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On the integration of the Baker-Campbell-Hausdorff product

Mario Fuentes

June 13, 2024

Abstract

In an arbitrary complete differential graded Lie algebra, we construct a group op-
eration • on L1 such that the differential of the product of two elements is the Baker-
Campbell-Hausdorff product of their differentials, i.e., d(x • y) = dx ∗ dy. We study
some properties of this new structure and some applications, especially in homotopy
theory, where this operation can be used to construct a Lie model for the 4-simplex. In
particular, this solves, in dimension 4, a problem proposed by Lawrence and Sullivan.

Introduction

In a nilpotent Lie algebra L over the field of rational numbers, there is a well-known group
structure given by the Baker-Campbell-Hausdorff product or BCH product, denoted by ∗
and defined by a formal series whose lower terms are

x ∗ y = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]]− 1

12
[y, [x, y]] + . . .

This operation is associative, has 0 as neutral element, and x−1 = −x is the inverse of
the element x ∈ L. Therefore, it provides L with a group structure from its original Lie
algebra structure.

The condition of being nilpotent can be weakened to being complete, this is, that there
exists a filtration of subspaces

L = F 1 ⊃ F 2 ⊃ . . .

compatible with the Lie bracket, [F i, F j ] ⊂ F i+j for all i, j, for which the natural map

L
∼=−→ lim←−

n

L/Fn

is an isomorphism of Lie algebras. In that case, the formal series above is a well-defined
element in the complete Lie algebra.

The BCH formula initially appeared as a means to understand the lack of commutativity
of the exponential map in the context of Lie groups (see [4] or [1] for an introduction
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and complete references to the historical aspects). From a more algebraic point of view,
Malcev [13] showed that this formula can be used to establish an equivalence between
the categories of nilpotent (or complete) rational groups and nilpotent (or complete) Lie
algebras over Q.

In the ‘differential graded’ world, we consider the case of complete differential graded
Lie algebras (abbreviated as complete dgl’s or cdgl’s from now on). These are graded Lie
algebras of the form

L =
⊕
n

Ln

with a differential of degree -1, d : L∗ → L∗−1, and a filtration (compatible with the Lie
bracket and the differential) making it complete. Then L0 is automatically a complete
Lie algebra and, therefore, it has a well-defined BCH product on it. The complete dgl’s,
accompanied by their group structures at degree 0 given by the BCH product, are fun-
damental in diverse areas of mathematics such as algebraic topology, algebraic geometry,
deformation theory or operad theory (see for instance [5, §2.2] or [6] for some examples of
the application of the theory of complete differential graded Lie algebras).

In these objects, a natural question arises: can we extend the Baker-Campbell-Hausdorff
product to form other analogous group structures on Ln for n 6= 0? More specifically, we
say that a map � : L1 × L1 → L1 is an integral of the BCH product if d(x � y) = dx ∗ dy
for all x, y ∈ L1. In any contractible cdgl, this is H∗(L) = 0, since d(dx ∗ dy) = 0, such an
element x � y has to exist. However, it is not unique: it is only uniquely defined up to a
boundary. In the case of a non-contractible cdgl L, we can consider a contractible cdgl L
generated by two elements of degree 1 and their differentials. This could work as a kind of
‘universal example’, where we can construct the integral of the BCH product, �, and then
define x � y ∈ L1 as the image of the only morphism L → L sending the generators to x, y
respectively.

This strategy is followed in [7, §6.5] or [10], for example, to construct (different) integrals
of the BCH product. The problem with this generic approach is that it is difficult to deduce
properties of the operation � constructed. For example, we may have an operation � which
fails to be associative or to have an inverse.

In this text, we construct a specific integral of the BCH product, denoted by • which
inherits some of the nice properties of the BCH product. More concretely, the • operation
turns out to be associative, to have a neutral element, and an inverse. This implies that it
defines a group (L1, •) just as the BCH product does at L0.

This question has important consequences. For example, in rational homotopy theory,
Quillen’s Theory of dgl’s [14] can be extended to a non-connected and non-simply connected
setting by means of complete dgl’s.

The theory of complete dgl’s in rational homotopy theory has several equivalent ap-
proaches; see, for instance, [2], [11], [16], or [17]. The different functors constructed in
these references realize complete dgl’s (or complete L∞-algebras) to obtain simplicial sets,
which are not, in general, connected, nor simply connected. Moreover, we can relate some
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algebraic concepts with their topological counterparts: the Maurer-Cartan elements of a
complete dgl correspond to the vertices of its realization, the gauge action of L0 on the
Maurer-Cartan elements corresponds to paths joining two points, and the BCH product
on L0 corresponds to the concatenation of paths in the topological space.

In [7], the authors constructed a functor in the opposite direction: that takes a simplicial
set, and obtains a complete dgl ‘modeling’ the space. The main tool of that theory is a
cosimplicial object in the category of complete dgl’s denoted by L• = {Ln}n≥0, where each
complete dgl Ln is supposed to work as a ‘model of the n-simplex’, using the terminology
of Sullivan’s approach to rational homotopy theory.

Each Ln is a (quasi-)free complete dgl generated by the n-simplex. More explicitly, we
consider the graded vector space

∆n = Span{ai1,...ik | ∅ 6= I = (i1 < i2 < · · · < ik) ⊂ {0, . . . , n}}

where |ai1,...,ik | = k − 2 (i.e., one degree lower than its geometrical dimension). Then

Ln = (L̂(∆n), δ),

where L(−) is the free object in the category of graded Lie algebras, L̂(−) denotes its
completion with respect to the word-length filtration, and δ is the differential. The relevant
part of the theory relies on the differential δ, which must satisfy some properties (see
Section 5 for more details). With those properties, the cosimplicial object L• is unique up
to (cosimplicial) isomorphism. Therefore, rather than the model Ln of the n-simplex, we
should talk about a model of the n-simplex.

