 1

0

4π2rPR(θ)f̃θ0,ε(θ)uV (φ, θ)dθdφ

ε→0−−−→
ˆ 1

0

uV (φ, θ0)dφ.

On the other hand, Lemma 3.6 gives us

ˆ

∂Ω

fθ0,εuV =

 

∂Ω

fθ0,ε

ˆ

∂Ω

uV

=

 

∂Ω

uV .
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As a consequence, we have for all θ in S1

ˆ 1

0

uV (φ, θ)dφ =

 

∂Ω

uV ,

and thus
ˆ 1

0

∂θuV (φ, θ)dφ = 0.

We then conclude using the formula of Π′(E ;V ) given in Corollary 3.4.

4 The diophantine case

In this section, we suppose that E is an admissible embedding such that, in the corresponding coordinates
(φ, θ), we have B|∂Ω = χ (∂φ + ω∂θ), where χ is a smooth function on the boundary and ω is a diophantine
number, that is, there exist C, τ positive constants such that, for all p/q ∈ Q

|ω − p/q| ≥ C|q|−(τ+1). (24)

We note that this definition of diophantine numbers implies two other inequalities which will be used in this
section. The first one, which is generally used for cohomological equations in the continuous context, is the
following. For all n 6= 0 in Z2, we have

|~ω · n| ≥ C|n|−τ , (25)

with ~ω = (1, ω)T . The second one, which is generally more common in discrete contexts, is the following. For
all q 6= 0 in Z, we have

∣

∣e2πiωq − 1
∣

∣ ≥ C|q|−τ , (26)

where C is not necessarily the same constant as before. To obtain this inequality, we write using Eq. (24)

inf
p∈Z

|ωq − p| ≥ C|q|−τ .

The quantity on the right-hand side of this inequality is the distance between ωq and 0 in S1 = R/Z using the
quotient metric induced from the usual metric on R. This metric is then equivalent to the metric on S1 when
seen as the unit circle in C, which gives us Eq. (26).

In this section, we prove the following theorem

Theorem 4.1. Suppose E is an admissible embedding with associated domain Ω and coordinates (φ, θ) verifying
the following hypotheses.

1. There exists χ in C∞(∂Ω) and a diophantine number ω such that B(Ω)|∂Ω = χ(∂φ + ω∂θ).

2. II
(

B(Ω), B(Ω)⊥
)

vanishes nowhere on ∂Ω.

Then, the mapping V 7→ Π′(E ;V ) is surjective from Vec(R3) to C∞(S1).

Remark 4.2. For a point x of ∂Ω, the second fundamental form IIx at x is related to the shape operator Sx by
IIx(u, v) = Sx(u) ·v. Since IIx is a symmetric bilinear form, Sx is self adjoint and there exist two orthonormal
eigenvectors E1 and E2 of Tx∂Ω with associated eigenvalues κ1 and κ2. Ei are the principal directions at x,
and κi the related principal curvatures. We can also assume that (E1, E2) is positively oriented on Tx∂Ω. If
we decompose B(Ω) at x as

B(Ω) = α1E1 + α2E2,

then
IIx(B(Ω), B(Ω)⊥) = α1α2(κ2 − κ1).

Therefore, we find that II(B(Ω), B(Ω)⊥) does not vanish at x if and only if two conditions are met:

• x is not an umbilical point of ∂Ω, that is κ1 6= κ2.

• B(Ω) is not in a principal direction at x.
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The proof of Theorem 4.1 comes in two steps. First, we prove that by choosing V tangent to the boundary,
we can generate any Π′(E ;V ) which is of zero average on S1. This result is not surprising as having V tangent
to the boundary amounts to changing the coordinates on ∂Ω, which in turn change the Poincaré map by
a conjugation by a diffeomorhism on S1. As such, tangent deformations do not generate a change in the
rotation number, and the only possible changes in Πt have zero average at first-order in t. Then, the image
of V 7→ Π(E ;V ) has co-dimension at most one in C∞(S1), and one only needs to find a normal deformation
which generates Π′(E ;V ) with nonzero average. This is achieved using the assumption on II

(

B(Ω), B(Ω)⊥
)

.

Proposition 4.3. For all µ in C∞(S1) such that
ˆ

S1

µ = 0,

there exists VΓ in Vec(R3) such that (VΓ)|∂Ω is tangent to ∂Ω and Π′(E ;VΓ) = µ.

Proof. Let µ in C∞(S1) be given in Fourier basis by

µ(θ) =
∑

n∈Z

µ̂ne
2πinθ,

with µ̂0 = 0. Since µ is real-valued, we have (µ̂−n)
∗ = µ̂n. We define Φ̂n = (2πinω)/(e2πinω − 1)µ̂n for n 6= 0,

and
Φ(φ, θ) =

∑

n∈Z\{0}

Φ̂ne
2πinθ.

Using the discrete diophantine condition on ω given by Eq. (26), we get
∣

∣

∣

∣

2πinω

e2πinω − 1
µ̂n

∣

∣

∣

∣

≤ C
∣

∣e2πiωn − 1
∣

∣

−1 |n| |µ̂n| ,

≤ C|n|τ+1 |µ̂n| ,

so that Φ is smooth on T2. Furthermore, using the symmetries of µ̂n, it is straightforward that Φ is also
real-valued. Now, define VΓ as a smooth extension of −ϕ∂θ to R3, where ϕ is the zero average solution to

〈~ω,∇T2ϕ〉 = Φ.

