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Abstract—The amount of time in which a sample is executed
is one of the key parameters of a malware analysis sandbox.
Setting the threshold too high hinders the scalability and reduces
the number of samples that can be analyzed in a day; too
low and the samples may not have the time to show their
malicious behavior, thus reducing the amount and quality of the
collected data. Therefore, an analyst needs to find the ‘sweet spot’
that allows to collect only the minimum amount of information
required to properly classify each sample. Anything more is
wasting resources, anything less is jeopardizing the experiments.

Despite its importance, there are no clear guidelines on how to
choose this parameter, nor experiments that can help companies
to assess the pros and cons of a choice over another. To fill
this gap, in this paper we provide the first large-scale study of
the impact that the execution time has on both the amount and
the quality of the collected events. We measure the evolution
of system calls and code coverage, to draw a precise picture of
the fraction of runtime behavior we can expect to observe in
a sandbox. Finally, we implemented a machine learning based
malware detection method, and applied it to the data collected
in different time windows, to also report on the relevance of the
events observed at different points in time.

Our results show that most samples run for either less than
two minutes or for more than ten. However, most of the behavior
(and 98% of the executed basic blocks) are observed during the
first two minutes of execution, which is also the time windows that
result in a higher accuracy of our ML classifier. We believe this
information can help future researchers and industrial sandboxes
to better tune their analysis systems.

I. INTRODUCTION

Malware analysis sandboxes play a fundamental role in the
analysis of suspicious software. The importance of these tools
has brought to a proliferation of different platforms, resulting
in a large number of both open source and commercial sandbox
solutions [1]–[3], [9]. Moreover, fifteen years of research in
the field has covered a wide range of technical aspects and
proposed new solutions dedicated to the dynamic analysis of
malicious samples [19], [34], [53], [83], [87], [101], [106].

However, despite the fact that malware analysis sandboxes
are a well-studied and mature technology, little is known about
the best configuration setup that is required to maximize their
effectiveness. This is true even for their most simple parameter:
the sample execution time. Over the years, companies running
fully automated analysis infrastructures kept decreasing the
analysis time to cope with the increasing number of collected
samples. While this may seem an obvious response to the big
data problem, there is no study that measured the impact of
less analysis time on both the amount and the quality of the
information collected by the sandbox; How much do we really
lose by going from ten minutes per sample to three minutes?
And then, from three to one?

At first, this might seem like a classic trade-off between
the volume of the collected data and the amount of samples
that can be analyzed in a given amount of time. However,
the answer is actually much more complex than that. In fact,
it boils down to two fundamental aspects. First, on how the
actions performed by a malware sample are distributed over
time: does the malicious behavior of a program start from the
first second, or can it be observed only after a few minutes
of execution? Second, it depends on how important a piece of
behavior is for a specific goal. For instance, the fact that a short
execution time might only expose 30% of the behavior of a
sample, might not necessarily be a bad thing. It all depends on
whether that 30% is sufficient to correctly classify the sample
or to obtain adequate information for the analysts. Intuitively,
longer execution time will result in the collection of more
events, which may contain useful information to characterize
the behavior of a sample. As a result, one would logically
expect a time window with increasingly longer temporal cover-
age to provide better classification results. Sadly, none of these
two factors (i.e., the evolution of the malicious behavior over
time and the relevance of the collected information) have been
studied before. This, as we will show in Section II, has left
analysts and researchers without clear guidelines. As a result,
everyone was free to pick his own value—mostly based on gut
feelings on what they believed to be a “reasonable” execution
time.

These problems, and the importance of designing a mal-
ware analysis platform based on real data, motivated us to
perform a comprehensive study on the subject. By using a
custom-designed solution based on the PANDA record-replay
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emulator [31], we collected fine-grained information on the
execution of 100K samples, and use it to shed light on how
time affects both the volume and the relevance of the collected
data.

Our key findings, summarized in more details in Sec-
tion VIII, show that most of the samples execute either for
less than two minutes or for more than ten minutes. In both
the cases, we could observe that while the number of system
calls tends to increase linearly over time, the code responsible
for them is typically explored very fast – in the first one or two
minutes of execution. Our measure of the impact of stalling
code in its traditional form (i.e., invocations of a sleep API)
shows that it actually influences in a remarkable way only
a low percentage of samples (close to the 3%). Furthermore,
we experimented with different code-based metrics to estimate
the absolute code coverage that samples reach while running
in a sandbox. Thanks to these measurements, we illustrate that
absolute code coverage of a sample can have a great variance,
depending on its family and on the sample itself. Overall, we
registered code coverage values in the range of 10% to 40%.

Finally, we implemented a state-of-the-art machine learning
classifier and conducted experiments to measure how unique
and how relevant the data collected in different time windows
is. This helps us to answer whether it is easier to tell that
a program is malicious by looking at its actions in the first
minute, or by looking at those it performs after three or
five minutes. Indeed, we found that the first two minutes of
execution are the most representative from the perspective of
a ML classifier, not just because of the amount of events
registered in such a timespan, but also for their ”quality” in
terms of novel information that they can provide to a classifier.

We plan to release the entire data we collected from the
execution of 100K samples, to help other researchers replicate
our findings and conduct further experiments on the nature and
evolution of malicious behavior.

II. MOTIVATION AND RELATED WORK

In 2007, in their seminal work that proposed the design of
the original malware analysis sandbox, Willems et al. [101]
noted:

“We found that executing the malware for two min-
utes yielded the most accurate results and allowed
the malware binary enough time to interact with
the system, thus copying itself to another location,
spawning new processes, or connecting to a remote
server, and so on.”

While interesting, this was purely a qualitative statement,
and the authors never mentioned what kind of experiments they
conducted to support the choice of this threshold. At the other
end of the spectrum, in 2011 Rossow et al. [82] executed each
sample for up to one hour and noted that only 23.6% of the
communication endpoints and 95% of the network protocols
were observed in the first 5 minutes of analysis. This seems to
suggest that if the goal is to study the network behavior, two
minutes are most likely insufficient to collect the majority of
the sample’s behavior.

To the best of our knowledge, the only other work that
studied the interval of time required to properly analyze

Fig. 1: Execution Time vs Dataset Size

malware was performed in 2017 by Kilgallon et al. [51]. To
be precise, the goal of the authors was to predict the time
needed for a sample to show enough malicious behavior for
the heuristics of the Cuckoo sandbox to assign a malicious
score of five. To train their model, the authors conducted a
small experiment with 3320 samples, and found that 82% of
them needed to be executed for less than one minute, and 53%
could already provide the required information in their first 20
seconds.

Due to the lack of clear guidelines, over the past fifteen
years researchers and security companies adopted a wide range
of values for the samples execution time. As we will discuss
later in this section, the rationale behind each choice is often
unknown, but for sure the main goal of the analyst (for
academic researchers) and the amount of samples that need to
be analyzed over a limited period of time (for companies) are
the two main factors that dictated the choice of one threshold
over another.

Researchers tend to focus on relatively small datasets that
can be analyzed over the course of many days, typically with
the goal of collecting data to study a very specific behavior.
Instead, security companies need to operate fully automated
malware analysis pipelines to process hundreds of thousands
of samples per day, thus focusing more on scalability and on
the collection of generic behavioral data.

In the next two paragraphs we provide more details about
the time intervals adopted in the experiments conducted by
researchers and security companies.

A. Research Experiments

Researchers have been conducting a large spectrum of
dynamic analysis experiments over the past twenty years.
Some were explicitly designed to improve or propose new
sandbox techniques, while others simply relied on sandboxes to
collect data to perform other experiments — such as modeling
the behavior of samples, extracting new detection signatures,
train a classifier, or report on the internals of certain malware
characteristics (such as packing, use of encryption, etc.).
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TABLE I: Papers collected by execution time

Time
(minutes)

Papers

< 1 5 [44]–[46], [94], [109]
1 2 [56], [108]
2 14 [21], [26], [35], [40], [43], [52], [70], [85], [91], [95],

[100], [101], [105], [110]
3 7 [15], [65]–[67], [71], [81], [93]
4 1 [58]
5 13 [12], [13], [23], [29], [38], [50], [51], [69], [78], [88], [92],

[102], [106]
8 2 [20], [89]
10 7 [24], [25], [36], [41], [59], [63], [87]
15 1 [10]
> 15 2 [82], [84]

We reviewed several papers by looking at the execution
time threshold used by their authors, and report the results in
Table I, grouped in different time ranges. The values range
from a minimum of 30 seconds [44]–[46], [94], [109] to a
maximum of 1h [82].