The existence of such ‘Lie models’ of the simplices was anticipated by Lawrence and
Sullivan in their work [19], where they construct an explicit model of the interval (the
subsequently called Lawrence-Sullivan interval) and proposed as an open question finding
explicit models of the simplices in each dimension (see [19, §1]):

Problem. Study this free differential Lie algebra attached to a cell complex,
determine its topological and geometric meaning as an intrinsic object. Give
closed form formulae for the differential and for the induced maps associated
to subdivisions.

Models of the n-simplices, Ln, are explicitly known for n = 0, 1, 2, and 3. However,
a general formula for the differential δ in any other dimension is not known. The proof
of [7, Theorem 6.1] provides an existence result but not a constructive formula for these
objects. In the explicit formulas of these differentials in low dimensions, some important
algebraic concepts of the theory of Lie algebras arise: for example, L0 is constructed by
imposing that the only generator a0 is a Maurer-Cartan element. In the formula for L1

the gauge action arises. The differential of the top generator of L2 involves the Baker-
Campbell-Hausdorff product, and for constructing L3 it is necessary to consider an integral
of the BCH product.
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Even though several homotopical properties can be deduced only by the existence of
the cosimplicial cdgl L•, without needing the explicit formulas defining it, the knowledge
of the explicit models has important consequences. For example, in [9], it is shown that the
realization of a cdgl concentrated in degree 0, L = L0, is isomorphic to the simplicial bar
construction of the group (L0, ∗). Furthermore, in [10] they show that if L is concentrated
in degree 0 and 1, its realization is isomorphic to the classifying simplicial set of the crossed
module associated with the pair (〈L〉, 〈L0〉). For all these results, a complete knowledge of
the explicit models of the simplices in low dimensions is fundamental.

In [7, §6.5] or [10], models of the tetrahedron L3 are given using some operations
integrating the BCH, i.e., with the property that d(x � y) = x ∗ y for x, y ∈ L1. All these
different operations having that property, have to agree up to a boundary. In this text, we
construct such an operation, denoted by the symbol •, and therefore, equal up to boundary
to the ones used in the references, but with some nice properties: explicitly, in Theorem
1.6, we prove that • is a group multiplication.

For constructing the complete dgl L3 the operation � chosen may not seem very im-
portant: different operations (agreeing up to a boundary) will give different differentials,
but in the end, by uniqueness, all of them will be isomorphic. However, if we want to go
further and get higher models of simplices, we need to have a very explicit and well-behaved
operation �, and precisely this is what happens with the operation •.

And thank to that, in Section 5, we solved the problem stated above in dimension 4 by
constructing an explicit model for the hypertetrahedron or the pentahedroid

L4 = (L̂(∆4), δ),

and again, new operations of complete dgl’s arise in this construction. For example, in
Section 3, we are interested in the conjugation of elements, i.e., in obtaining an expression
for x • y • x−1. For this goal, we develop in Sections 3 and 4 two maps σ, τ : L1×L1 → L2

that measure the failure to commute of the operation •.
By its own definition as an operation ‘integrating’ the BCH product, when applied to

two cycles, the • operation simply becomes the sum

x • y = x+ y, if dx = 0, dy = 0.

In particular, in the homology of any complete dgl H∗(L, d) this operation disappears and
becomes the abelian operation of the sum. However, before homology, using this operation
produces a very interesting effect: it makes the differential d to be a group morphism, in
the sense of respecting all the products. This is explored in Section 2 and more explicitly in
Theorem 2.2; it is proved that, with the correct operations (L∗, d) becomes a chain complex
of (possibly non-abelian) groups. In particular, we interpret the operation • as a kind of
middle step between the abelian operation of the sum and the non-abelian operation of the
BCH product.
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1 The operation • on L1

For each k ≥ 1, we define the complete graded differential Lie algebra L (k), or simply L
if there is no confusion, as L = L̂(u1, . . . , uk, v1, . . . , vk) with |ui| = 1, |vi| = 0, dui = vi
for i = 1, . . . , k. Here L(−) denotes the free object in the category of graded Lie algebras
(forgetting about the differential) and L̂(−) denotes its completion by the filtration by
length of words.

Proposition 1.1. The complete dgl L k is contractible.

Proof. If we write U = Span{u1, . . . , uk}, V = Span{v1, . . . , vk} and d1 : U ⊕ V → U ⊕ V
denotes the linear part of the differential in L , it is clear that H∗(U ⊕V, d1) = 0. Consider
the trivial morphism ϕ : 0→ L , then its linear part ϕ1 : 0→ U⊕V is a quasi-isomorphism
and by [7, Proposition 3.12] ϕ is a quasi-isomorphism.

In this contractible Lie algebra L , the cycle v1 ∗ v2 ∗ · · · ∗ vk has an ‘integral’, this
means that there exists an element ω of degree 1 with dω = v1 ∗ v2 ∗ · · · ∗ vk. However, this
element is not unique (since the space is acyclic, ω + dL2 is exactly the set of elements
whose differential is v1 ∗ v2 ∗ · · · ∗ vk). We need a canonical way of defining this element ω.

Let θ be the degree 1 derivation of L acting on the generators as

θ(vi) = ui, θ(ui) = 0,

and consider the map θ̃ : L0 → L1 defined as follows: if x ∈ L̂n(U ⊕V ) is a word of length
n then we define

θ̃(x) =
1

n
θ(x).

This is a well-defined linear map since we can decompose L̂(U ⊕ V ) as a product

L̂(U ⊕ V ) =
∏
n≥1

Ln(U ⊕ V ).

Moreover, it is a section of the differential d : L1 → L0.

