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Numerical simulations, based on relatively complex physical models developed for 
CFD, can accurately predict engine-out responses, but they require huge memory 
space and/or computation time. In terms of resources and computer time, artificial 
intelligence methodologies are more cost-effective. In this work, we used an ANN 
to predict the performance and exhaust emissions of a single-cylinder Diesel en-
gine running on fossil diesel, biodiesel, and their blends under various speed and 
load regimes. To perform the modeling, we employed multilayer perceptrons and 
a back-propagation gradient algorithm with momentum to train the network 
weights. The modification of the network weights was done using the second-order 
method of Levenberg-Marquardt, and the technique of early termination was uti-
lized to avoid overtraining the model. The study involved using 70% of the com-
plete experimental data to train the neural network, allocating 15% for network 
validation, and reserving the remaining 15% to evaluate the trained network ef-
fectiveness. The ANN model that was created demonstrated remarkable accuracy 
in predicting both engine performance and emissions. This is evident from the 
strong correlation coefficients observed, which ranged from 0.987 to 0.999, as 
well as the low mean squared errors ranging from 7.44·10–4 to 2.49·10–3. 

Key words: neural network, multilayer perceptron, back-propagation, diesel, 
biodiesel, learning 
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Introduction 

Around 25% of the world power is produced by internal combustion (IC) engines 

using fossil fuel oil. It is obvious that RES for power generation and entirely electric transpor-

tation will not happen for many years, if ever [1, 2]. Future IC engine development, however, 

should focus on techniques to lessen reliance on fossil fuels and research to increase efficien-

cy with respect for the environment [2]. Biofuels have been used as suitable alternative fuels 

instead of current fossil fuels for the sake of reducing exhaust emissions' effect on the envi-

ronment and preserving worldwide petroleum reserves from excessive consumption [3, 4]. In 

theory, these fuels hold promise as alternative options for compression ignition engines. 

However, to operate such engines, appropriate modifications are required, either on the en-

gine, the fuel, or both [5]. These modifications require studying and modeling the engine with 

the suitable alternative fuels in different ways [6-9]. The experimental bench test is a method 

with high accuracy. On the other way, physical modelling (models based on an understanding 

and deep knowledge of the phenomena observed within the systems to be modelled), can miss 

accuracy. The simulations produced by these models agree very well with the results of bench 

tests, but this approach is still limited and lacks the capacity and precision required to model 

complex phenomena such as the formation of pollutants such as NOx. Pollutant formation and 

oxidation mechanisms are not always well understood. This difficulty, as well as the depend-

ence of the physical models on the geometrical characteristics of the system, pushed us to find 

a less complex solution. Among them, the black box models of the neural networks can be 

used. 

The ANN hold significant importance as diagnostic tools within the realm of ma-

chine learning, enabling the simulation of system performance. It is based on using a system 

of numerous processing units connected to each other. The information is transmitted 

throughout the units, starting with entering the inputs and ending with delivering the outputs 

via predefined functions. The ANN models can be used as diagnostic, modeling, control, and 

optimization tools, as well as a computational model of analysis in engineering for predictive 

investigations [10-12]. As an advantage, the ANN does not need all the information in the 

system. Moreover, the information between the input variables is obtained as in the non-linear 

regression method, i.e., by a preliminary study of recorded data. Hafner et al. [13] demon-

strated how the engine control design was done using the quick neural network models. They 

later incorporated such neuro-models into more advanced emission optimization methods. 

The use of such ANN models in this context comprised pollution formation, virtual monitor-

ing, and engine management optimization [14, 15]. The study conducted by Karthickeyan et 
al. [16] employed the implementation of an ANN model for the purpose of engine perfor-

mance prediction. This encompassed various metrics including BTE, as well as emission 

characteristics such as CO, HC, and NOx. The predictions were made under varying loads and 

different compression ratios (CR). In another independent study, see ref. [17], researchers de-

veloped an ANN model by employing the backpropagation learning algorithm. They found 

that the ANN model they developed showed good accuracy when tested with real-time data 

obtained from experiments. Hoang et al. [18] stated that there are numerous engine parame-

ters and fuel qualities as input data, and there are numerous output factors that require predic-

tion. However, adding too much detail to the input layer and forecasting too many output var-

iables could make it difficult for the ANN algorithm to learn and build itself. As a result, the 

ANN outcomes could not be accurate. Given this, careful consideration must be paid to the 

choice of suitable data for input, layers that are hidden, and output variables.  
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To expand upon the current body of research regarding the application of ANN in 

predicting engine performance and emissions, this study aims to investigate how different in-

put parameters affect the accuracy of ANN models. While previous studies have employed a 

diverse range of input parameters, the focus of this investigation lies in utilizing fundamental 

fuel and engine data to assess whether simplified input parameters can still generate accurate 

predictions of engine performance and emissions. This study aims to identify a more efficient 

and cost-effective approach to modeling engine responses through the utilization of ANN. 

