
HAL Id: hal-04611606
https://hal.science/hal-04611606

Submitted on 13 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trust, But Verify: A Longitudinal Analysis Of Android
OEM Compliance and Customization

Andrea Possemato, Simone Aonzo, Davide Balzarotti, Yanick Fratantonio

To cite this version:
Andrea Possemato, Simone Aonzo, Davide Balzarotti, Yanick Fratantonio. Trust, But Verify: A
Longitudinal Analysis Of Android OEM Compliance and Customization. SP 2021, IEEE Sym-
posium on Security and Privacy, IEEE, May 2021, San Francisco, United States. pp.87-102,
�10.1109/SP40001.2021.00074�. �hal-04611606�

https://hal.science/hal-04611606
https://hal.archives-ouvertes.fr

Trust, But Verify: A Longitudinal Analysis Of
Android OEM Compliance and Customization

Andrea Possemato∗†, Simone Aonzo†, Davide Balzarotti†, Yanick Fratantonio†‡
∗ IDEMIA
† EURECOM
‡ Cisco Talos

Abstract—Nowadays, more than two billions of mobile devices run
Android OS. At the core of this success are the open source nature of
the Android Open Source Project and vendors’ ability to customize
the code base and ship it on their own devices. While the possibility
of customizations is beneficial to vendors, they can potentially lead
to compatibility and security problems. To prevent these problems,
Google developed a set of requirements that must be satisfied for a
vendor to brand its devices as “Android,” and recently introduced
Project Treble as an effort to partition vendor customizations. These
requirements are encoded as part of a textual document (called Com-
patibility Definition Document, or CDD) and various automated tests.
This paper performs the first longitudinal study on Android OEM
customizations. We first built a dataset of 2,907 ROMs, spanning
across 42 different vendors, and covering Android versions from 1.6
to 9.0 (years 2009–2020). We then developed an analysis framework
and pipeline to extract each ROM’s customization layers and evaluate
it across several metrics. For example, we analyze ROMs to determine
whether they are compliant with respect to the various requirements
and whether their customizations negatively affect the security pos-
ture of the overall device. In the process, we focus on various as-
pects, ranging from security hardening of binaries, SELinux policies,
Android init scripts, and kernel security hardening techniques. Our
results are worrisome. We found 579 over 2,907 (∼20%) of the ROMs
have at least one violation for the CDD related to their Android
version — incredibly, 11 of them are branded by Google itself. Some
of our findings suggest that vendors often go out of their way to bypass
or “comment out” safety nets added by the Android security team. In
other cases, we found ROMs that modify init scripts to launch at boot
outdated versions (with known CVEs and public POCs) of programs
as root and reachable from a remote attacker (e.g., tcpdump). This
paper shows that Google’s efforts are not enough, and we offer several
recommendations on how to improve the compliance check pipelines.

I. INTRODUCTION

Mobile devices play a fundamental role in our everyday lives.
The vast majority of them, more than two and a half billion
worldwide [1], run the Android operating system. A Google-led
open source project called Android Open Source Project (AOSP)
offers both the documentation and the source code needed to build
custom variants of the Android operating system (Android OS from
now on). These variants are usually called Android ROMs.

However, AOSP does not include all the components required
to build a complete system. For instance, Google and AOSP cannot
provide kernel device drivers for every hardware configuration.
Therefore, third-party vendors (also known as Original Equipment
Manufacturers, or OEMs) that wish to produce an Android-based
device need to properly customize and tweak an AOSP base image
according to their needs. These modifications can affect both user-

space components, for instance, by including custom applications
or services, and kernel-space components, such as kernel drivers.

AOSP’s openness and flexibility was a determining factor for
the great success of the platform, leading to its adoption by a vast
number of vendors, which market devices with various hardware
configurations and versions of Android. This resulted in a multitude
of different variants, an aspect known as fragmentation. The differ-
ent natures of the different devices can lead to a significant degree of
customization (with respect to the baseline AOSP) that, in turn, can
have a massive impact on the security of the resulting Android ROM.