This solution is known to exist using the continuous diophantine condition given by Eq. (25) and the fact that
Φ has zero average on T2. Moreover, we have VΓ · n = 0 so that the solution uVΓ

to Eq. (6) is constant. Using
Proposition 2.12, we get

(X ′
VΓ
)θ =

〈

~ω,∇T2

(

ωV φ
Γ − V θ

Γ

)〉

= 〈~ω,∇T2ϕ〉
= Φ.

Now, we compute using Proposition 2.12

Π′(E ;VΓ)(θ) =

ˆ 1

0

(

X ′
VΓ

)θ
(φ, θ + ωφ)dφ

=

ˆ 1

0

Φ(φ, θ + ωφ)dφ

=
∑

n∈Z\{0}

Φ̂n

ˆ 1

0

e2πin(θ+ωφ)dφ

=
∑

n∈Z\{0}

Φ̂n
e2πinω − 1

2πin
e2πinθ

=
∑

n∈Z

µ̂ne
2πinθ

= µ(θ).
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Proof of Theorem 4.1. From Proposition 4.3, we know that the image of V 7→ Π′(E ;V ) contains all the smooth
zero average functions on S1. By linearity, we therefore only need to find one deformation which produces a
derivative of the Poincaré map with nonzero average. This is done by picking V = 1/(

√
gχ)ñ, where ñ is an

extension of the normal. Indeed, this verifies V · n = 1/(
√
gχ), so that

div Γ(B(Ω)(V · n)) = 1√
g

(

∂φ

(√
g

χ

χ
√
g

)

+ ∂θ

(√
g
ωχ

χ
√
g

))

= 0.

As a consequence, the solution uV of Eq. (6) is constant, and by Proposition 2.12 (X ′
V )

θ is given by

(X ′
V )

θ =
2II
(

B(Ω), B(Ω)⊥
)

(det g)χ3
.

Since we assume that II
(

B(Ω), B(Ω)⊥
)

vanishes nowhere, it is either positive or negative on ∂Ω. As a
consequence

θ 7→
ˆ 1

0

(X ′
V )

θ(φ, θ + ωφ)dφ,

is also either positive or negative on S1, and has therefore a nonzero average.

5 Conclusion and perspectives

Conclusion In this paper, we have established a shape differentiability result for the Poincaré maps of har-
monic fields, and studied some properties of the shape derivative in specific cases. The shape differentiability
of the Poincaré map was obtained by proving shape differentiability of harmonic fields in the smooth cate-
gory using suitable pullbacks on the variational spaces and elliptic regularity. We then studied the case of
axisymmetric domains, for which we found that the shape derivative of the Poincaré map of harmonic fields
always vanishes. After that, we have found that when the domain has a Poincaré map which is a diophantine
rotation on the boundary, the shape derivative may be any smooth function of the circle under an additional
assumption relating the curvature of the boundary and the harmonic field.

Perspectives First, we saw in Section 3 that the shape derivative of the Poincaré map of the harmonic field
is always zero in the case of the standard torus. One could then naturally ask if the second order derivative
may in this case produce changes in the Poincaré map, and in particular, changes in the rotation number. For
this, one would need to find an expression for this second order shape derivative. Although the author has
made some preliminary computations in this direction, it seems that the formulas we obtain are much more
difficult to deal with that in the first order case so that coming up with deformations of the domain leading
to changes in the Poincaré map at second order is not an easy task.

Also, we believe that the main result of Section 4 leads to two interesting questions which we leave open.
First, it is still not clear to the author if the assumption relating the harmonic field and the second fundamental
form in Theorem 4.1 is often realized in practice. The author attempted to study this condition in the case of
the thin toroidal domains studied in [EPS15], but it seems that this assumption is not verified in this case. In
fact, we found that the approximate harmonic field denoted as h0 in [EPS15, Section 5] is exactly aligned with
the lowest principal curvature direction of the boundary, and that taking some finer approximations leads to
changes in sign for the quantity used in the assumption. Although this fact is interesting in itself, it means that
the additional assumption used for Theorem 4.1 is not satisfied for thin toroidal domains (see Remark 4.2).
One could then try to find other domains for which the assumption is satisfied, but this does not seem like an
easy task. Also, we note that the proof of Theorem 4.1 mostly uses tangential deformations, which is unusual
in shape differentiation. The author believes that proving surjectivity of the differential using only the normal
component of the deformation in Eq. (17) could potentially help to remove this additional condition on the
second fundamental form. However, the dependence between uV and V · n in Eq. (17) is highly non-explicit
which complicates this approach.

Finally, we believe that Theorem 4.1 may lead to interesting local properties of Π around embeddings
where it applies. Indeed, if we were working in the simpler case of Banach spaces, we would obtain that Π
is locally surjective around such domains. As a consequence, we would find that generic perturbations would
lead to Morse–Smale diffeomorphisms of the circle, and thus rational rotation numbers. However, since we are
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working in Fréchet Spaces rather than Banach ones, it is necessary to prove surjectivity of the differential in
a neighborhood of an embedding satisfying the conditions of Theorem 4.1 to prove the local surjectivity of Π.
We refer the reader to [Ham82] for an example of a local surjectivity theorem in Fréchet spaces. However, the
construction used for the proof of Theorem 4.1 is not applicable for embeddings close to the original one as it
is highly dependent on the diophantine condition of the rotation number. Furthermore, this construction also
uses cohomological equations, which leads to a loss of derivatives phenomenon. This implies that, although
this approach proves surjectivity of the differential in the smooth category, we do not expect this result to hold
for finite regularity. As a consequence, the author believes that one cannot reduce the regularity assumptions
to obtain similar results in Banach spaces. The author therefore believes, once again, that another proof of
Theorem 4.1 using the normal components of the deformation in Eq. (17) could be beneficial to study the
local properties of Π.
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