Moreover, this research provides valuable insights into the recommended practices for select-

ing input parameters in ANN models to ensure precise and dependable predictions of engine 

performance and emissions. 

Experimental investigation 

The data for this study was collected from a test bench that is composed mainly of a 

direct injection Diesel engine (7.5 kW at 2500 rpm), a dynamometer, a bay for analysis of the 

exhaust gas, an analyzer of nitric oxides, and a particle analyzer. The test specifications are 

listed on tab. 1 [4].  

Table 1. Test engine specifications 

Peak power 7.5 kW at 2500 rpm   Length of the connecting rod 165.3 mm 

Refrigeration mechanism Air cooled  Volume swept by the piston 630 cc 

Cylinder count 1  Pressure of fuel injection 250 bar  

Displacement volume 95.3 mm × 85.5 mm  Timing of fuel injection 13 CA bTDC 

 

Figure 1 presents visual representations of the experimental set-ups, showcasing the 

diverse components and procurement systems employed [19, 20].  

 

Figure 1. Experimental set-up scheme 
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Process of biodiesel preparation 

The production of biodiesel from waste cooking oil (WCO) was achieved through an 

alkali-catalyzed reaction, utilizing methanol as the alcohol and caustic potash as the catalyst. 

Various properties were assessed to analyze the fuels, including diesel fuel, WCO biodiesel, 

and their blends. 

The experimental trials encompassed various fuel variants, namely diesel fuel B0, 

B100 (pure WCO biodiesel), as well as their respective blends: B25, denoting a 25% biodiesel 

content in diesel fuel, and B50, indicating a 50% biodiesel content in diesel fuel. 

Experimental set-up and test procedure 

Four speeds were used in this work: 1500 rpm, 1800 rpm, 2200 rpm, and 2500 rpm. 

Besides, 4 load parts were considered at each engine speed, varying from 25% to 100% as a 

maximum limit. Therefore, the present test can give a clear idea about the combustion charac-

teristics, engine emissions, and performance since the complete interval of useful load and 

speed are taken into account.  

The ANN design 

The combustion and emission formation in the engine are established as non-linear 

processes, which makes the existing mathematical models unable to treat this property. As a 

real-time method, ANN is well known by its capability to handle non-linearities in the system. 

This characteristic renders it a viable alternative method for engineering analysis and predic-

tions. Operating akin to a black box model, it directly utilizes the provided data as an input to 

generate the required information, thanks to its distinctive learning capabilities. Therefore, 

ANN can learn from the non-linear data of complex problems and calculate the unknown val-

ues with good accuracy. The foundational principle of neural networks is grounded in the 

concept of:  

– the organization of neurons into layers,  

– selecting an appropriate activation functions,  

– the arrangement of connections among the hidden layers, and  

– identifying the ideal number of hidden neurons within the hidden layers.  

According to experimental data, operat-

ing variables as the fuel type, its lower heating 

value (LHV), speed of engine and its brake 

power (BP) at the rated speed are the inputs of 

our network. The model considers the outputs 

to be the specific fuel consumption (SFC), ex-

haust gas temperature, thermal efficiency, and 

engine emissions. Here, the chosen multilayer 

perceptron is consisted of three layers as de-

picted in fig. 2. The first one (inputs) contains four neurons, the second (hidden) will contain a 

number of neurons and the third (output) consists of seven neurons.  

The objective is to identify the optimal network structure, specifically determining 

the ideal number of hidden neurons that enable the most accurate approximation of the model. 

However, before that, we should normalize the data set. In practice, we put between zero and 

one using the following mathematical function: 

 

Figure 2. Structure of the ANN 
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where x is the vector that needs to be normalized and y – the normalized value corresponding 

to x. 

Determining the optimal structure of network 

The optimal structure of the model is determined in an iterative manner. To do this, 

the data are randomly divided into three sets: a learning data set consisting of 70% of the 

sample therefore 44 samples; a validation data set comprising 15% of the sample and 10 sam-

ples; and a test data set containing 15% of the sample therefore 10 samples. 