In particular, we can identify two classes of security problems.
The first is that these customizations may affect the security
posture of the overall system (e.g., by making Google’s hardening
efforts vain), increase the attack surface, and in some cases, even
introduce new security vulnerabilities. For instance, a recent study
published by Project Zero reports several critical bugs found in such
customizations [2].

The second class of problems may originate from the actual
components that are affected by the OEM customizations. Indeed,
customizations that modify core components of the Android OS
may lead to compatibility problems and delays in the application
of security patches, such as the ones released as part of the monthly
Android security bulletins.

Google, who is leading the Android project, is well aware of
these problems, and it has tried to counter them by working in two
parallel directions.

The first is compliance: while AOSP is an open source project
and thus it can be freely modified, an OEM that wishes to brand its
devices with the “Android” label (which is a trademark of Google)
needs to follow a well-defined set of rules. For example, to be
Android-branded, a device needs to meet the requirements presented
in the Android Compatibility Definition Document (CDD) [3], in-
cluding any documents incorporated via reference. From a practical
standpoint, the CDD is a series of technical and non-technical
requirements specified in natural language. Each of the requirements
has a label that indicates whether it must be adopted, its adoption
is strongly recommended, or just recommended. A new CDD is pub-
lished for each new version of Android, and, usually, requirements
that are indicated as ‘strongly recommended’ are later marked as
‘must’ in the next version of the CDD. To simplify the checking
for compliance with these requirements, Google also released a
Compatibility Test Suite (CTS). While the CTS has the advantage of
being fully automated, it only checks for a subset of the requirements
specified in the CDD (this is due to the nature of some CDD require-

~

ments, which is challenging to express in a programmatic form).
A second Google-led effort to counter the security repercussions

introduced by OEM customizations is Project Treble, a re-
architecture of the Android OS, introduced in 2017 as part of
Android 8.0. This reorganization aims to separate the vendor-
specific components (e.g., drivers for specific chipsets and other
customizations) from the core Android OS framework. The
rationale behind this change is to make it easier for OEM to apply
(security) patches to their customized AOSP. In fact, AOSP patches
only touch AOSP-related code and do not touch the vendor-specific
portion. Thus, an OEM that respects Project Treble’s core principle
can always cleanly apply AOSP security patches without worrying
about backward compatibility and other integration problems.

Finally, with Project Treble, the test suites have also been aug-
mented with the Vendor Test Suite (VTS), which helps to validate the
vendor interface and ensuring forward compatibility of vendor im-
plementations. According to Google’s documentation [4], the VTS
can be thought of as an analogous of the CTS, and it can be used to
automate the testing of the hardware abstraction layer and OS kernel,
in both legacy and current Android architectures. We note that com-
pliance with the VTS is strictly required for any ROM that wishes to
run Google’s software suite, also known as Google Mobile Services
(GMS), which includes popular software like the Google Play Store,
GMail, Google Maps, and YouTube. VTS compliance is also re-
quired for a device to be branded under the ‘Android One’ label [5].

Some works show how vendors’ customizations introduce
vulnerabilities with severe security repercussions. Researchers
focused on customized drivers [6] and customizations of the
Android framework [7], but we still lack a complete picture of
Android OEM customizations over time and that tackles different
aspects of the OS security perimeter. Hence, we built a fully
automated analysis pipeline tailored to the analysis of Android
OEM customizations, and we used our framework to perform the
first large-scale longitudinal study on Android OEM customizations.
The analysis was performed on a dataset of 2,907 ROMs from
42 different OEMs. This dataset was obtained by crawling OEMs
websites, which often contain direct links to ROMs, and it consists
of ROMs published from the year 2010 to 2020 and covering
ROMs from Android version 2.3 to version 9.0.