It is also interesting to note that it is very rare for a paper
to discuss why a certain value was chosen. We only found a
handful of explanations, including “We used executions of 120
seconds, as we found that two minutes is generally enough time
for most malware to execute its immediate payload, if it has
one” in 2010 [40] or “The 5 minute window was arbitrarily
defined on the assumption that the payload would execute
immediately upon execution and would take no longer than
5 minutes to complete” in 2018 [23]. However, none of the
papers conducted experiments to support their choice.

Figure 1 shows the sandbox execution time versus the
number of samples analyzed. There is no clear relationship
among the two, confirming the fact that the sample execution
time chosen by academic researchers is more the result of the
personal judgment of the authors than a choice dictated by the
size of the dataset.

Finally, it is also interesting to note that the execution time
is rarely discussed as an important factor when comparing
with previous works. It is common for some papers to extract
malware behavior from a two-minute execution and compare
the models with previous studies that run samples for longer
periods of time. In this case it is unclear whether accuracy
degradations or improvements of the proposed techniques are
caused by a better solution or simply by the better data
collected over a longer period of time.

B. Industrial sandboxes

While researchers often have to perform customized anal-
ysis in their experiments, we expect security companies to use
more standardized architectures that have been carefully tuned
over the years to maximize the trade-off between the required
resources and the collected information. Unfortunately, to the
best of our knowledge none of the companies disclose any
details about their internal pipeline.

Therefore, to collect some data we created a simple probe
binary (compiled for Windows) as already performed in the
past by Yokoyama et al. in 2016 [107]. The goal of our
probe was to make HTTP requests to a server under our
control at regular intervals of time (with a granularity of 10
seconds). To distinguish among different executions of the

same sample, we included in the request the PID of the process,
a random number generated when the probe is executed,
and an incremental counter. No other information about the
sandbox, the environment, or the network in which the sample
is executed was collected by our program.

We first submitted the probe to VirusTotal [8] because it
serves as entry point for a large number of security tools and
companies. After submitting a file, VT shares it with different
Antivirus engines that analyze the file in their own sandboxes.
Several companies also receive feeds from new submissions,
thus increasing the number of times our probe was analyzed.
Even though VT could impose a time limitation to perform
dynamic analysis, we observed multiple re-executions of the
sample after the initial submission and our results confirm that
the majority of the executions happened well after VT dis-
played its result. In addition to VirusTotal, we also submitted
our probe to the list of online sandbox services collected by
Yokoyama et al. [107].

A month after the initial submission our probe had been
analyzed by 32 different sandboxes. We can summarize the
results in three main categories:

• 23 sandboxes ran the sample exactly once for a fixed
interval of time, ranging from 30 seconds to 4 minutes.

• 4 sandboxes ran the sample but manipulated the sleep
invocation to lower the sleeping time. In this case we
received all HTTP requests in a burst. The sample was
analyzed for a maximum period of 2-to-3 minutes (in-
cluding the manipulated sleep invocations).

• Finally, 5 sandboxes repeated the analysis of our probe
multiple times during the month following our initial
submission, but always for 2 to 3 minutes. None of these
sandboxes altered the sleep invocations.

The finding of this experiment is that companies seem
to execute samples for an average time that ranges from
30 seconds to 4 minutes. Considering the number of new
malware samples that need to be analyzed every day, this is
an understandable choice to achieve scalability.

C. Related Work

A huge body of research exists in the field of dynamic
malware analysis. In the following, we summarize work aiming
at studying common malware techniques and thus at improving
the quality of malware sandboxes.

A well-known technique to identify and consequently
evade malware analysis sandboxes is the analysis of the exe-
cution environment to identify inconsistencies in the behavior
of the CPU, missing artifacts of user interaction, additional
artifacts in memory or fingerprinting well known malware
sandboxes [37], [64], [72], [74], [80], [104], [107]. As a
counter-technique, researchers proposed to execute malware
samples in different environments and observe differences
in the execution traces to identify environment-aware sam-
ples [17], [48], [49], [57], [61]. While a successful sandbox
detection can alter a sample execution time, these work focused
on the techniques – or on the way those techniques can be
detected during the analysis.

Another branch of research focuses on increasing the
execution coverage by identifying trigger-based behaviors and
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on enforcing the execution of multiple paths [22], [30], [68],
[75], [97]. While these techniques can help to collect a more
complete picture of the behavior of a sample, they introduce
a very large overhead that make them unsuitable for malware
analysis services. Among the solutions to increase coverage,
the most relevant to our study are those that focus on mitigating
the effect of stalling code [28], [54], [99]. As we mentioned
above, some basic form of stalling-code mitigation is deployed
by some of the sandboxes we tested and also incorporated in
our experiments.

Other work studied the impact of time for successfully
launching specific types of attacks [11] which is orthogonal
to the goal of our work.

III. EXPERIMENT DESIGN

As our goal is to measure the evolution of a sample’s
behavior over time, it is first necessary to identify how these
two dimensions, behavior and time, can be properly measured.
In this section we discuss the different available options and
the final choices that guided the design of our experiments.

A. Measuring Runtime Behavior

A common approach to model the behavior of a program
is to observe its APIs and/or system calls invocations, as they
provide a detailed view of the interaction of the sample with
its surrounding environment. However, syscalls are executed
throughout the entire life of a program, and just observing new
syscalls is not necessarily a sign of observing “new” behavior.
For instance, a ransomware sample can open a large number
of files, reading and writing their encrypted content over and
over again. This translates to, among others, many invocations
of NtOpenFile with different arguments (as the file name
varies). However, all of them are somehow associated with
the same high-level behavior, and therefore an analyst does
not gain any additional information by observing the creation
of yet another encrypted file.

In contrast, a different malware sample may first open the
executable of another program (e.g., to infect its code), and
then open a number of documents to exfiltrate some private
data. In this scenario, the same NtOpenFile syscall occurs
in completely different contexts and therefore exhibits new
behavior that is relevant for the analysis.

To distinguish such cases, in our experiments we will use
three orthogonal ways to measure the behavior of a running
sample. First, we will look into the list of syscalls and the
appearance of new classes of high-level actions (e.g., network
traffic, filesystem activity, or registry operations). Second,
we will collect the actual code executed in the sandbox, to
capture the context in which each syscall was executed. To
continue with the previous examples; while the NtOpenFile
syscalls in the ransomware sample likely originated from the
same snippet of binary code, the syscalls for infection and
exfiltration in the second sample were certainly triggered by
different pieces of code. Therefore, a natural way to observe
the appearance of new behavior is to examine the execution
traces — where new code equals new runtime behavior.

Syscalls and binary code give us a way to capture the
amount of behavior, but not necessarily its quality. In other

words, knowing that 80% of the syscalls happen in the first
two minutes does not necessarily mean that those system calls
are the ones that really capture the core behavior of a sample.
The actual parameters of those syscalls can be very important
and maybe, while the amount of new behavior decreases with
time, its quality increases.

Therefore, we decided to add a third dimension by using a
machine learning classifier as a way to capture how important
the new behavior is to flag a sample as malicious. The intuition
is that, if a classifier achieves higher accuracy by using the
information collected after a few minutes of execution, this
means that those actions were more distinctive of the behavior
of the sample. After all, one of the main goals of malware
analysis is to collect enough information to accurately classify
an unknown sample.

B. Behavioral Metrics

So far we discussed which information we can use to
capture the evolution of a sample behavior. Now we want
to investigate how this information can be measured and
presented.

For this, we propose three classes of metrics to use in
our experiments. The first, is the Relative coverage. The
relative coverage of a sample execution at time t is defined
as the fraction of behavior (expressed either as the number
of observed system calls or as the amount of executed code)
with respect to the maximum number that is observed for
that sample over the entire execution interval. In other words,
the relative coverage captures which fraction of behavior we
collect at different points in time. For instance, if a sample
executes 10K basic blocks in ten minutes, how many of them
can we observe if we only execute the program for five
minutes? By answering this question, this metric can provide
us with an efficient way to understand how much an analyst
would lose, in terms of amount of collected data, by reducing
the execution time in her sandbox. In our experiments we
will use two relative coverage metrics: the Relative Syscall
Coverage (Rs) and the Relative Code Coverage (Rc).