Proposition 1.2. d ◦ θ̃ = idL0
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Proof. On generators, we have d(θ̃(vi)) = d(θ(vi)) = dui = vi. Suppose that x ∈ L0 is a
word of the form

x = [vi1 , [vi2 , . . . , [vin−1 , vin ] . . . ]]

for some indices i1, . . . , in ∈ {1, . . . , k}. Then

θ̃(x) =
1

n

n∑
j=1

[vi1 , [vi2 , . . . , [uij , . . . [vin−1 , vin ] . . . ] . . . ]].

Clearly on any of these terms, d sends any element vi to zero, thus a non trivial term
only appears when d sends uij to vij . Therefore

d(θ̃(x)) =
1

n

n∑
j=1

[vi1 , [vi2 , . . . , [vij , . . . [vin−1 , vin ] . . . ] . . . ]] =
1

n

n∑
j=1

x = x.

By linearity, the result holds for any arbitrary element in L0.

As a consequence, we get that the section θ̃ : L0 → L1 gives rise to a bijection

L0 θ̃(L0) ⊂ L1.
θ̃

d

Now, we define the • operation as the image by θ̃ of the BCH product ∗.

Definition 1.3. Given two elements x, y ∈ θ̃(L1) we define

x • y = θ̃(dx ∗ dy).

In particular,
u1 • u2 = θ̃(v1 ∗ v2).

Given an arbitrary cdgl L and two elements α, β ∈ L1, there exists only one cdgl
morphism ϕ : L (2) → L with ϕ(u1) = α and ϕ(u2) = β. In particular, ϕ(v1) = dϕ(u1) =
dα = a and ϕ(v2) = dβ = b.

Definition 1.4. On L1, we define the • product as

α • β = ϕ(u1 • u2),

where ϕ : L (2) → L is the only cdgl morphism sending u1, u2 to α, β respectively.

Using the explicit formula of the Baker-Campbell-Hausdorff product, we can write the
first terms of this expression:

α • β = α+ β +
1

4
[α, b] +

1

4
[a, β]+ (1)

+
1

36
[α, [a, b]] +

1

36
[a, [α, b]] +

1

36
[a, [a, β]]− 1

36
[β, [a, b]]− 1

36
[b, [α, b]]− 1

36
[b, [a, β]] + . . .

for dα = a and dβ = b.
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Remark 1.5. Intuitively we can think of this product as considering the BCH of the degree
0 elements a and b and, in any word of the expression a ∗ b, replacing one of the letters a
or b appearing there by α or β, and doing so in all the possible ways (and adding a factor
of 1/n to account for repetitions).

However, this way of conceptualizing this operation might be a bit tricky: it has to
be done with the ‘formal’ expression of a ∗ b, and after doing the replacing, to compute
all the possible cancellations that could appear, not in the reverse order. For example, if
dβ = b = 0, then a ∗ b = a; but α • β 6= α when β is a cycle, as we will see in Section 4.

The following theorem claims that, with this definition, the • product defines a group
structure on L1.

Theorem 1.6. For any cdgl L, the operation • : L1 × L1 → L1 is associative, has 0 as
neutral element and the inverse of an element α is given by α−1 = −α. In particular,
(L1, •) is a group.

Proof. That 0 is the neutral element can be directly checked from the expression (1): if
β = 0, then b = 0 and any term in this sum will cancel except for α, so α • 0 = α.
Analogously 0 • β = β.

Now we want to prove that α • (−α) = 0. We know that there exists a morphism
ϕ : L (2) → L with ϕ(u1) = α, ϕ(u2) = −α. This morphism factors through L (1).
Consider ρ : L (2) → L (1) = L̂(u, v) defined by

u1 7→ u, u2 7→ −u, v1 7→ v, v2 7→ −v

and ψ : L (1) → L with
u 7→ α, v 7→ a.

Thus, we have that ψ ◦ ρ = ϕ. We need to check that ρ commutes with the map θ̃. For
the generators we have that ρ(θ(vi)) = ρ(ui) = u = θ(v) = θ(ρ(vi)) for i = 1, 2. Since θ is
a derivation, this implies that ρ ◦ θ = θ ◦ ρ.

For x a word of length n in L (2), note that ρ(x) could be zero, but if it is not, its
length would be also n. Thus, in both cases, we have

ρ(θ̃(x)) =
1

n
ρ(θ(x)) =

1

n
θ(ρ(x)) = θ̃(ρ(x)),

from where we deduce that ρ commutes with θ̃.

L
(2)
1 L

(1)
1

L
(2)
0 L

(1)
0

ρ

ρ

θ̃ θ̃
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We finally conclude that

α • (−α) = ϕ(u1 •u2) = ψ(ρ(θ̃(v1 ∗ v2))) = ψ(θ̃(ρ(v1 ∗ v2))) = ψ(θ̃(v ∗ (−v))) = ψ(θ̃(0)) = 0

and analogously for (−α) • α = 0.
For proving the associativity of the product we follow a similar strategy.
For k = 3, the associativity of the BCH product (v1 ∗v2)∗v3 = v1 ∗v2 ∗v3 = v1 ∗(v2 ∗v3)

implies that
θ̃((v1 ∗ v2) ∗ v3) = θ̃(v1 ∗ v2 ∗ v3) = θ̃(v1 ∗ (v2 ∗ v3))

are the same element in L (3), which we denote by u1 • u2 • u3.
Deducing the associativity of the operation in a general cdgl L is more subtle. Consider

3 elements α, β, γ in L1. We are going to define cdgl morphisms that make the following
diagram commutative

L (2)

L (3) L

L (2)

φ

ι

ψ

ϕ

ρ

Note that it is only necessary to specify the image of ui for defining these cdgl mor-
phisms. We define

ι(u1) = u2, ι(u2) = u3

φ(u1) = β, φ(u2) = γ

ρ(u1) = u1, ρ(u2) = 0 • u2 • u3
ϕ(u1) = α, ϕ(u2) = β • γ

ψ(u1) = α, ψ(u2) = β, ψ(u3) = γ.