From a high-level perspective, our analysis focuses on two key
aspects: 1) whether a given OEM complies with the various regula-
tions imposed on Android-branded devices (e.g., CDD, CTS, VTS);
and 2) whether and how the various OEM customizations affect the
security posture of the entire OEM. To investigate these two aspects,
our study considers a wide range of technical aspects, including cus-
tomizations of the security hardening of binaries, SELinux policies,
Android’s init scripts, and kernel security hardening settings.

Our large-scale measurement allows us, for the first time, to
answer several security-related questions. For instance, are Google’s
automated compliance checks sufficient to detect CDD and VTS
violations? Do certified ROMs violate some of the requirements?
Do ROM customizations follow Project Treble’s principle of
keeping vendor-specific changes to the vendor partition (so to ease
the application of security patches)? What kind of customizations is
most prevalent? Do these customizations affect the overall security
posture? For what concerns the vendor-specific binaries and data,

how do their security settings (e.g., hardening techniques) fare when
compared to the ones adopted in the main AOSP baseline?

Sadly, the answers to these questions are often worrisome. We
identified that 579 over 2,907 (∼20%) Android-branded ROM
violate at least one “must comply” CDD rule, while 289 (∼10%)
do not implement at least one “strongly recommended” suggestion.

While some of these violations may have gone unnoticed
by Google because of the technical challenges involved when
automatically analyzing ROM—a challenge that we nonetheless
successfully overcame—some of these violations are surprisingly
obvious, and even the automated CTS and VTS tests can raise
warnings. This result casts some shadow on the effectiveness of the
ROM certification process. Our analysis also identified violations
concerning Project Treble guidelines: in particular, we found ROMs
that significantly modify non-vendor partitions, thus affecting the
ease of application of security patches. Even though we believe that
the principle and the intent of Project Treble are valuable, its effec-
tiveness is hampered by the lack of a strict enforcement procedure.

Finally, we identified several customizations whose security
impact, regardless of whether they constitute or not a violation
of the guidelines, is significant. For example, we have found that
29% of ROMs with SELinux modified their policies in a way that
bypasses never allow specifications of the main AOSP SELinux
policy: we identified cases that “commented out” never allow
SELinux policies to compile their customized version of the policies.
We also found devices shipping init scripts implementing
invasive customizations. For instance, we found a vendor that ships
a ROM with an outdated version of tcpdump (with a known
CVE and public POC), running as root, at boot, and reachable by
a remote attack. We also found several ROMs that do not use many
of the hardening techniques that the Android security team has
developed over the years [8].

We conclude this paper with several recommendations for
Google. In particular, we identified several improvements to extend
the compliance requirements that can be automatically verified,
and we discuss several proposals in terms of guidelines that Google
could add to its official documentation to discourage customizations
that affect the security posture of customized ROMs.

In summary, this paper makes the following contributions:
• We perform the first longitudinal and large-scale analysis on

2,907 Android ROMs, over 42 OEMs and spanning over 10
versions of Android, to explore how customizations affect the
Android System Security.

• Our analysis takes an in-depth look at two key aspects:
compliance, which checks whether a certified ROM actually
follows the rules, and security posture, which focuses on how
customizations may affect the security of the overall device.

• We identified numerous certified ROMs—and thus supposed
to have passed the test suites and compliant with all the
requirements dictated by Google through CDD— that actually
do not meet the security prerequisites.

• We highlight how vendor-specific components significantly lag
behind with respect to the security posture of the main AOSP,
and we uncover several techniques that, even though are not
strict violations of the guidelines, create security holes in AOSP
main safety nets (e.g., SELinux policies, software hardening).

~
~

In the spirit of open science, we will release the detailed results and
we will make our analysis pipeline available to the community.