The second class of metrics we use to measure the behavior
evolution is the Absolute Code Coverage (Ac)—which tries
to estimate how much code was executed wrt the total sample
code. The challenge with this metric is that while it is simple
to extract the instructions that are executed (as the emulator
can easily collect this information), it is difficult to precisely
estimate the part that was not executed. As we explain in
Section V-C, we can do that either by measuring the size
of the executable memory regions, or by disassembling those
regions to recover individual basic blocks. The first approach
may overestimate the code by also including data (if the two
are interleaved), while the second suffers from the limitations
of the disassembler algorithm (e.g., to recursively traverse
the CFG and to deal with possible obfuscation and anti-
disassembly tricks). In Section V-C we will show that in our
experiments the Absolute Code Coverage computed by looking
at raw bytes or by looking at basic blocks are almost identical.
Therefore, unless explicitly mentioned, through the paper we
will use basic blocks as the basic unit of code.

The third and final metric we use in our analysis relies
on the accuracy of a machine learning classifier that uses
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the sequence of the system call records observed during
the sandbox execution. By gradually extending the length of
the time window and measuring the resulting classification
accuracy, we can assess the quality of the data collected over
that specific amount of execution time.

C. Measuring Time

As the goal of our work is to analyze the evolution of a
sample behavior over time, a crucial step is to devise a way to
precisely measure at which time each action was performed.

First of all, we need to define what time means in this
context. To this end, we first discuss the differences between
measured time and the sandbox time. Our system (explained
in details in Section IV) requires an emulator to capture each
basic block executed by the malware samples. Therefore, our
environment introduces an extra overhead which slows down
the execution compared to a more traditional malware analysis
sandbox, resulting in alterations on the original execution
time. To identify the latency that our system introduced to
the measurement, we compared the executions of the same
binaries in a Cuckoo [2] sandbox deployed on top of the
KVM virtualisation software (which acts as our reference
sandbox) and inside our infrastructure. During the executions
of the binaries, we fetch the timestamps corresponding to
some specific syscalls from both our sandbox and Cuckoo,
and compare them to estimate the slowdown.

The limitation of this technique is that the executables
under observation have to follow a deterministic pattern when
invoking the syscalls. Thus, we crafted two custom binaries in
which we control their deterministic syscall invocations (the
two binaries differ in the set of syscalls that are invoked). We
executed each binary 15 times in our system and 15 times in
the vanilla Cuckoo sandbox and obtained an overall slowdown
of 3.1x. However, for a real binary this value can be much
lower if the program spends a considerable amount of time
waiting for external events or inputs (e.g., when receiving
network packets). We therefore repeated the test for several
samples from our test set that show deterministic behavior but
which interact with the filesystem or receive network packets.
In these cases, we could observe a minimum slowdown of
1.4x and a maximum slowdown of 3.7x. This is well below
the worst-case slowdown of 10x of recording with PANDA
compared to executing a binary on a native system as reported
by the authors [31], [32], [90].

Another key problem while taking measurements about the
time, is that several samples invoke the Sleep and SleepEx
functions while running. Very often, malware authors use this
to stall execution as an anti-analysis trick. However, because of
its popularity, sandboxes can be designed to reduce (or entirely
skip) any sleep time — an action which is often called time-
warping. As we discuss in Section II-B, 4 of the 32 industrial
sandboxes we tested adopted this approach. This raises an
important question: if a sample executes one syscall at time t,
then waits for one minute and executes a second one, what is
the time in which the second event occurs? Is it real time (i.e.,
t+ 60 seconds), or the warped time (i.e., t)?

Our solution, as explained in Section IV-A, is to use time-
warp to ignore any sleep operation, to maximize the amount of

data we can collect. However, our system is designed to also
collect the expected sleep duration, allowing us to virtually re-
introduce the proper delays during the analysis. This way, we
can precisely assess how important it is to skip sleep operations
on the amount of data that can be collected by the sandbox.

D. Sample Selection

Setting up a representative malware dataset is a challenging
task that can be performed in different ways depending on
what the data needs to closely represent and what the goal
of the analysis is. For instance, one may want to balance
malicious and benign samples while another may focus on
obtaining a broad number of different families or even on
balancing the presence of individual attributes in the dataset
(such packed vs non-packed). Our goal is to analyze the impact
of execution time on a large-scale malware analysis pipeline
which might receive a large number of fresh samples to analyze
every day. As such, we wanted our dataset to mimic those that
are regularly analyzed by security companies. To satisfy this
requirement, for our malicious dataset we downloaded fresh
samples submitted to VirusTotal, i.e., samples observed for
the first time on the same day in which we downloaded and
analyzed them (this is what Ugarte-Pedrero et al. [98] call
the catch of the day). This was the only criteria we used for
our selection. We did not try to impose any balance to the
downloaded data, because when previously unknown samples
are identified, they need to be analyzed without any a priori
knowledge about them. However, to avoid biases due to the
collection day, we only retrieved our data in small chunks of
2K samples, and repeated the procedure every few days. This
way we could guarantee that samples were always analyzed as
soon as they were collected, thus maximizing the probability
of being still active and therefore of running correctly at
the time of the execution. Because we were limited by the
scalability of our solution, which required up to one hour to
complete the analysis of each sample and to produce elaborated
reports about its execution, we stopped our data collection
when we reached 100K samples. This took over 6 months
at total. Overall, the final instance of the dataset included 86K
malicious samples and 14K benign ones. We included all types
of Windows PE malware and we did not filter any specific
malware families or types.

As mentioned earlier, our study also aims at assessing
the impact of the analysis time on machine learning-based
malware detection techniques. Clearly, such techniques also
require a fully supervised training set composed by well tagged
benign and malicious samples, so as to build and train the
classifiers to categorize samples as malicious or benign. For
this reason, we only selected samples that were identified
to be malicious by at least 5 AV detection on VirusTotal–a
rather conservative solution compared with the threshold used
by other works [60]. Moreover, in contrast to many studies
that selected benign samples by picking popular Windows
applications or installation files, which in general are very
well-known files and therefore easy to spot and whitelist by
the security companies, we assembled our benign dataset from
VirusTotal submissions. The selection criteria was to choose
samples that were never identified as malicious by any of
the AV companies and that had been submitted to VirusTotal
at least 6 months prior to our analysis. This would provide
enough time to the AV to adapt their signatures to cover
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new families and thus minimize the probability of selecting
unknown malicious files as benign.

IV. DESIGN & IMPLEMENTATION

As we explained in the previous section, our study requires
us to collect very fine-grained information about the operations
performed in the system during the execution of a sample.
In particular, we want to collect all system calls, but also to
monitor the executed instructions, in the form of individual
Basic Blocks (BBs). Moreover, to estimate the absolute code
coverage at any given point in time, we also need to extract
all the executable regions that are part of the memory of the
running processes.

While malware analysis sandboxes are typically executed
either on a bare metal machine by using a virtualization tech-
nology, for the level of details required by our experiments we
need to resort to an emulator (QEMU in our case). Moreover,
since our analysis would introduce an unreasonable overhead,
we decided to use PANDA [31] to first record a sample
execution, and then replay it while using our instrumentation.

This solution hinders the scalability of our system but it
allows us to obtain a better visibility on the execution of a
program, which is a necessary step to uncover the impact of
the sample execution time on the amount of information that
could be obtained through the malware analysis sandbox.

A. System Overview

Our analysis starts by loading the sample into PANDA
and by recording its execution for a specified amount of time.
Based on the data presented in Section II, we decided to use 15
minutes as execution threshold–as this was the highest value
we observed in research papers or industrial solutions, with
the exception of two longer experiments that only focused on
network activity.

However, to allow for a more fair analysis of downloaders
and droppers, our system detects samples that spawns new
processes based on files they previously wrote to the disk,
and in this case we restart our timer when a dropped file is
executed. In a real world scenario dropped files could be in
principle collected and analyzed separately, which is equivalent
to our solution of restarting the clock for dropped files. Overall,
our recording system is similar to the one used by Malrec [87]
but we adapted the solution to the new PANDA version 2 while
the current Malrec dataset is available for PANDA 1 only.

We then replayed the recorded execution while running
several plugins dedicated to collect the data required by our
analysis. The plugins collect all system calls that occur in the
context of the monitored processes, all BBs that are translated
and executed by the emulator, as well as a complete memory
dump whenever one of the monitored processes is about to
terminate. From the memory dumps we then extract the content
of the process’ memory and finally all of its executable basic
blocks.