The triangle above is commutative by a direct computation:

ψ(ι(u1)) = ψ(u2) = β = φ(u1) and ψ(ι(u2)) = ψ(u3) = γ = φ(u2).

By an straightforward verification, we see that ι commutes with θ̃. In particular this
implies that

ι(u1 • u2) = θ̃(ι(v1 ∗ v2)) = θ̃(v2 ∗ v3) = θ̃(0 ∗ v2 ∗ v3) = 0 • u2 • u3.

For the triangle below we have

ψ(ρ(u1)) = ψ(u1) = α,
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and using the commutativity of the first triangle and the equality above we have

ψ(ρ(u2)) = ψ(0 • u2 • u3) = ψ(ι(u2 • u3)) = φ(u2 • u3) = β • γ = ϕ(u2).

Finally note that by definition ϕ(u1•u2) = α•(β•γ), and this is equal to ψ(ρ(u1•u2)) =
ψ(u1 • (0 • u2 • u3)) = ψ(u1 • u2 • u3), where we have used the associativity of • in L (3).
A completely dual argument would also show that

ψ(u1 • u2 • u3) = (α • β) • γ

and that proves that • is associative.

Furthermore, this structure is preserved by cdgl morphisms.

Proposition 1.7. If f : L → L′ is a cdgl morphism, then f(α • β) = f(α) • f(β) for all
α, β ∈ L1.

Proof. Immediate from the construction.

Since −x is the inverse element of x for both products ∗, • on L, we write x−1 = −x
for any element x ∈ L.

2 The chain complex of groups (L∗, d)

The significance of the product • on L1 is that it is an integral of the BCH product.

Proposition 2.1. For α, β ∈ L1, where L is a cdgl,

d(α • β) = dα ∗ dβ.

Proof. This result follows directly from the construction of α •β. If ϕ : L (2) → L is a cdgl
morphism sending u1 and u2 to α and β respectively, then

d(α • β) = dϕ(θ̃(v1 ∗ v2)) = ϕ(dθ̃(v1 ∗ v2)) = ϕ(v1 ∗ v2) = ϕ(v1) ∗ ϕ(v2) = dα ∗ dβ.

If we consider the case of α and β being cycles, then it is immediate from equation (1)
to see that

α • β = α+ β.

This easy result has a fundamental consequence:
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Theorem 2.2. Let L = L≥0 be a non-negatively graded cdgl then, for each n, the dif-
ferential d : Ln → Ln−1 is a morphism of groups, where we consider the following group
structures: (L0, ∗) with the BCH product, (L1, •) with the • product and (Ln,+) with the
(abelian) group structure of the sum, for n ≥ 2.

In particular, there is a chain complex of (non-abelian) groups of the form

· · · → (L3,+)
d−→ (L2,+)

d−→ (L1, •)
d−→ (L0, ∗).

This theorem invites one to think of • as an intermediate step between two very different
structures: the sums which make (Ln,+) vector spaces and (L0, ∗) a (possibly non-abelian)
Malcev complete group.

When we compute the homology groups (L, d), then the • operation of L1 becomes
the sum on H1(L) since we are working with cycles in the homology. This implies that
the operation • is a kind of ‘non-homological’ operation in L that gives L1 a non-abelian
structure, that disappears after computing the homology.

It is insightful to compare this with the topological situation. The topological spaces
have abelian higher homotopy groups and a non-abelian fundamental group, as happens
with H∗(L).

Let X = 〈L〉 be the realization of a non-negatively graded cdgl, which is a connected
space. Then it is known [7, Theorem 7.18] that there are natural isomorphisms

πn+1(X) ∼= Hn(L)

for all n, where, for n = 0, we consider the BCH product on H0(L). In particular, for
n = 1, we only see the abelian group H1(L) with + as operation, which is isomorphic to
the abelian group π2(X). Therefore, under this correspondence, • represents an operation
that disappears after homotopy.

3 Conjugation in (L1, •)
In the group (L0, ∗), we can express the conjugation of an element y by x using the
exponential map (see [7, Proposition 4.13]):

x ∗ y ∗ x−1 = eadx(y). (2)

Here adx is the adjoint operator, i.e., the derivation that sends y to [x, y] and eadx is
the Lie morphism defined by the series

eadx =
∑
n≥0

adnx
n!

.
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We would like to have a similar equation for our new product; however, the situation is
not going to be so suitable in this case, as we will see. Given α, β ∈ L1 and a = dα, b = dβ,
note that

d(eada(β)) = eada(dβ) = a ∗ b ∗ a−1.

which has the same differential as α • β • α−1. In the equation above we have used that a
is a cycle and that, therefore, eada commutes with the differential.

Suppose that we are working in a contractible cdgl (for example L ); this implies that
the difference between α • β • α−1 and eada(β) is a boundary. Our goal is to find that
boundary and prove that such element is the difference between α • β • α−1 and eada(β),
even if L is not contractible.

Definition 3.1. Let α, β ∈ L1 be two elements of degree 1 in a cdgl L. Write a = dα and
b = dβ. Define σ(α, β) as the element of degree 2

σ(α, β) =
∑
i≥0

∑
j≥0

1

(i+ j + 2)!
adia ◦ adα ◦ adja(β) ∈ L2.

In particular σ(α, β) = 1
2 [α, β]+ terms of higher length containing a.

The differential of this element precisely gives the difference between the two elements
presented above.

Theorem 3.2. Let α, β ∈ L1 be two elements of degree 1 in a cdgl L. Then

α • β • α−1 = eada(β)− dσ(α, β). (3)

Proof. By the proof of Theorem 1.6 we know that we can compute a triple • product using
the contractible cdgl L (3). Consider the morphism ψ : L (3) → L defined by

u1 7→ α, u2 7→ β, u3 7→ α−1.