II. LIFE OF A ROM

A. What is in a ROM

We use the term ROM to refer to a phone firmware based on the
Android operating system. Devices come with a pre-installed system,
called stock ROM, which is often provided in the form of an archive
(with different compression schemes), to allow users to restore
the device to factory settings. A ROM contains all the necessary
software components, policies, and configurations needed by the
system to boot and work properly. Among the software components
present in a ROM, we find, for example, the various executables
and system libraries, the pre-installed applications, all the scripts
necessary for the system to be configured correctly at boot (Android
Init Script), and a series of security policies (such as SELinux and
SECCOMP) intended to make the system safer. All these compo-
nents are organized in a set of partitions. The first partition common
to all systems is the boot partition, which contains the Linux kernel
image. Then, depending on the Android version used by the vendor
as the base for its system, the partition layout, and the filesystem
may vary. For instance, if the system is based on an Android version
before 8.0 (SDK 26), all these components are likely placed inside
a single /system partition. Otherwise, if the device is based on
an Android version equal or greater than 8.0 and has been subject to
the re-architecture of Project Treble, all the customizations made by
the vendor are delegated to a separate /vendor partition. As we
already explained, this separation allows for a more straightforward
application of the security patches provided by Google. Unfortu-
nately, our study shows that in practice, this is often not the case.

B. ROM Customization

The process of creating an Android-based system requires
numerous steps. First, the vendor must decide which version of
Android to use as the basis for its system. Once the version (and
therefore its SDK level) has been decided, the vendor proceeds to
fork the corresponding tagged branch from the official repositories
of the Android Open Source Project.

A counter-intuitive fact is that a single Android version (e.g.,
Android 9, codename Pie) might have multiple tags to use as base
image: for example, just for the Android Pie, Google released 47
different base images at different points in time [9]. Hence, a vendor
that bases its custom Android system on Android Pie can decide
which base image to use across those 47 different versions officially
provided by Google. Each of these images might differ from several
aspects: a newer release might provide some fix for disclosed vulner-
abilities or other usability issues, introduce new binaries and services,
or change the default configuration for a specific component.

Once a vendor obtains a base image, it then applies customization
and modification to the entire system, either by introducing new
components (e.g., new binaries and services) or modifying core
services. Changes are not limited to user-space software components
only. Typically, the vendor also inserts kernel components into the
system (such as drivers for custom peripherals) and can also make
changes to security policies or init scripts.

When the vendor has completed the system modification process
and is ready to market its device, it can decide whether it wants
the device to become an Android Google Mobile Services certified
device or to remain a generic device built on top of the AOSP. If
the vendor wants to use the Android brand on its device, it must
request a certification from Google. Having this certification also
allows the vendor to include all Google apps within its ROM, such
as GMail, or Google Maps. Depending on the type of device that
the vendor wants to market, with or without a Google license, the
vendor is required to pass a series of tests, which we illustrate next.

C. Compliance Checks and Requirements

We now present the different types of tests vendors must pass
to have a device compatible with AOSP or the GMS certification
by Google.

To release an Android-compatible device, vendors must comply
with the guidelines defined in the Android Compatibility Definition
Document (CDD). The CDD enumerates all the requirements
that must be satisfied by a vendor to have a system compatible
with a given version of Android. For each new Android release,
Google maintains and publishes a new CDD, where they define
the new guidelines for several aspects, like compatibility with the
multimedia framework or with the hardware. Security also plays
a crucial role in the CDD that, from its first edition, contains an
entire chapter dedicated to the Security Model Compatibility.

If the vendor wants instead to obtain a Google certification and
brand its device as Android, it must pass numerous tests aimed at
analyzing and verifying first the compatibility with AOSP, but also
the security of the whole system. The first class of tests is defined
by the Compatibility Test Suite, a series of tests aimed at ensuring
that the device is entirely compatible with AOSP. Many of the tests
performed in this test suite verify that the requirements defined in
the CDD are respected.