System Calls Collection – One of our goals is to collect all
system calls invoked by the malware sample under analysis.
PANDA comes with the syscalls2 plugin [4] which pro-
vides callbacks triggered when a system call is called or when

it returns. Based on these callbacks, we implemented our own
plugin that hooks every system call that occurs during the
execution of the malware sample. The plugin logs all system
calls together with the timestamp of their occurrence, the PID
of the process in whose context the call occurs, as well as all
the syscall parameters. However, PANDA only allows us to
monitor the system calls from outside OS and does not make
any high-level information available. Therefore, each argument
or return value is represented by a generic uint32_t value.
While this is fine for integer values, in practice, many argu-
ments to system calls are pointers to structures. Therefore, if
higher-level information is required for further analysis, we
need to parse the memory to retrieve additional information.
Unfortunately, large parts of the Windows OS internals are not
well documented.

We partially solved this problem by extracting information
from Volatility’s offset-tables for Windows 7 Service Pack
1 [39]1. We also used the description provided by Petritsch [76]
on how to retrieve network packets from system calls. Finally,
PANDA’s win7proc plugin [5] infers high-level information
from several system calls related to processes, registry, file
system, and shared memory. By combining the information
provided by all these sources, our system is able to lift data for
all system calls related to the interaction with the file system,
the registry, as well as for processes, memory management,
and network-related operations.

Basic Blocks – The PANDA_CB_AFTER_BLOCK_TRANSLATE
callback provides a way to instrument the BB translation,
an operation that the emulator performs right before the first
execution of each BB. With this methodology, we collect all
BBs when they are executed for the first time in the context
of a process we observe.

To estimate the code coverage achieved by a given execu-
tion, we also need to extract all executable BBs belonging to
the malware sample. Since, due to packing and obfuscation
techniques, it is often impossible to retrieve the program
code statically, we resort to extracting the BBs from the
process’ memory image. It is reasonable to assume that the
maximal amount of code is present in memory right before
the process terminates. While this might not be the case for
packers of type VI (according to the classification of Ugarte-
Pedrero et al. [96]), these are extreme, and very inefficient,
forms of packing that are used in only 0.2% – 1.8% of
the samples. Moreover, it is important to note that we only
report the absolute coverage for completeness, while all our
measurements rely on relative metrics, which are not impacted
by packing as they only measure those basic blocks that are
actually executed by the program.

To dump the memory at the end of the process’ execution,
hooking the NtTerminateProcess call was insufficient.
Instead, we found that for all possible ways a process has
to terminate, the ProcessDelete bit (the 3rd bit of Byte
0x270 of the EPROCESS structure) is set to 1 right before
the memory of the process is freed by the Windows kernel. In
contrast, all other bits and timestamps are set after the memory
space has already been freed. Hence, our system checks if this

1Volatility is a popular memory forensics framework and its operations rely
on OS internal details that are retrieved by manually reverse engineering the
target systems.
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bit is set when the process context changes, thus dumping the
memory before it is freed by the operating system.

We then use the Rekall [6] memory forensics framework
to extract the memory image of the process and analyze the
virtual address descriptor tree of the process’ memory content.

By parsing its output, we can extract all regions which are
marked as executable but do not belong to any named module
(e.g., a shared library). Each one of these regions is then pro-
cessed by SMDA [7], an open source recursive disassembler
optimized for recovering code from memory dumps. SMDA
is based on Nucleus [14], which can detect more functions
in a binary than traditional disassemblers. We also extended
SMDA to better guide it through the code regions within the
address boundaries which have been executed in PANDA, thus
increasing the disassembler’s ability to explore the code.

Recovering Time Information – A problem we encountered
in our analysis is that, during replay, we needed a way
to retrieve the timing information according to the malware
recording. In other words, we wanted to know exactly when
a given system call or basic block was executed during the
sample recording and not during the, much slower, replay.

To achieve this goal, we exploited the
KUSER_SHARED_DATA structure and its SystemTime
field at offset 0x14. This field stores the current system time
(expressed as an offset since January 1st, 1601 00:00:00 in
100 nanosecond ticks) and its value in memory is regularly
updated. As PANDA records all memory-writes, any update
to SystemTime is also recorded. This allows us to recover
the exact timestamp when each event was performed during
the recording – thus removing the overhead of our system
from the results of our analysis.

Windows API Hooks – Several malware samples intention-
ally delay their malicious activity by sleeping for a certain
amount of time, thus bypassing traditional dynamic analysis
sandboxes. Therefore, we decided to hook the Sleep and
SleepEx functions in Kernel32.dll to detect such cases.
Whenever one of the two functions is called, we add the time
of the sleep to the system time but return immediately. This
allows us to bypass sandbox evasion tricks based on the system
time.

Furthermore, we hook the functions CreateProcess-
InternalW, CreateProcessWithLogonW and
CreateProcessWithTokenW to inject our dll and
install the hooks also into child processes. In case a file is
dropped by the malware and later executed, we want to extend
the time of our analysis. We therefore collect all written files
by hooking NtCreateFile.

All events recorded through the API hooking are immedi-
ately transmitted to our analysis framework while the malware
is still running. We collect the time the malware sample sleeps
and the child processes spawned by the sample. We decided
to implement a simple client/server mechanism to share this
information. The client is included in the injected DLL and
sends messages containing the timestamp, the PID, and the
event information to the server running outside PANDA, which
logs the information for the subsequent analysis.

TABLE II: Top 10 families in the dataset

Family name Total

sytro 4162
stihat 3936
blackmoon 3911
agen 3574
dinwood 2821
sillyp2p 2806
high 2682
upatre 2613
mira 2505
ulise 2473

V. RESULTS

According to AVClass [86], our dataset contains 806 differ-
ent malware families and 6, 989 samples classified as singleton
(i.e., for which it was not possible to recognize a common
label). Even though some families are present with higher
frequency than others (Table II reports a ranking of the top
10 families present in the dataset), no family was predominant
and even the largest accounted for only 4K samples – thus
resulting in a well balanced dataset.

Our experiments were conducted in a sandbox running
the 32-bit version of Windows 7 Service Pack 1. We further
configured the sandbox to have an internet connection and
simulate basic user interaction to enable a realistic execution
of the samples.

According to what we discussed in Section II, each sample
was executed for up to 15 minutes. Then, the execution was
replayed, this time by using our PANDA plugins to collect the
required information. In average, the complete analysis of one
sample took around one hour, resulting in over 4100 days of
CPU time – which in our case were distributed over 80 parallel
virtual machines.

Overall, in our experiments we performed 5.9M minutes
of malware execution, over which we collected 205M system
calls and 84M unique basic blocks.

A. Filtering

As expected, some samples implement tricks to detect
the presence of the analysis environment or that they were
executed inside an emulator. While currently, the actual amount
of samples that adopt anti-analysis techniques is not known,
one of the last experiments to measure its adoption was
performed by Symantec in 2014. The authors found that anti-
VM techniques were in decline, with only 18% of the samples
that refused to run in a virtual environment [103]. In addition,
some programs also failed to run because of lack of parameters
or missing dependencies.

From one point of view, since our goal is to put ourselves
in the position of a security company that needs to analyze
unknown samples collected by their infrastructure, one may
see these samples that failed to properly executed as “part of
the game”. Since these executables cannot be easily removed
without first executing them, the tuning of the sandbox needs
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TABLE III: Summary of the dataset

Discard <2m >2m & <15m 15m Tot

Malicious 8,402 55,669 10,658 11,290 86,019
Benign 1,456 10,385 798 1,375 14,014

to take them into account. On the other hand, we wanted
to avoid polluting our findings with these cases, since their
actual number may vary depending on the sophistication of
the sandbox and on how realistic the analysis environment is.
Clearly, to obtain a more accurate picture about the malware
analysis, we need to discuss only the running samples, without
including broken binaries, programs that exit because of wrong
parameters or missing dependencies, or malware that detected
the presence of our analysis environment. Therefore, we de-
cided to conservatively filter out samples that did not show a
sufficient amount of activity during their execution. This has an
important implication for our results, as when we conclude that
a certain percentage of malware shows a certain distribution
in its runtime behavior, we always mean “a percentage of the
malware that successfully executes”. This needs to be kept in
mind when interpreting the results of our analysis.

From a practical standpoint, we applied two conservative
thresholds to the collected data: the first over the number of
invoked syscalls, and the second over the number of executed
basic blocks. More specifically, for the syscalls we defined a
set of functions which capture signs of meaningful activity
(e.g., disk operation or network-related activity) and we then
required that at least 50 of these functions were invoked.
With regards to the basic blocks, we adopted 4, 000 basic
blocks as a minimum threshold for a successful execution.
While these values are somehow arbitrary, our sole goal here
is to be conservative enough to remove samples that did not
execute correctly. In our dataset, these thresholds discarded
8, 402 (10.5%) of the malicious samples and 1, 456 (10.9%) of
the benign ones. Among the remaining samples, the minimum
execution time before a malicious sample terminated was 28
seconds—which is certainly sufficient for a program to show
some of its runtime behavior.