Then α • β • α−1 = ψ(u1 • u2 • u3).
This morphism factors through L (2) by the following morphisms:

L (2)

L (3) L

ϕρ

ψ

defined by
ρ(u1) = u1, ρ(u2) = u2, ρ(u3) = −u1

11



ϕ(u1) = α, ϕ(u2) = β.

We can directly check that ρ commutes with θ̃, and therefore

ρ(u1 • u2 • u3) = ρ(θ̃(v1 ∗ v2 ∗ v3)) = θ̃(ρ(v1 ∗ v2 ∗ v3)) = θ̃(v1 ∗ v2 ∗ v−11 ) = θ̃(eadv1 (v2)),

which implies that

α • β • α−1 = ψ(u1 • u2 • u3) = ϕ(θ̃(eadv1 (v2))).

Our first step is to compute θ̃(eadv1 (v2)):

eadv1 (v2) =
∑
n≥0

1

n!
adnv1(v2) =⇒ θ̃(eadv1 (v2)) =

∑
n≥0

1

(n+ 1)!
θ(adnv1(v2)),

where the extra factor 1/(n + 1) comes from the difference between θ and θ̃. For a fixed
n ≥ 0 we have

θ(adnv1(v2)) =
n−1∑
`=0

adn−1−`v1 ◦ adu1 ◦ ad`v1(v2) + adnv1(u2),

where we consider that the summation is zero if n = 0. Applying ϕ to this expression we
get:

α • β • α−1 =
∑
n≥1

1

(n+ 1)!

n−1∑
`=0

adn−1−`a ◦ adα ◦ ad`a(b) +
∑
n≥0

1

(n+ 1)!
adna(β). (4)

What remains now is the direct computation that eada(β)− dσ agrees with (4). From
the definition of σ, we see that its differential has two terms: one corresponding to differ-
entiating α, and the other one to differentiating β. The first one is∑

i≥0

∑
j≥0

1

(i+ j + 2)!
adi+j+1

a (β) =
∑
n≥1

∑
i+j+1=n

1

(n+ 1)!
adna(β) =

∑
n≥0

n

(n+ 1)!
adna(β),

and the second one (note that a sign -1 appears since α is an element of odd degree) is

−
∑
i≥0

∑
j≥0

1

(i+ j + 2)!
adia ◦ adα ◦ adja(b) = −

∑
n≥1

n−1∑
`=0

1

(n+ 1)!
adn−`−1a ◦ adα ◦ ad`a(b),

where we have made the substitution j 7→ ` and i 7→ n− `− 1. Therefore, we have:

eada(β)−dσ =
∑
n≥0

1

n!
adna(β)−

∑
n≥0

n

(n+ 1)!
adna(β)+

∑
n≥1

n−1∑
`=0

1

(n+ 1)!
adn−`−1a ◦ adα ◦ ad`a(b).

12



Since
1

n!
− n

(n+ 1)!
=

1

(n+ 1)!
,

we can sum the two first terms to obtain

eada(β)− dσ =
∑
n≥0

1

(n+ 1)!
adna(β) +

∑
n≥1

n−1∑
`=0

1

(n+ 1)!
adn−`−1a ◦ adα ◦ ad`a(b)

which agrees with (4) and finalizes the proof.

In the case of β being a cycle, the conjugation formula is simpler:

Corollary 3.3. If dβ = 0 then

α • β • α−1 = ε(ada)(β)

for

ε(t) =
et − 1

t
=

∑
n≥0

tn

(n+ 1)!

Proof. Direct by writing b = 0 in (4).

4 Multiplication by a cycle

Take two elements α, β ∈ L1 such that dα = a and dβ = 0. We announced in Remark 1.5
that α • β cannot be computed as (dα) ∗ (dβ) = a ∗ 0 = a and then substituting a by α.

Instead, we will use the following result from [15, §3.4] that asserts that we can express
the BCH product of two elements as

v1 ∗ v2 = v1 +
adv1

1− e− adv1
(v2) + (terms with more than one v2).

When we apply θ̃ : L0 → L1 to this expression, in any term containing more than
one v2, at least one letter v2 has to survive. When we apply the morphism ϕ : L → L
sending u1 to α and u2 to β, then ϕ(v2) = dβ = 0. Therefore, the whole term between the
parenthesis disappears.

To describe the function above as a series, we need to use the Bernouilli numbers Bn,
whose defining property is that

t

et − 1
=

∑
n≥0

Bn
n!
tn.

13



The first Bernoulli numbers are

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 = 142

where all the odd Bernoulli numbers are zero, except for B1 = −1
2 . Substituting t with −t,

we get
t

1− e−t
=

∑
n≥0

(−1)n
Bn
n!
tn,

where the only term affected by the sign is −B1t. Using this expression, we can rewrite
the BCH product as

v1 ∗ v2 = v1 +
∑
n≥0

(−1)n
Bn
n!

adnv1(v2) + . . .

When we apply θ̃ to this expression, we are only interested in the terms where v2 is
sent to u2; otherwise, we will get 0 when we apply ϕ.

u1 • u2 = θ̃(v1 ∗ v2) = u1 +
∑
n≥0

(−1)n
Bn

(n+ 1)!
adnv1(u2) + . . .

and this proves the following proposition.

Proposition 4.1. For α, β ∈ L1 with a = dα and dβ = 0,

α • β = α+
∑
n≥0

(−1)nBn
(n+ 1)!

adna(β).

Proof.

Note that this series has as generating function

f(t) =
1

t

∫ t

s=0

s

1− e−s
ds =

∑
n≥0

(−1)nBn
(n+ 1)!

tn.

By an analogous argument (see again [15, §3.4]) if α is a cycle and dβ = b, then

α • β = β +
∑
n≥0

Bn
(n+ 1)!

adnb (α).

We can use this result to reformulate the conjugation law of Theorem 3.2, to express
the conjugate element α • β • α−1 as a • product instead of as a sum.