If the vendor wants its devices to include all the Google
applications, it must also comply with the GMS Requirements Test
Suite (GTS): once passed, these tests allow the vendor to obtain
the Google license for their apps. If the vendor’s system is based on
a version of Android redesigned with Project Treble, the approval
process requires the vendor to pass another series of tests, named
Vendor Test Suite (VTS). The VTS consists of a set of frameworks
and test cases designed to improve the robustness, reliability, and
compliance of the Android system (e.g., Hardware Abstraction
Layers and libraries) and low-level system software like the OS
kernel. All these tests are run by the device manufacturer [10]
thanks to Tradefed [11], a continuous test framework designed
for running tests on Android devices. If all tests pass correctly,
the device is considered compliant with the CDD and with all the
security and compatibility requirements defined by Google.

III. ROM ANALYSIS FRAMEWORK

In this section, we present an overview of our ROM analysis
framework and we discuss how we extract different security-relevant
information, such as binary security settings, SELinux policies,
init scripts, and kernel security settings.

A. Architecture Overview

Given a ROM as input, our framework automatically detects the
compression schemes and the filesystem type, and it unpacks the
ROM for the analysis. Once the ROM is unpacked, the system then
proceeds by identifying the AOSP tag used by the vendor to build
the firmware. This step is fundamental to perform our analysis.
In fact, the process of identifying how the vendor customized a
given ROM can be seen as a differential analysis of the ROM
with respect to the AOSP baseline that the vendor selected when
customizing its version. This phase is fundamental when trying to
understand whether a vendor customization introduced an error, a
misconfiguration, or a new vulnerability, or whether the problem
was already present in the original AOSP code.

Once our system identifies the starting AOSP tag, it then clones
and compiles the corresponding repository to build a reference
image on top of which it can perform the differential analysis. This
process is repeated for each ROM.

Finally, the system extracts information related to binaries and
libraries (ELF), SELinux policies, init scripts, and Linux kernel
configurations. Each of these components is handled by an ad-hoc
plugin, which we discuss in detail in the upcoming subsections. The
entire procedure takes approximately 20 minutes for each ROM.

B. Tag Identification

Finding the right base image (identified by a git tag) used by
a vendor as a starting point for its customization is crucial for our
work. Unfortunately, identifying the base image used by a given
ROM is not always a straightforward process as there are often
many different base images for each “main” version of Android.
This section discusses the various techniques and heuristics we
developed to pinpoint the base image used by a given ROM.

During the building process of a system image, the build system
adds a large amount of information that may help recover the exact
git tag forked by the vendor. However, since the vendor controls the
entire building system, this information might—and, in fact, often
is—removed entirely.

In case the vendor did not modify the build system, the ROM
usually includes a Build ID that uniquely identifies the starting base
image. The format of this identifier may change across different
Android versions, and it resides in the ro.build.id property
of the build.prop file. Therefore, we built a mapping between
Build IDs and base images, starting from the official Android
documentation [9]. This mapping shows that, for example, a Build
ID equal to NOF27B corresponds to Android Nougat release 25
(android-7.1.1_r25).

However, if the vendor modified the build system and stripped
this information, the identification becomes more challenging. In
these cases, we adopt different strategies. First, we look at different
values including the ro.build.description property
(that may still contain the original Android build identifier) and
the ro.com.google.gmsversion property (which, when
combined with the ro.build.version.sdk value, can be
used to pinpoint the base image). It is important to note that this
value should always be present when the vendor obtained the GMS
certification. However, there is no guarantee that the vendor obtained

this certification, and we also found ROMs that contain GMS apps
but that however did not include a gmsversion property.

If none of these pieces of information is available, we rely
on the combination of two properties that are always included:
ro.build.version.sdk (i.e., the Android version) and
ro.build.date.utc (i.e., the build date). By combining
these two values, we can determine the “best” candidate to be
considered the base image. In particular, we first list all the AOSP
tags associated with the target Android SDK version, and we
then identify the tag with the nearest creation timestamp.