B. Execution Time

The first interesting result we observed in our experiments
is that most malware samples terminate their execution before
reaching the sandbox threshold. This is very important because
it means that even if a sandbox is configured to execute
malware for ten minutes, 81% of the samples that successfully
executed will not reach this threshold, and over half of them
will terminate within the first minute. The full cumulative
distribution of the execution time is reported in Figure 2 for
both the benign and the malicious files. It is interesting to
note that the two curves are remarkably similar, and that both
show that either a program terminates in the first three minutes,
or it continues to run for more than thirteen. A complete
breakdown of the entire dataset, divided according to the
samples termination time, is presented in Table III.

This result could be explained by the fact that either a
program performs some actions (e.g., it downloads a second-

Fig. 2: Malware execution times

Fig. 3: Absolute Code Coverage vs Termination Time

stage binary, or it manipulates some data) and then terminates,
or it remains active potentially indefinitely (as in the case
of a botnet or an application that requires user interaction).
By looking closely at the samples that terminated in the first
minute, we fetched the system calls related to network opera-
tions (e.g. NtDeviceIOControlFile/DeviceControl)
and we analyzed their input parameters to understand if the
samples were opening a new connection, downloading data, or
sending data. We noted that respectively 51% of the malicious
and 67% of the benign samples exhibited signs of network
activity, thus suggesting that the samples did not simply detect
the presence of the VM. Moreover, the top families reported in
Table II were more prevalent among these short-lived samples
(43% of the samples belonged to the top nine families, which
covered instead only 29% of the entire dataset). Similarly,
67% of the benign samples that executed for less than one
minute showed signs of network operations. This is likely due
to droppers and installers.

Figure 3 shows the Absolute Code Coverage (on the Y
axis) reached by each sample at the end of its execution (on
the X axis). The plot confirms once more how most of the
samples are either exiting in the first two minutes, or executing
until the end of the 15 minutes window. It also shows that the
absolute code coverage does not change much among these two
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Fig. 4: Relative Syscall and Code Coverage of a Malware
Sample

Fig. 5: Global evolution of syscalls and unique basic blocks
over time

extremes—ranging from 18.8% of the samples terminating in
the first minute to 26.4% for those on the right side of the
graph. Similarly, benign samples reached an average Absolute
Code Coverage of 24% at the end of their execution.

C. Behavior evolution

Figure 4 synthesizes the main results of our study for one
random malware sample (our system generated one graph like
this for each sample in our dataset). It is interesting to note
the distance between the two lines, one showing the Relative
Syscall Coverage (i.e., the percentage of the system calls
observed at time t with respect to the total number observed
over the 15 minutes of our experiment) and one the Relative
Code Coverage (i.e., the percentage of unique basic blocks
observed over time). It is surprising that most of the basic
blocks were observed during the first minute, while the number
of system calls grows more slowly for the entire duration of
the experiment. For instance, after three minutes Rc is over
90% while Rs is only 16%.

To look at the samples in a cumulative way, we plotted
Figure 5, over all basic blocks and syscalls that have been

Fig. 6: Global evolution of syscalls and unique basic blocks
over time, only for samples that executed until the end of the
15 minutes time window

executed by all samples, to provide a view on the global
evolution of Rc and Rs. Once more, the orange line shows
the cumulative evolution of the Relative Syscall Coverage,
but this time for all samples together. The curve increases
rapidly for the first two minutes, even when there are still more
samples running. After that, it continues with an almost perfect
linear growth that seems to suggest that, as far as samples are
running, the longer we execute them, the more behavioral data
we can collect.

However, the blue line shows a completely different pic-
ture. In fact, the Relative Code Coverage for all samples
flattens very fast, already reaching 97% in the first minute
and 99% after three minutes. While 19% of the samples run
for more than ten minutes, between 10 and 15 minutes we
only observe a negligible 0.2% increase in the overall code
coverage – suggesting that a negligible amount of new behavior
is observed in this time window. In fact, by combining the two
lines, Figure 5 suggests that the fact that samples continue
to execute new system calls does not necessarily mean that
these system calls also capture new functionalities (this is
also confirmed by the machine learning classifier discussed in
Section VI). Instead, these calls are likely repetitions that are
executed from the same code (and therefore the same behavior)
that was already observed before.

One may argue that this aggregated result is skewed by
the fact that half of the samples terminate during the first
minute. In other words, most of the basic blocks are observed
at the beginning because that is when most of the samples
are running. Even though this would not explain the linear
system call growth, further evidence against this hypothesis is
provided by Figure 6. This is the same graph we discussed
above, but this time plotted only for the samples that executed
until the end of the 15 minutes period. The system call line is
now perfectly diagonal, confirming that its initial increase was
in fact due to more samples running during the first minute of
experiment. However, the Relative Code Coverage line remains
almost unchanged. Therefore, also for those samples that kept
running until we stopped the sandbox, over 90% of the basic
blocks were already visited during the first minute.
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Fig. 7: Global evolution of stable behaviors over time

Fig. 8: Impact of counting bytes vs basic blocks, and removing
or not library code

A different way to further investigate this is to look at
the number of samples that reach a stable behavior over
time. Figure 7 shows the percentage of samples for which we
observed respectively 100%, 90%, and 75% of the basic blocks
at a certain time within our 15 minutes timespan. Here, it is
interesting to observe the difference between the three curves
with respect to the termination line (in red). For instance,
after two minutes the 71% of the samples have terminated
their execution, but for more than 80% of them we have
already observed 100% of their relative code coverage—and
the two curves kept this 10% difference until the last minute of
experiments. This indicates that Rc does not reach 100% only
when the sample terminates. In some cases (that 10% in the
graph) samples still run for several minutes without triggering
any new line of code.

Comparison Among Different Code Coverage Metrics

As we explained in Section III-B, we can measure absolute
code coverage by counting either basic blocks or by measuring
the size of the executable memory—and both techniques are
subject to different errors. Moreover, as we explained in
Section IV, our system is able to distinguish between the code

of the sample and the code belonging to shared libraries or to
other processes the malware is infecting at runtime. However,
since this process is also potentially subject to errors, one more
conservative way would be to count all code, independently
from to whom it belongs to.

So far, we have presented results based on counting only
those basic blocks that are part of the malicious sample code.
In our opinion, this is the most appropriate way to look at
malware behavior. However, to account for the possibility of
measurement errors, it is important to show that our findings
would be the same also if using any of the other measurement
approaches. Figure 8 compares the different techniques. Note
that we use a logarithmic time scale to further emphasize the
differences, that would otherwise be compressed to a small
region of the graph.

The plot shows two important things. First of all, there is
practically no difference in the Relative Code Coverage metric
if we compute it by counting basic blocks or raw memory
regions (red and blue curves). The effect on the Absolute Code
Coverage (curves orange and purple) is more visible, and leads
to a total code coverage of 21.6% if we count disassembled
basic blocks or 23.8% if we look at memory regions.

Finally, the green line shows the Relative Code Coverage if
we include all code, including external libraries. Furthermore,
even in presence of errors in the process of dumping the
memory and determining the executable basic blocks or code
regions (e.g. due to packers that re-encrypt memory regions),
this line still contains the executed basic blocks and thus serves
as a lower bound for RC . At first, this curve grows slower than
the ones computed before. For instance, after two minutes the
code coverage computed by including all code is 91%, while
by looking only at the code belonging to the malware sample
itself the value is 98.7%. This difference can be explained
by the fact that a piece of malware code can invoke the
same library function twice but with different parameters, thus
resulting in different execution paths inside the library code
itself. In any case, at ten minutes the difference between the
two curves is already below 0.5%.

Impact of Stalling Code

As we already mentioned in Section III, when measuring
time we need to decide whether we want to fast forward
through sleep invocations or preserve the program pauses.
In our experiments, 14% of the malicious and 6% of the
benign samples called Sleep (or SleepEx) at least once—
accounting for a cumulative sleeping time of respectively
569, 310, 375 and 6, 097 minutes.