Choice of network parameter 

The non-linearity into neural networks is considered by means of special functions, 

named activation functions, which have to be continuous and differentiable, such as Log-

sigmoid function. This one has been used in the hidden neurons of the feed-forward network. 

The log-sigmoid activation function has self-limiting property that can ensure automatic con-

trol in order to maintain a suitable output avoiding infinite values. There is also another suita-

ble activation function (logistic sigmoid transfer) that can be used due to its properties [21]. 

The activation function is given by: 
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Due to its advantageous optimization properties, the loss function chosen to be min-

imized was the mean square error (MSE). Its equation can be written as a sum of n terms:  
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   (4) 

where n is the number of data sets, t – the target value, and o – the output value. Therefore, 

the prediction accuracy can be optimized by minimizing the MSE of the network using back 

propagation learning algorithms especially gradient descent algorithm. This approach is typi-

cally used for multilayer perception.  

The Levenberg-Marquardt learning algorithm is commonly employed in back-pro-

pagation neural networks to handle the additional second derivative of error and enhance 

computational efficiency [22, 23]. 

Selecting the optimal ANN structure 

In order to determine the optimal structure of the ANN, a range of 1 to 10 neurons in 

the hidden layer was explored, conducting multiple tests for each number of hidden neurons. 

The number of these neurons, which represent the units of non-linear adoption, can be in-

creased to get a network with high storage feature that allow using more complex patterns [24].  
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Many networks of different structures have been tested before selecting the optimal 

ANN that gives the smallest possible test error. Figure 3 shows a sample of these tests, MSE 

versus number of hidden neurons [25].  

After analyzing the obtained results, we no-

tice the important effect of the initialization of the 

parameters. This suggests that by adjusting the in-

itialization of weights and biases, each number of 

neurons in the hidden layer can produce distinct 

outcomes. The criterion of choice between these 

different models is of course the MSE on the test 

set, fig. 3.  

Based on this criterion, it is observed that 

the network comprising six neurons in the hidden 

layer exhibits the lowest test error MSE of 

1.32·10–3, accompanied by favorable MSE values 

on the training set (1.23·10–3) and the validation 

set (2.22·10–3).  

Hence, the optimal pattern of network is (4-6-7). Comprehensive information re-

garding the network parameters can be found in tab. 2. 

Table 2. The network parameters 

Optimal ANN 

Topology 
The configuration consists of 4 inputs, a hidden layer comprising 6 neurons, 

and 7 outputs, denoted as 4-6-7. 

Data 
Training 70% (44 samples); validation 15% (10 samples);  

test 15% (10 samples) 

The activation function Function log-sigmod 

The training algorithm Lenvenberg-Marquardt 

The loss function criteria The smallest achievable value of the MSE 

The stopping criteria 
Terminate the network training process when the validation error shows  

a noticeable rise, indicating a deviation from the desired trend. 

Results and discussions  

The model output values were compared to the actual engine-out responses to assess 

their accuracy. The comparison between experimental data and the values calculated by the 

ANN for SFC, BTE, and exhaust gas temperature is illustrated in figs. 4-6. To evaluate the 

accuracy of the ANN predictions, they were compared to an ideal prediction represented by a 

linear trend line. The results clearly demonstrate the close proximity of all predicted values to 

the trend lines.  

The results indicate that the predictions for the SFC are highly accurate, as evi-

denced by a MSE of 8.967·10–4 and a correlation coefficient, R, of 0.97653. These values 

suggest that the predicted SFC values closely align with the experimental values.  

The low MSE indicates minimal deviation between the predicted and experimental 

SFC, while the high correlation coefficient suggests a strong linear relationship, fig. 4. 

 

Figure 3. Analysis of MSE as a function of the 
hidden neurons 
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Figure 4. The side-by-side evaluation of the predicted and measured values for SFC;  
(a) SFC for different tests and (b) correlation coefficient 

Similarly, the brake thermal efficiency predictions also show excellent concordance 

with the experimental values. The points are closely aligned with the trend line, as indicated 

by a correlation coefficient of 0.98799 and an MSE of 9.24·10–4. This implies that the pre-

dicted values for brake thermal efficiency closely match the observed values, with a minimal 

margin of error, fig. 5. 

 
Figure 5. Comprehensive comparison between the predicted values and the corresponding measured 
values of thermal efficiency; (a) brake thermal efficiency for different tests and  
(b) correlation coefficient 

Furthermore, the exhaust gas temperature predictions demonstrate a high level of 

accuracy, with an MSE of 7.44·10–4 and a correlation coefficient of 0.99329. These values in-

dicate a strong agreement between the predicted exhaust gas temperatures and the actual 

measurements. The low MSE suggests minimal deviation between the predicted and observed 

values, while the high correlation coefficient indicates a close linear relationship, fig. 6.  