We note that a vendor cannot easily modify these two final values,
because that would introduce usability problems: changing the
sdk value might introduce undefined and unexpected behavior
both from the system and the apps, while changing the build
date might introduce issues when dealing with system updates
(e.g., anti-rollback protections might use this information to avoid
booting older firmware [12]).

As explained in Section IV, this process worked well in practice.
Moreover, even if some errors might have occurred, our analysis
is not particularly sensitive to small imprecisions.

C. Analysis of Binary Customization

We start our analysis by looking at the binaries (both ELF
executables and APK’s native libraries) contained in the ROM. This
is particularly important because most of the critical bugs are found
within these binaries components, as they are created by using
unsafe languages (e.g., C, C++). Moreover, customizations have
been the root cause of several recent critical 0-click bugs, e.g., those
recently reported by Google Project Zero’s in the (custom) Skia
component of Samsung devices [2].

In this phase, we check how customizations affect three main
aspects related to binaries. First, we focus on security hardening
techniques: we check whether vendors introduced customizations
that lower the security posture of existing AOSP binaries. Second,
we check whether the vendor introduced new functionality by
adding new binaries or by modifying existing ones (we check for
modifications of these binaries by inspecting ELF metadata such
as the symbol table). Third, we check how the security posture of
new binaries compares to exiting AOSP binaries and settings.

D. Analysis of SELinux Policies

Security-Enhanced Linux (SELinux) is a Mandatory Access
Control (MAC) system developed by the NSA and Red-Hat and
publicly released in December 2000.

SELinux policies are used to define rules that a process should fol-
low. More precisely, rules apply to contexts (each process belongs to
a context) and can be very fine grained: in fact, every resource on the
system (e.g., files, sockets) is labeled, and rules can specify access
policies for each of them. For instance, a rule can indicate that a pro-
cess in context X is allowed to open a network connection. SELinux
follows the principle of least privilege: if no rule grants a capability
C to a context X, then X does not have access to that capability.

SELinux policies became partially enforced in Android 4.3 and
fully enforced in Android 5. However, during the years, SELinux
has proved to be at the same time a powerful exploit mitigation [13],
but also the direct cause of several critical security issues due

to vendor customizations [14]. Indeed, vendors must customize
SELinux policies as every new file (including those introduced by
the vendor) need to be appropriately labeled, and new rules need to
be introduced to give proper access to the right contexts. However,
these customizations may also have security repercussions. For
example, since base AOSP SELinux can be quite restrictive, vendors
may be tempted to relax the policies and somehow circumvent the
safety nets implemented by AOSP. To give an extreme example:
AOSP defines several “never allow” SELinux rules, which are rules
that tell the SELinux compiler “refuse to compile if a different rule
is violating it”: We found several ROMs with customized SELinux
policies that violate base AOSP rules: this implies that the vendor
must have commented out the problematic “never allow” rule
instead of redesigning their customization more safely.

Our analysis framework first extracts all customizations to the
base SELinux policy and then inspects them to identify several
problematic patterns, like the one discussed above.

E. Analysis of Init Scripts

Unlike other Linux systems, Android uses its initialization
process. Android init scripts are textual files with the .rc
extension and they are written in a dedicated language, namely the
Android Init Language [15]. During the years, this component has
been subject to several attacks [16]. Most of the vulnerabilities were
introduced by third-party customizations, and, most of the time, their
exploitation allowed a local attacker to escalate privileges to root.

Init scripts are loaded at boot, just after the kernel initialization,
and play a crucial role in the Android system setup and bootstrap.
Default AOSP init scripts are located in the /system/ directory,
while vendors can add custom scripts in the /vendor/ or
/odm/ folders.

Init scripts can specify the user/group the binary should be run
with, the Linux capabilities that should be granted, and the SELinux
context the program should be run with (by default, all init scripts
run within the init context).