To assess the impact of stalling code on the amount of
time required to execute a sample, we compare in Figure 9 the
evolution of the Relative Syscall and Relative Code Coverage
metrics when the sleep time is preserved. Quite surprisingly,
sleep time seems to have an almost negligible effect on code
coverage and a 10% reduction to the cumulative number of
system calls collected over the 15-minute period.

In fact, at a closer inspection, 75% of the 11,874 malware
samples that call sleep only stalled their execution for less
than one minute. Overall, 3.1% of our malicious samples slept
for more than three minutes and only 2.3% for more than
ten. This result provides an important figure for companies
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Fig. 9: Impact of sleep time over the global evolution of
syscalls and code coverage.

Fig. 10: Absolute Coverage comparison between 3 families

that use sandboxes that do not skip sleep time (the majority,
according to the experiment we discussed in Section II). Based
on our experiments, these companies can expect between two
and three percent of the samples they analyze to complete
evade their sandbox environment.

Impact of Code Injection

Code injection is a well-known technique applied by mal-
ware [18], [55]. Our sandbox only tracks processes that belong
to the same process tree of the malware. Therefore, code
injection could bypass our analysis if code is injected into
a process outside the sample’s process tree. To measure its
impact on our dataset, we analyzed the collected behavior for
signs of code injection techniques by identifying write-access
to memory regions of other processes. Our experiments show
that while in total 19% of all samples write to memory of other
processes, only 2% of all samples inject code into processes
outside their own process tree and are therefore able to partially
evade our data collection mechanism.

Fig. 11: Code and Syscall coverage comparison between 3
families

D. Intra-Family Variability

So far, we always looked at aggregated values computed
over the entire dataset. However, it is interesting to see whether
our metrics tend to remain constant within a given malware
family. If so, the distribution of samples among families in the
dataset could have a huge impact on our results.

To answer this question, we re-plotted the two figures that
best summarized the results of our experiment (the scatterplot
of the absolute code coverage and the Rc and Rs curves),
but only with the samples of three families: sivis, mepaow,
and blackmoon. Figure 10 shows the three families by us-
ing different colors. The distribution of the points are very
different: all mepaow samples have the same code coverage,
but differ in their execution time; blackmoon samples are the
opposite, as they all run for a very short amount of time but
achieve different absolute code coverage; finally sivis’ points
are scattered everywhere, showing no clear pattern.

To explain these different behaviors we had to manually
look at the details of each family. Blackmoon is a banker
that tries to inject code into other programs by calling
NtCreateSection and NtMapViewOfSection. Differ-
ent samples had different targets, and often more than one.
If none of the targets was found running in the machine,
which is our case, the malware terminates. This is a common
scenario, that shows what happens when a malware family
is analyzed in a sandbox that does not properly mimic the
expected environment. Mepaow is instead a trojan keylogger.
All samples in our dataset had exactly the same behavior,
which explains why we observe the same coverage. But
the malware calls many times NtWaitForSingleObject.
Sometimes the wait fails, and in that case the call blocks until
a timeout is reached. This explains why the execution time of
most samples varies between 12 and 15 minutes. Finally, sivis
is a file infector, and therefore the executables we analyzed
in our sandbox are in fact other programs infected by the
malware, thus explaining why both the execution time and
the Ac metric were so different from one sample to the other.

Figure 11 shows the Relative code and syscall coverage
lines. Different families have different trends but overall we
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still observe a very steep exploration of basic blocks (a little
less pronounced for the file infector as its sample execute code
from the infected applications) and a more smooth progress of
the system calls.

To conclude, with these three examples, we illustrated how
different families can result in different behavioral profiles,
but in particular that it is often difficult to predict how long
a sample would run and how much code it will trigger, even
within a single known family.

E. Analysis of long-time running samples

Since a large portion of malware in our dataset executed
for the whole duration of the 15 minutes time window, we
decided to manually investigate the nature of these samples.
In the following, all percentages are relative to the samples
that ran for the entire 15 minutes period.

The first aspect we studied is the amount of network related
syscalls and the contacted IP addresses. More specifically, we
noticed that 22.45% of the samples executing for 15 minutes
were contacting remote servers for the entire time frame. We
further analyzed the invoked syscalls and the contacted IP
addresses and we dissected these samples into three minor
groups. The first one, accounting for 10.45% of the long-
running samples, is represented by C&C samples that receive
a command from the remote server and show some patterns
which always repeat, such as opening and writing a file, or
setting a new entry in some registry. In contrast, the second
group (9.71%) are botnet samples that contact many more IP
addresses (from a minimum of 10 to a maximum of 820 dis-
tinct IPs), some of them belonging to infected hosts and some
others to machines under the attacker’s control. The last group
(2.29%) is composed of C&C samples as well, but this time
receiving only a small number of commands from the remote
server. Therefore, samples in this last group spent most of
their time in invocation of the NtWaitForSingleObject
/ NtWaitForMultipleObject system calls, i.e., sending
a request to the server and waiting for a response from it.

A second behavior that we could observe looking at the
last minutes of execution is related to filesystem accesses. In
particular, we retrieved the number of filesystem activities from
the system calls log, and we considered all the samples that
were still showing such behavior when they were interrupted
(i.e., when we reached 15 minutes). In total, 40.17% of the
samples kept repeating file operations (from a minimum of
10,000 operations) for their entire execution time. Because of
the shown behavior and after a manual analysis of some of
these samples, we categorized them as file infectors (which
was also confirmed by the AVClass-labels of the samples).

Intuitively, we would have expected that a non-negligible
part of the long-time running samples consisted of malware
that spawn a GUI and spend 15 minutes waiting for a user
interaction. Detecting these samples at syscall level is not
trivial, because no direct mapping between the graphical API
and the internally invoked syscalls exists. Moreover, most of
the graphical operations are performed by means of IO control
messages sent to and from the dedicated device driver (by
means of NtDeviceIOControl) that do not allow to easily
recover the real meaning of the syscall. Hence, we tried to
estimate the number of malicious samples that implement a

GUI at API level, i.e., by fetching when a sample imports and
invokes methods such as MessageBox, MessageBoxEx,
etc. This way we were able to determine that 19.75% of long-
running malicious samples indeed used a graphical interface
to communicate with the user and to receive an input. This
percentage must be considered as a lower bound, because we
use the import address table (IAT) to resolve the calls and it
is well-known that the IAT can be obfuscated by packers.

Finally, we found that 11.19% of samples justify their
15 minutes duration because they continuously invoke
NtWaitForSingleObject / NtWaitForMultiple-
Object on alertable objects (Mutexes, Events). This set con-
tains samples that use these syscalls invocation to implement
some form of stalling code and other cases where the malicious
program really needs to wait for some event (e.g., wait for tasks
performed by other threads).

The categories described above cover 93.57% of the sam-
ples that reached the 15 minutes threshold. For the remaining
6.43% we were unable to identify a common pattern. However,
we can hypothesize that this group includes some undetected
GUI samples or malware that implementing complex and
long-lasting computations (for instance crypto loops or crypto
mining functions).

VI. IMPACT ON MALWARE CLASSIFICATION

In the previous section we focused on the volume of
system calls and basic blocks that can be collected by running
malware samples for a given amount of time. However, the
volume alone tells only part of the story. For instance, it is
possible that while most of the data is collected over the first
minutes of execution, these early events are mostly associated
to generic actions (e.g., loading shared libraries and testing
internet connectivity), and that the “quality” of data improves
instead over time. In this section we propose one possible
way to assess the quality of data, by measuring its impact
on the accuracy of a machine learning classifier with different
execution time of the samples. The choice of the classifier can
slightly change the contribution of individual features in the
classification task. However, the overall accuracy of the applied
classifier reflects the strength of the statistical association
between the involved features and the malware classification
output. A higher classification accuracy denotes that the input
features are statistically more informative with respect to the
classification use. In our study, by analyzing the classification
power of the features within different time windows, we can
therefore unveil the association between the length of the time
window and the amount of information useful for classification
in each window.

A. Classifier

The literature is full of ML-based approaches applied to
dynamic analysis traces. For instance, classic machine learning
models [16], [77], such as Markov chain and Support Vector
Machines, were applied on sequences of system calls derived
from dynamic analysis to capture sequential patterns of succes-
sively executed system calls. Pascanu et al. [73], inspired by
text classification research, proposed the use of recurrent neural
networks, such as Long Short-Term Memory (LSTM) [42] and
Gated Recurrent Units (GRU) [27] for modeling system call
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sequences. Similarly Jindal et al. [47] considered the dynamic
analysis reports containing system calls, network activities,
changes to the registry and file actions as documents to which
they applied recurrent neural networks to automatically extract
language features from the reports. The success of all these
approaches follows the same spirit: the sequential patterns of
the behavioral features, such as the executed system calls, play
an important role in characterizing malware.