Figures 7-10 show the comparison between experimental results and the obtained val-

ues for hydrocarbon emission HCT, CO, NOx, and PM, respectively. The ideal predictions are 

represented by straight trend lines in order to evaluate the accuracy of the ANN predictions. 

The results indicate that the predictions for HCT, CO, NOx, and PM exhibit a high 

level of accuracy. The MSE values for HCT, CO, NOx, and PM are 7.444·10–4, 1.4·10–3, 

2.49·10–3, and 2.49·10–3, respectively. These low MSE values suggest that the predicted val-

ues closely align with the experimental measurements, with minimal deviation. Additionally, 

the correlation coefficients for HCT, CO, NOx, and PM are 0.96107, 0.95911, 0.97887, and  
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Figure 6. The side-by-side comparison of predicted and measured values for exhaust T;  
(a) exhaust temperature for different tests and (b) correlation coefficient 

0.96698, respectively. These high correlation coefficients indicate a strong linear relationship 

between the predicted and experimental values. The closer the correlation coefficient is to 1, 

the better the concordance between the predicted and observed data. 

 

Figure 7. Comprehensive comparison between the predicted values and the corresponding measured 
values of HCT; (a) HCT for different tests and (b) correlation coefficient 

 

Figure 8. Detailed comparison between predicted values and the corresponding measured values of 
CO-BT; (a) CO-BT for different tests and (b) correlation coefficient  
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Figure 9. Comparative analysis of predicted and measured NOx values;  
(a) NOx for different tests and (b) correlation coefficient 

 

Figure 10. Comprehensive comparison between the predicted values and the corresponding measured 

values of PM; (a) PM for different tests and (b) correlation coefficient 

Furthermore, the interpretation of the results highlights that the predicted values 

closely follow the experimental trend across all ranges of load and speed. This observation 

suggests that the predictive model captures the underlying patterns and variations in the data 

accurately.  

The close alignment between the predicted and experimental values for all the men-

tioned pollutants implies that the model is reliable and capable of estimating pollutant emis-

sions with high precision. In summary, the enhanced interpretation of the results confirms the 

accuracy of the predictions for HCT, CO, NOx, and PM. The low MSE values and high corre-

lation coefficients demonstrate the close agreement between the predicted and experimental 

values. The fact that the predicted values align well with the experimental trend across differ-

ent load and speed ranges further validates the reliability of the predictive model. 

Conclusions  

This research utilizes an extensive collection of empirical data encompassing the 

complete speed/load range of an engine running on fossil diesel (B0), pure WCO biodiesel 

(B100), as well as their blends (B25) and (B50). The gathered experimental data were then 

employed for the training, validation, and testing of the ANN model. In order to describe the 
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engine-out responses, seven MLP were used to estimate the seven engine characteristics 

(SFC, exhaust gas temperature, BTE, HCT, CO, NOx, and PM) as a function of the four en-

gine control parameters (fuel, LHV, speed, BP). It is demonstrated that the seven trained MLP 

are capable of accurately predicting each of the seven engine reactions and, as a result, accu-

rately capturing the engine's characteristics under a variety of operational conditions.  

The MLP were trained, validated, and tested by experimental results for different 

fuels at different engine operational conditions, which demonstrates the utility of the ANN as 

a precise and effective modelling technique on the one hand, and on the other hand, certifies 

the robustness of the control parameters chosen to be learned by the model. 

The significance of employing this ANN model and its ability to accurately predict 

engine parameters is emphasized by the correlation coefficient values, which range from 

0.9765 to 0.9923 for performance and 0.9591 to 0.97887 for emission. This underscores the 

reliability and effectiveness of the ANN in making accurate predictions. 

For all scenarios examined, the mean square error values fell within the range of 

0.0007-0.0009 for performance and 0.0007-0.0014 for emission. These results serve as com-

pelling evidence for the efficacy of the selected inputs incorporated into the model. 

While the model has demonstrated its capability to forecast engine responses in a 

compression ignition engine fueled by biodiesel, there is still a lack of refinement in account-

ing for the inherent discrepancies resulting from the diverse physicochemical properties of 

various fuel blends. Therefore, the authors intend to further study the capability to incorporate 

physico-chemical property models into the ANN for future research. 
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