Given the potential security consequences of improper
customizations, our framework includes support for the analysis
of Android init script to study whether vendors customize default
AOSP init scripts or add new ones and to verify if the new services
are executed with appropriate user/group and Linux capabilities,
and as part of a “safe” SELinux context.

Unfortunately, our experiments show that vendors often
customize these scripts, and in some cases, significantly increase
the attack surface and leave the device vulnerable to remotely
exploitable bugs (with known CVEs).

F. Kernel Security Analysis

Kernel security has grown in importance in recent years as the
number of kernel security bugs reported for Android increased
almost ten times in only three years [8]. As a consequence, many
kernel hardening techniques were recently introduced. These are
so important that the CDD itself introduced a number of “must”
requirements in this area that a vendor needs to satisfy to brand its
devices as Android.

In Android ROMs, the kernel is usually provided in a binary form
within the boot.img file. The Vendor Test Suite implements

16<= 17 18 19 21 22 23 24 25 26 27 28
SDK Level

0%

5%

10%

15%

20%

Pe
rc

en
ta

ge
 o

ve
r a

 to
ta

l o
f 2

90
7

en
tri

es

Fig. 1. SDK Distribution

checks for some of the CDD requirements, but unfortunately, they
are quite limited due to the binary-only format of the kernel.

To study the kernel’s security, our framework includes various
analyses that can extract several security-sensitive information and
test for additional CDD requirements. For each kernel, the system
first extracts its version, and all the information generally provided
within the Linux Kernel banner [17]. It then attempts to extract
the kernel build configuration options. If the kernel was compiled
with the CONFIG_IKCONFIG option, the required information
is easily accessible through the .config file. Otherwise, we
created a database that maps an ELF symbol to the kernel config
option. Our analysis then extracts symbols from the kernel image
(using a modified version of vmlinux-to-elf [18]) and
uses our mapping to infer several kernel config options used at
compilation time. It is worrisome to note that, even though this
approach does not support all kernel config options, it was sufficient
to identify ROMs that violated several CDD “must” requirements.

IV. DATASET CHARACTERIZATION

To perform our longitudinal analysis, we set out to build a dataset
of ROMs as comprehensive as possible. For what concerns the
official Google ROMs, we downloaded them from their official
website [19]. We downloaded the other vendors’ ROMs from
firmwarefile.com [20] and stockrom.net [21]. In
total, our dataset consists of 2,907 Android ROMs, which span
across 42 different vendors and cover 1,403 different device models.
For what concerns the SDK distribution, our dataset covers the
Android system’s evolution from version 2.3.3 to version 9 (i.e.,
from SDK 10 to 28). The oldest image dates back to 2010, while
the newest is from 2020. Figure 1 presents the distribution of our
dataset in terms of SDK distribution.

According to public statistics [22], our dataset is also
heterogeneous in terms of coverage of different vendors: half of
our dataset is constituted by “big players” (e.g., Samsung, Huawei,
LG, and Xiaomi), while the remaining ROMs belong to vendors
with a market share less than 4% (e.g., Google, Lenovo, Mobicel,
Motorola, Oppo, Realme, and Vivo).

Moreover, as discussed in the previous section, our customization
analysis needs to compare a given ROM against its associated

“base image.” To this end, we also created a set of 326 ROMs by
compiling all AOSP versions (i.e., tags) that are the base image
of a least one ROM in our dataset (as discussed in Section III-B).
Obviously, these last 326 ROMs are not counted in our statistics.

To identify the tag of the AOSP base image, we relied
on the ro.build.id value for the 88% (2,566) of our
dataset. For 9% (261) of the ROMs we combined instead the
information from the build date (ro.build.date.utc)
with the ro.build.version.sdk property values.
Finally, we relied on the information contained in the
ro.com.google.gmsversion property for 2% (59)
of the ROM and the value of the ro.build.description
for the remaining 23 ROMs. Note that all the 2,907 ROMs in our
dataset contain apps from the Google Suite; thus, we can assume
they all obtained the GMS certification from Google.