Since our goal is not to design a new ML-based clas-
sification scheme, we decided to mimic the state-of-the art
sequential-mining-centric solutions in our study. At each time
step, we transformed all the system calls (including their
parameters) available in the collected malware samples to
categorical features. Then a sequential inference model was
applied for malware classification. Given a sequence of n
system calls x = {x0, x1, x2, ..., xn}, we used the categorical
index xi of each system call (the string with both system
call names and parameters) as the corresponding categorical
feature. The derived categorical feature vector x is used as
input to the classifier. Let x(i) denote the system call feature
vector extracted from the i-th minute of the run-time of
a malware sample. Each x(i) is composed by a sequence
of system calls {xji} (j=1,2,3,...,t). The sequential inference
model is organized similarly as Recurrent Neural Network
[42]. It is defined with a cascaded structure as follows:

hi = δ(w1 ∗ f(x(i)) + w0 ∗ hi−1) (i = 2, 3...,m)

h1 = f(x(1))
(1)

where hi denotes the latent embedding of the system call
sequences from the beginning to the i-th time step. In our
study, we simply set hi as a scalar variable and δ as the
sigmoid activation functions. f(xi) denotes the embedding
function mapping the categorical feature vector x(i) to a scalar
embedding variable. w1 and w0 are the combining coefficients
concatenating the current feature embedding f(xi) and that
of the previous time window hi−1. f is chosen as Gradient
Boosted regression trees to generate the embedding of the
categorical features, as proposed by [111]. Combining the
tree-based classifier and sequential inference structure, the
design of the classifier is robust against the potential imbalance
of malware samples of different families. In the following
experiments, f is empirically fixed to have 100 trees. Empirical
results verify the setting of the trees. The training process
was conducted recurrently to optimize a binomial classification
objective as:

f∗, w∗
0 , w

∗
1 = min

f,w,h

s∑
i=1

`(hsm, ys)

`(hsm, ys) = −yslog(hsm)− (1− ys)log(hsm)

(2)

where hsm denotes the embedding of the system call sequence
sample xs derived at the final time step of xs. It integrates
the information from all m time steps and uses it as the
embedding feature vector of xs. ys denotes the class label
of xs. In our study, ys = 1 indicates that xs is malicious
and vice versa. According to Eq.1. the designed temporal
model encodes the sequential pattern of the system call
sequences via recurrently updating the embedding variable
h. At each time step, the embedding variable hi integrates
the embedding feature of the system calls observed at both
the current and the last time steps. In our study, we used

Gradient Boosted trees as an economic embedding function
to avoid the highly intense computation of training LSTM
[42] and pre-training word2vec embeddings of the categorical
features as the input to LSTM [62]. Gradient Boosted trees are
designed intrinsically to handle categorical input without any
pre-trained embeddings. Moreover, cascaded Gradient Boosted
trees can be equally powerful in capturing non-linear relations
between input features and the predicted malware classes
[112]. Compared to decision trees, the gradient tree model
is known for its tolerance to the class imbalance issue. This
model is embedded with class re-weighting in its design of
loss function, which balances the impact of misclassification
penalty between positive and negative classes. Furthermore,
we deploy in the experimental study a cascaded boosted tree
model, in which each layer corresponds to a time window of
1 min. We extend the cascaded model to cover continuously
longer run-time periods, as reported by Table IV and Table V.

Note that our goal is to understand which minute during
the dynamic analysis provides the best information. Therefore,
we do not claim either to outperform the existing techniques
proposed to date, or that our machine learning technique is the
most appropriate for this problem.

B. Experiments

As presented earlier, a large number of both benign and
malicious samples run for less than 5 minutes. To prevent the
designed classifier from overfitting due to early stop of the
samples, we decided to work only with the samples that run
for at least 5 minutes, and used the first 5 minutes to understand
whether with longer analysis time more informative behaviours
are observed.

By converting the sequence of system calls into the cate-
gorical features, we obtained a richer (i.e., a bigger number of
unique system calls with parameters) system call collections.
However, we would like to stress that richer collections of sys-
tem calls do not necessarily indicate more useful information
for the classification. Instead, encoding irrelevant system calls
into the feature set can dilute the discriminating power of the
features.

We organized two experimental tests. At first, we divided
the whole run-time period into successive and non-overlapped
chunks of one minute. In this way, we evaluated the malware
classification accuracy using the system-calls observed within
the increasingly larger time windows of the first 1, 2, 3, 4
and 5 minutes separately, as shown in Table IV. After that, in
Table V, we further applied the classifier with 100 trees on
the system call collections observed with the first, the second,
the third, the forth and the fifth minute. The variation of the
classification performances obtained in each of the windows
is used to justify which time period provides the most useful
information for classifying malware samples.

Our dataset is composed by 1500 benign samples that meet
our criteria, to which we added 6K malware samples chosen
randomly among those that run for more than five minutes. In
both of the experiments (in Table IV and Table V), for each
length setting of the time window, we conducted 10-fold cross
validation and computed averaged ROC-AUC scores (Area-
Under-Curve score of Receiver Operating Curve) and PR-AUC
scores (Area-Under-Curve scores of Precision-Recall Curve).

13



TABLE IV: Classification accuracy from the first K-minutes

Time window length ROC-AUC score PR-AUC score

First minute 0.968 0.950
First two minutes 0.967 0.955
First three minutes 0.965 0.953
First four minutes 0.965 0.953
First five minutes 0.965 0.953

First ten minutes 0.966 0.953

TABLE V: Classification accuracy for each minute

Minute ROC-AUC score PR-AUC score

First minute 0.968 0.950
Second minute 0.910 0.900
Third minute 0.907 0.889
Fourth minute 0.914 0.894
Fifth minute 0.910 0.901

The ROC Curve summarises the trade-off between the true
positive rate and false positive rate for a model using different
thresholds over the probabilistic output of the classifier. The
Precision-Recall curve is used as an alternative yet popular
accuracy measurement in information retrieval [79]. The PR
curve is usually used to complement the ROC, especially in the
case where testing samples are imbalanced. In each round of
the 10-fold cross validation, we randomly split the whole data
set. 80% of the data instances are used to train the classifier.
The remaining 20% of the data instances are used to evaluate
the classification accuracy of the built classifier. The sampling
strategy was designed to ensure that the samples selected as
part of both the training and the testing set covered the same
set of malware families. The purpose is to guarantee a fair
evaluation of classification performances. By computing the
average accuracy obtained by across the validation tests we
remove the impact of potential bias / artifacts introduced by
the training-testing data split.

The classification performances obtained by using different
time windows are provided in Table IV. In contrast, Table V
provides the classification performance measurement obtained
by using only the system calls observed within the first, second,
third, fourth and fifth minute separately. As shown in Table IV,
the best classification accuracy is observed by using the data
collected during the first one and two minutes. By further
extending the length of the time window to five minutes, the
classification accuracy decreases slightly and then stabilizes
quickly.

In addition to these tests on the first five minutes, we also
extended our experiments to compute the AUC scores of the
time window covering the first ten minutes, by following the
given cross-validation test protocols. As observed in the last
row of Table IV, the ROC-AUC and PR-AUC scores of the
first ten minutes are 0.966 and 0.953 respectively (thus slightly
worse than by using only the first two minutes). This confirms
our intuition and our previous observations: longer time peri-
ods do not result in better classification performances. In fact,
a time window with longer temporal coverage enables us to
collect more system call observations in the dynamic analysis
report. Nevertheless, many of those system calls recorded over

the later windows already appear in the first two minutes, as we
unveil by Figure 5 and Figure 6 in Section V. These recurrent
system calls don’t bring significantly more useful information
for the classification stage, and even cause a small accuracy
deterioration of the ML model. In fact, it is a well-known issue
of machine learning-based classifiers that irrelevant features
can dilute the descriptive power of the feature representation
and decrease the resulting classification accuracy [33]. The
results given in Table V confirm our conclusion. The system
calls collected during the first minute provide the most useful
information about the behavioural profiles of the samples. In
contrast, The AUC scores derived using only the system calls
collected in the second, the third, the forth and the fifth minute
are consistently lower than that of the first minute. This denotes
that extending the execution time window does not consistently
introduce as useful features as those collected during the first
minute. Table IV shows that combining the actions observed in
the second minute can still help to characterize the behaviours
of the samples with the ML models. Longer time windows
don’t introduce significant improvements of the ML model’s
performance.