Consider the following problem: we have elements α, γ ∈ L1, with a = dα and γ a
cycle. Is there an element β ∈ L1 such that α • β = α + γ? Note that in that case
dα ∗ dβ = dα+ dγ = dα implies that β is also a cycle.

14



The answer is yes and you can get the element β by formally inverting the function f .
Define ξ(t) as:

ξ(t) =
1

f(t)
=

t∫ t
s=0

s
1−e−sds

=
∑
n≥0

Ant
n

where the coefficients of this series can be calculated by the usual formulas of inverting
formal series:

1 = ξ(t)f(t) =
∑
i≥0

∑
j≥0

Ai(−1)jBj
(j + 1)!

ti+j

which implies that A0 = 1 and for n ≥ 1,

An = −
n∑
`=1

An−`(−1)`B`
(`+ 1)!

,

A0 = 1, A1 = −1

4
, A2 =

5

144
, A3 = − 1

576
, A4 = − 4

15829
, . . .

The following proposition answers the question above.

Proposition 4.2. Given α, γ ∈ L1 with a = dα and γ a cycle, then α+ γ = α • β for

β = ξ(ada)(γ) ∈ L1.

Here ξ(ada) means the operator

ξ(ada) =
∑
n≥0

An adna = id−1

4
ada +

5

144
ad2

a + . . .

Proposition 4.2 along with Theorem 3.2 imply that

α • β • α−1 = eada(β)− dσ(α, β) = eada(β) • ξ(ada∗b∗a−1)(−dσ(α, β)),

where we have used that d(eada(β)) = eada(dβ) = eada(b) = a ∗ b ∗ a−1. Recall that, since
a ∗ b ∗ a−1 is a cycle, ada∗b∗a−1 commutes with the differential, and so does ξ(ada∗b∗a−1).
Therefore

ξ(ada∗b∗a−1)(−dσ(α, β)) = −dξ(ada∗b∗a−1)(σ(α, β)).

This motives the following definition.

Definition 4.3. For α, β ∈ L1 with dα = a and dβ = b, let τ(α, β) ∈ L2 be the element

τ(α, β) = ξ(ada∗b∗a−1)(σ(α, β)).

Up to length 4, τ(α, β) is equal to

τ(α, β) =
1

2
[α, β] +

1

6
[a, [α, β]] +

1

6
[α, [a, β]]− 1

8
[b, [α, β]] + . . .

Then, the conjugation law of Theorem 3.2 becomes

α • β • α−1 = eada(β) • dτ(α, β)−1. (5)

Note that if dβ = b = 0 then a ∗ b ∗ a−1 = 0 and τ(α, β) = σ(α, β).
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5 Models of simplices

The theory of complete differential Lie algebras plays an important role in rational homo-
topy theory. The Deligne-Getzler-Hinich∞-groupoid (see [12] for the original article or [11]
for a profound study of this topic) is a functor that transforms a cdgl into a simplicial set:

MC•(L) = MC(APL(∆•) ⊗̂L)

where MC(−) denotes the set of Maurer-Cartan elements, APL(∆•) is the simplicial com-
mutative differential graded algebra of polynomial linear forms on the simplices, con-
structed by Sullivan [18], and ⊗̂ denotes the completion of the tensor product between a
commutative algebra and a complete Lie algebra.

This construction was extended in [11] to nilpotent L∞-algebras through a deformation
retract γ•(L) of MC•(L) called the nerve of L.

The homotopical properties of this object have been deeply studied. For example,
Berglund [2, Theorem 1.1] proved that the homology groups of L are isomorphic to the
homotopy groups of MC•(L), for any connected nilpotent dgl or L∞-algebra, via an explicit
isomorphism

Hn(L)
∼=−→ πn+1(MC•(L)),

for n ≥ 0. Moreover, in the case of L being positively graded, the MC• groupoid agrees
(up to homotopy) with the classical Quillen’s realization of a dgl [14] (see [8, Theorem 2.1]
and [3, Theorem 8.1]).

In [7] the authors constructed a cosimplicial cdgl L• that makes the nerve functor
corepresentable; this is

〈L〉 = homcdgl(L•, L) ∼= γ•(L) ' MC•(L).

We call the functor 〈L〉 = homcdgl(L•, L) the realization functor. The cosimplicial cdgl
object L• also allows the construction of a left adjoint to the realization functor, which we
denote by L(−) and call the model functor, following Quillen’s notation (since they both
extend, up to homotopy, the Quillen’s realization and model functors). The model functor
is constructed as a Kan extension, and on objects, it can be computed as the colimit

L(X) = lim−→
σ∈X

L|σ|.

These two functors, form a pair of adjoint functors

sset cdgl .
L

〈−〉

As we have seen in the introduction, the cdgl’s Ln, the central objects in this theory are
characterized by the following properties: as graded Lie algebras, they are the (completion)
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of the free graded Lie algebra L̂(∆n) on the sets of generators {aI}, with I a non-empty
subset of {0, 1, . . . , n} of degree |aI | = #I − 2. The differential δ on L̂(∆n) has to satisfy 3
conditions: a) the elements of degree -1, corresponding to geometrical vertices, have to be
Maurer-Cartan elements, i.e.,

δai = −1

2
[ai, ai], for i = 0, . . . , n

b) the linear part of the differential has to agree with the ‘cellular boundary operator’. This
means

δ1ai0,...,ik =

k∑
j=0

(−1)jai0,...,îj ,...,ik

where, on generators, δ = δ1+ terms of length 2 or greater. And c) the faces and degenera-
cies of the cosimplicial object are induced by those of the cosimplicial graded vector space
∆•, which in turn are induced by the faces and degeneracies of the cosimplicial simplicial
set 4• with 4m

n = hom4([n], [m]).
It is proved in [7, Theorem 6.1] that such object exists (and it is unique, up to complete

dgl isomorphism, with the properties a), b) and c)) and its homotopical and homological
properties are deeply studied.