VII. DISCUSSION

In the previous sections we showed the results we obtained
from our measurement study. We now want to put these results
into context and discuss how they influence previous dynamic
malware analysis experiments conducted by other researchers.
We also provide recommendations for future dynamic malware
analysis experiments and discuss possible limitations of our
study.

A. Threat to Validity and Limitations

Just as every other malware analysis experiment, also our
work suffers from common limitations related to the nature of
analyzing adversarial software. In particular, malware authors
can try to evade analysis environments by using several tech-
niques (see Section II-C). While this is true also for other sand-
boxes (and thus affects real-world malware analysis pipelines)
in Section V-A we describe how we tried to conservatively
filter out samples that did not run correctly in our environment.
However, we cannot rule out the possibility that some malware
detected our environment but then continued to execute its
code without showing its actual malicious behavior.

As our main contribution is to measure to what extent
malicious code can be analyzed within a certain execution
time, the generalizability of our results to other sandboxes is
very important. Therefore, both our sandbox as well as our
machine learning classifier are designed to mimic the current
state of research as closely as possible. Our solution based on
an emulator is inherently more precise that most VM-based
sandboxes, but the precise set of collected events can differ
from one sandbox to another. Another thing that might differ
is the distribution of malware samples under observation. The
dataset we collected for our experiments is the largest ever used
for such a fine-grained analysis and because of our sampling
strategy we are confident that it closely resembles the one that
might have been observed by other commercial sandboxes in
the same period of time.
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B. Impact on Prior Work

In Section II-A, we showed that the execution time of
malware analysis experiments in academia greatly differs from
one paper to another, ranging from less than 30 seconds to one
hour. While none of these studies provided an explanation to
support the chosen threshold, every research paper is motivated
by different goals which can justify a longer or a shorter
analysis time.

Our results suggest that in most cases it is sufficient to
execute a malware sample for two minutes to observe the
majority of its behavior. The data collected during this window
also led to the best accuracy for our machine learning classifier.
Therefore, we now want to see how these results could have
impacted those studies that either executed samples for a very
short time (i.e., for less than two minutes according to Table
I), or for an unusually long amount of time (i.e., more than
five minutes according to our survey). We chose to focus
on these intervals because on the one hand execution times
shorter than two minutes might have compromised the results
of an experiment, while on the other hand the use of long
time thresholds was probably a sign of a sub-optimal use
of computational resources. This is also important because
the number of analyzed samples is often determined by the
amount of time at the disposal of the researchers. Thus, running
samples for longer than it is needed likely results in the
choice of smaller datasets, which could affect the statistical
significance of the results.

However, it is very important to understand that the exact
time threshold depends on the overhead introduced by the
analysis system (in our case between 1.4x and 3.7x). Moreover,
the fact that previous experiments were conducted often a
decade ago, therefore on much slower server infrastructures,
make an exact comparison very difficult.

By looking at the papers in the first category (short ex-
ecution time), we can find mainly two different motivations
for the experiments performed by the authors. The first is
to showcase a prototype of the proposed technique. In this
case, the focus of the work is on the design of the sandbox
itself. Examples in this category are papers that describe new
network-oriented sandboxes [44], [45], [108], [109] or those
describing the use of hypervisor techniques [56]. Overall, we
believe that for these papers the short execution time was
not critical for the overall contribution. However, the results
obtained by the experiments have to be handled with care. The
second motivation for papers in this category is to identify the
most suitable classifier based on either system calls or API
calls (i.e., [46], [94]). In this case, the 30 seconds timeout
used by the authors cast some doubts about the findings of
these studies and it is unclear whether the same results would
hold for a longer execution time.

Among papers that executed samples for longer than five
minutes, several work aimed at classifying or detecting mal-
ware [10], [20], [25], [59], [89]. For such cases, our results
suggest that the long execution times adopted by the authors
were not required. The small case study by Canzanese et
al. [25] confirms our results. Other papers in this category
aim at classifying Android malware by extracting behavioral
features [24], [36], [63]. It is particularly noteworthy that Cai
et al. [24] only include such apps that explore at least 50%

of their code during the experiments (an amount we rarely
observed in any of the samples in our dataset). Overall, we
cannot draw conclusions about their execution times as the
specifics of Android and Windows malware may differ. Finally,
the goal of Severi et al. [87] was to provide a collection of
malware traces in PANDA to enable further research. The
authors presented a use-case to estimate the global unique code
that is ever executed in a sandbox and one about a classification
based on features extracted from the analysis. While our results
suggest that the execution time of 10 minutes is not required
in these scenarios, it can still be helpful to collect longer traces
for future experiments. Finally, a last aspect is the collection
of network packets from running malware [41], [82], [84],
typically to observe DNS and HTTP requests. Russow et al.
[82] found that only 23.6% of the endpoints which can be
observed within one hour have been discovered in the first
five minutes. This suggests that it can be useful to execute
samples for a longer time. However, such a long analysis time
is out-of-scope in most scenarios.

C. Recommendations

Rather than revealing inadequate execution times in previ-
ous dynamic malware analysis experiments and sandboxes, the
main goal of our work is to provide insights to guide future
dynamic analysis experiments.

We suggest to run samples for two minutes (adjusted for
the actual overhead of the system) if the goal of the dynamic
analysis is to perform a classification of the samples or simply
to build a behavioral report for manual inspection. This is the
case for most industrial analysis environments, whose appli-
cations are mostly classification tasks of unknown programs
into different malicious or benign categories. Furthermore, we
suggest all industrial sandboxes to implement countermeasures
for basic timing attacks, usually deployed by malware authors
as a defence strategy to hide a part of the malicious behaviors.
Only few commercial sandboxes already handle the sleep
functions, but they should also be aware of the presence of
malware that implements alternative techniques to delay the
time (e.g., NtWaitForSingleObject).

Experiments conducted by researchers in academia might
need to tune the execution threshold to reflect the goal of
their study. However, our recommendation to the authors is to
include in the papers a justification of the adopted threshold,
by using our experiments and results to guide their decision.

In any case, our measurements suggest that long execution
times (five minutes or more) are often unjustified and would
only increase the overall analysis time–which is often a costly
resource in academic studies. Therefore we believe that it is
better to analyze more samples for a shorter time than to reduce
the dataset size to accommodate longer executions.

VIII. KEY TAKEAWAYS

In this paper we argue for a data-driven approach to
malware analysis. As a first step in this direction, we conducted
an extensive set of experiments to evaluate the impact of the
analysis time on the results collected by a malware analysis
sandbox. We can summarize our main findings along the
following five points:
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1) Samples, both benign and malicious, tend to run either
for a short amount of time (less than two minutes in our
emulator) or for a long time (over ten). This is based
on samples analyzed on the first day in which they were
first collected. The analysis of old samples would probably
move the curve even further towards short executions, as
external components and needed infrastructure may not be
available anymore for the sample to continue its execution.

2) While new system calls can be collected on a regular basis
for the entire duration of a program, the code coverage
tends to plateau very fast, typically in the first minute or
two of execution.

3) Stalling code is a very well known anti-analysis tech-
nique. However, its most common form (which relies on
invoking one of the sleep functions) only affected 2-
3% of our samples. Nevertheless, countermeasures are easy
to implement (and are in fact adopted by some of the
commercial sandboxes), allowing to properly analyze even
those samples.

4) A single execution of a binary inside a sandbox typically
exposes between 10% and 40% of its code. The actual
value, and the amount of time that each sample executes
for, depends on the family but it also varies greatly within
the same family.

5) Our experiments with a machine learning classifier show
that not just the volume, but also the “quality” of the
collected data (in terms of how useful it is to classify the
sample), is mostly concentrated in the first two minutes of
execution.

By considering all factors mentioned above, and based on
the data analyzed in our experiment, we therefore confirm the
initial intuition of Willems et al. [101] that a threshold of two
minutes is sufficient in the vast majority of the cases for the
analysis of freshly collected malware samples.

Of course, the actual value needs to take into considera-
tion the amount of available resources. Moreover, this value
is based on new samples submitted over a period of six
months, between November 2019 and May 2020. Therefore,
the threshold should be regularly updated to reflect changes
in the malware ecosystem or in the type of collected data.
Thus, we believe security companies should adopt a self-tuning
analysis infrastructure, where the parameters of the sandbox
are regularly re-tuned based on the recently-collected data.
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