If we modify the condition c) to forget about the degeneracies (and only ask that the
cofaces are complete dgl morphisms), we obtain the weaker concept of a sequence of models.
We say that a sequence of models is inductive if the differential of the top generator a0,...,n,
for n ≥ 2, is of the form

δa0,...,n = [a0, a0,...,n] + Φ, with Φ ∈ L̂(∆̇n) (6)

where ∆̇n is the boundary of ∆n, i.e.,

∆̇n = Span{aI | I ⊂ {0, . . . , n}, ∅ 6= I 6= {0, . . . , n}}.

In other words, in a inductive sequence of models the top generator does not appear
in the expression of its own differential, except for the term [a0, a0,...,n]. Note this kind of
requirement only makes sense in dgl’s with negative elements, in the classical setting, it is
automatically satisfied.

We are going to work with inductive sequence of models of the simplices instead of
with the cosimplicial cdgl satisfying a), b) and c). This means that we forget about the
codegeneracies and impose the extra condition (6). We do not lose information with this
simplification since, by [7, Theorem 6.13], we can define some codegeneracies (agreeing
with the canonical ones only up to terms of length greater than or equal to 2) that make
the sequence of models an actual cosimplicial cdgl. Moreover, by the uniqueness up to
simplicial isomorphisms of these sequence of models [7, Theorem 6.7], this approach gives
a cosimplicial object isomorphic to the one in [7, Theorem 6.1].
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Remark 5.1. Note that for a sequence of models L•, the requirement that the faces are
cdgl morphisms imposes that the differentials of any generator (except for the top one) in
Ln are already determined by the cdgl’s Lm with m < n. For this, take I = (i0 < · · · <
ik) ( {0, . . . , n} and consider, in the simplex category ∆, the increasing map

f : {0, . . . , k} → {0, . . . , n}, j 7→ ij

which is a composition of cofaces in ∆. Then, by our hypothesis, the induced map

f∗ : Lk → Ln, aj0,...,j` 7→ af(j0),...,f(j`)

is a cdgl morphism and, in particular, it commutes with the differential

δai0,...,ik = ∂(f∗(a0,...,k)) = f∗(∂a0,...,k).

This means that δai0,...,ik in Ln is the same as δa0,...,k in Lk up to a reassignment of the
indices.

Therefore, determining an inductive sequence of models consists of defining, recursively
for n = 0, 1, . . . , an element Φ in (L̂(∆̇n), ∂) (with the differential on any generator aI
already defined by the remark above), with the condition that its linear part Φ1 is of the
form

Φ1 = a1,...,n − a0,2,...,n + · · · ± a0,1,...,n−1
and that Φ is a cycle with respect to the perturbed differential δ0 = δ + [a0,−] (this is
a well-defined differential since a0 is a MC-element, see [7, §4.1] for more details). With
these properties, define

δa0,...,n = [a0, a0,...,n] + Φ,

and it is easy to check that this define a cdgl Ln where all the conditions of being an
inductive sequence of models are satisfied.

Now, we briefly recall the explicit models of Ln for n = 0, 1, 2 and 3.

• For n = 0, we have L0 = (L̂(a0), δ) with

δa0 = −1

2
[a0, a0]

since it has to be a MC-element.

• For n = 1, L = (L̂(a0, a1, a01), δ) with a0, a1 being MC-elements. This imposes that

δa01 = [a01, a1] +
∑
k≥0

Bk
k!

adka01(a1 − a0).
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Here Bk are the Bernoulli numbers, which we have already seen in section 4. This
complete dgl is known as the Lawrence-Sullivan interval due to the authors that
originally defined it [19] (see also [7, §5]).

One important property of the Lawrence-Sullivan interval is that the two MC-elements
a0 and a1 are related by the gauge action of a01. In particular, this implies [7, Propo-
sition 4.24] that

δ0e
01(x) = e01(δ1x) (7)

for all x ∈ L1. Here we are using the (abusing) notation eij = eadaij . We also
introduce the notation δi = δai for i = 0, . . . , n. Do not confuse δ1 with the linear
part of the differential δ1.

Another important property of the exponential maps that we will use is that [7,
Corollary 4.12]

eadx ◦ eady = eadx∗y

for all x, y ∈ L0.

• For n = 2, we have that (one) model of the triangle is given by the formula

δ0(a012) = a01 ∗ a12 ∗ a−102 .

Note that the linear part of the BCH product is just the sum, so we recover the
correct linear part. Moreover, using the properties of the Lawrence-Sullivan interval,
it can be proved that it is a δ0-cycle [7, Proposition 5.14].

• For n = 3, in [7, §6.5], an explicit model for the tetrahedron L3 = (L̂(∆3), δ) is built
by means of a generic integral of the BCH product, that is, any operation � in L1

with d(x � y) = dx ∗ dy. However, for our goals (going further until L4) we need
to slightly modify that formula. Firstly, we fix the operation • of section §1 as our
integration of the BCH. In particular, since this operation is associative, there is no
need of writing parenthesis.

Proposition 5.2. There is a model for the tetrahedron L3 = (L̂(∆3), δ) with

δ0(a0123) = e01(a123) • a013 • a−1023 • a
−1
012.

The • product is performed in the complete dgl (L̂(∆3), δ0), this means that δ0(x•y) =
δ0x • δ0y.

Proof. We have to check that Φ = e01(a123) • a013 • a−1023 • a
−1
012 has the correct linear part

and that it is a δ0-cycle. By the expression of the • product as a formal series (1), we see
that the linear part is the sum of the linear part of the terms. Moreover, the linear part of
the exponential map is the identity, so we conclude that

Φ1 = a123 + a013 − a023 − a012
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which was the desired expression.
Now we compute δ0Φ. Since the • product is an integral of the BCH product (Propo-

sition 2.1), then

δ0(Φ) = δ0(e
01(a123))∗δ0(a013)∗δ0(a−1023)∗δ0(a

−1
012) = e01(δ1a123)∗δ0a013∗(δ0a023)−1∗(δ0a012)−1,

where we have used (7) to permute the differential and the exponential. As we saw in
Remark 5.1, the differential of any element (except for a0123) is determined by the models
of the subsimplices. In particular, using the model of the triangle presented above, we see
that, for i < j < k in {0, 1, 2, 3},

δiaijk = aij ∗ ajk ∗ a−1ik .

Replace this in the expression above to obtain

δ0(Φ) = e01(a12 ∗ a23 ∗ a−113 ) ∗ a01 ∗ a13 ∗ a−123 ∗ a
−1
12 ∗ a

−1
01 .

Finally, use (2) to see that this term cancels.

• For n = 4, we construct a model for the pentahedroid. The key results for obtaining
them are the conjugation laws (3) and (5).

Theorem 5.3. There is a model for the pentahedroid L4 = (L̂(∆4), δ) with

δ0(a01234) = τ(a012, a024 • a−1034 • a
−1
023) + e01∗12∗20(a−10234) + e01(a1234)+

+a0123 + ε01∗12∗23∗31∗10(a0134) + ε01∗12∗23∗34∗42∗21∗10(a−10124).

In this theorem and its proof we are using the following simplifications on the notation. We
write ex = eadx for any element x of degree 0, eij = eaij , eij∗jk = eaij∗ajk , and if i < j then
aji denotes a−1ij . We use analogous notation for the function εx = ε(adx). The • products
are supposed to be performed with respect to the differential δ0; otherwise we write •i to
indicate that they performed with respect to the differential δi.

Proof. Call Φ our candidate to be the differential of a01234. We start computing the
differential of Φ. Recall that on cycles the • product becomes the sum. If we write the six
terms of Φ as χ1 + χ2 + . . . , then

δ0(χ1 + χ2 + . . . ) = δ0χ1 • δ0χ2 • . . .

or in any other order that we desire (since the sum is commutative). We analyze separably
the differential of the first and of the last 3 terms.
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The differential of the first 3 terms is equal to

δ0τ(a012, a024 • a−1034 • a
−1
023) • δ0e

01∗12∗20(a−10234) • δ0e
01(a1234).

We now study the second term: e01∗12∗20 commutes with the differential (see (7) and that
δ0a012 = a01 ∗ a12 ∗ a−102 is a cycle, by the model of the triangle). So using the model of the
tetrahedron we get

δ0e
01∗12∗20(a−10234) = e01∗12∗20(δ0a

−1
0234) = e01∗12∗20(a023 • a034 • a−1024 • e

02(a−1234)).

Since e01∗12∗20 is a cdgl morphism and the • product is preserved by morphisms we deduce
that this is equal to

e01∗12∗20(a023 • a034 • a−1024) • e
01∗12(a−1234).

Here, we have used that e01∗12∗20 ◦ e02 = e01∗12∗20∗02. Using the (inverse) of (5) we see that
the sum of the first two terms is

δ0τ(a012, a024 • a−1034 • a
−1
023) • e

01∗12∗20(a023 • a034 • a−1024) • e
01∗12(a−1234) =

= a012 • a023 • a034 • a−1024 • a
−1
012 • e

01∗12(a−1234).

We now analyze the third term

δ0(e
01(a1234)) = e01(δ1a1234) = e01(e12(a234) •1 a124 •1 a−1134 •1 a

−1
123)

where we have used the equation (7) and the Remark 5.1. Since e01 : (L4, δ0) → (L4, δ1)
is a cdgl morphism [7, Proposition 4.24] and the • product commutes with morphisms, we
deduce that this is equal to

e01∗02(a234) • e01(a124) • e01(a−1134) • e
01(a−1123).

Therefore, the sum of the 3 first terms is

a012 • a023 • a034 • a−1024 • a
−1
012 • e

01(a124) • e01(a−1134) • e
01(a−1123). (∗)

We now consider the rest of the terms. The differential of the fourth one is simply

δ0a0123 = e01a123 • a013 • a−1023 • a
−1
012.

In the fifth term, apply Corollary 3.3 to obtain

δ0ε
01∗12∗23∗31∗10(a0134) = ε01∗12∗23∗31∗10(δ0a0134) = e01(a123) • (δ0a0134) • e01(a−1123) =

= e01(a123) • e01(a134) • a014 • a−1034 • a
−1
013 • e

01(a−1123).
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Note that x = a01 ∗ a12 ∗ a23 ∗ a31 ∗ a10 is a cycle and that, therefore, δ0 commutes with εx.
Analogously for the sixth term we get

ε01∗12∗23∗34∗42∗21∗10(δ0a
−1
0124) =

= e01(a123) • e01(a134) • e01(a−1124) • δ0a
−1
0124 • e

01(a124) • e01(a−1134) • e
01(a−1123) =

= e01(a123) • e01(a134) • e01(a−1124) • a012 • a024 • a
−1
014 • e

01(a−1134) • e
01(a−1123).

Now sum the sixth, fifth and fourth terms (in that order) to obtain

e01(a123) • e01(a134) • e01(a−1124) • a012 • a024 • a
−1
034 • a

−1
023 • a

−1
012. (∗∗)

Compare this expression (∗∗) with the sum of the 3 first terms computed above (∗) to
conclude that both expressions cancel: δ0Φ = (∗) • (∗∗) = 0.

We finalize the proof by checking that Φ has the correct linear part: note that τ(α, β)
has 1

2 [α, β] as the term of lowest length and, thus, it does not contribute to the linear part
of Φ. On the other hand, the linear parts of both the exponential eadx(α) and εadx(α) are
α. Then, we conclude that

Φ1 = a−10234 + a1234 + a0134 + a0123 + a−10124,

which is the desired linear term.
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