V. COMPLIANCE

All the ROMs in our dataset are branded Android and contain
apps from the Google Suite (and thus obtained the GMS
certifications). Therefore, one would expect them to be compliant
with the mandatory requirements of the CDD.

This is important because system security aspects always played
a crucial role in the CDD, which contained an entire chapter
dedicated to the Security Model Compatibility since its first edition
in 2009. Mandatory requirements are clearly marked as “must,”
and a failure to implement them is a clear violation of the CDD.
Alternatively, a feature can be defined as strongly recommended:
in this case, not implementing such a feature is not a strict violation
of the CDD. This section discusses our analysis and findings.

We manually extracted all these requirements from the CDD of
Android 1.6 to Android 9, as summarized in Table I. In order of
appearance, the first system hardening requirement was introduced
in the CDD of Android 4.3, where Google announced the support
of SELinux for Android devices. Therefore all ROMs based on
Android 4.3+ must support and implement the SELinux Mandatory
Access Control. Then, starting from Android 7, the Security Model
Compatibility section has focused mainly on kernel configuration
options. Surprisingly, the CDD security requirements do not
mention user-space hardening until Android 9, and the only
user-space hardening requirement is defined only as strongly
recommended. Since the introduction of Project Treble made
updates faster and easier for OEMs to roll out to devices and
introduced several tests to verify and test the OS kernel, we present
our results divided before and after its introduction. This distinction
can help us understand to which extent the introduction of Project
Treble was able to mitigate the problem of Android customizations.

A. Kernel Configurations Compliance

As discussed in Section III-F, for each of the 2,907 ROMs,
we analyzed their Linux-based kernel binary to identify potential
misconfigurations in contrast with the strict requirements defined
in the CDD. However, we identified that 262 ROMs in our dataset
did not contain the kernel binary, and therefore we excluded them
from our analysis.

For 249 of the remaining 2,645 kernels, our system was unable to
extract neither their kernel configuration nor the symbols from the

kernel binary. This is because those kernels were compiled without
the CONFIG_IKCONFIG and CONFIG_MODULES [23]
configurations. However, as described in [24], both configurations
must be enabled for kernels targeting Android 8.0 and higher.
Besides, by reading the Core Kernel Requirements [24] defined in
the Vendor Test Suite (VTS) for Android 8.0 and higher, we noticed
how the configuration of these 249 kernels should violate and
fail the tests. Out of the 249 kernels missing these configurations,
162 corresponded to the Android version ≥8.0. Thus, as the first
result of this analysis, we highlight how these 162 kernels are not
compliant with Android, and these misconfigurations should have
been detected by the correspondent VTS. This casts a shadow on
the strictness of these requirements’ enforcement, especially since
some of these could have been automatically checked.

For the other 2,396 kernels, we retrieved the textual configuration
from 561 kernels and the symbol table for the remaining. Identifying
violations on kernels having their configuration is straightforward
as the CDD precisely indicates which configuration options must
be used. On the other hand, verifying violations with the only
support of the kernel binary symbols is not immediate. However, we
noticed how almost every kernel configuration defined in the CDD
introduces a set of specific symbols, and therefore it is possible
to infer a specific compilation flag based on the symbols included
within the binary (Table VI, in Appendix, shows the mappings
between kernel configuration and symbols).

It is important to note that since some flags are interchangeable,
we conservatively mark a kernel to be not compliant if and only
if it does not implement any of the available options. For example,
if a kernel adopts CONFIG_CC_STACKPROTECTOR_STRONG
rather than CONFIG_CC_STACKPROTECTOR_REGULAR, we
do not mark it as not compliant since the CDD requires the vendor
to implement at least one of the two.

Our analysis identified that 7.9% (190 out of 2,396) of the
kernels (from 10 different vendors) violate the CDD for their
specific Android version since they do not implement one or more
mandatory security requirement.

Amongst these 162 are used in ROMs re-architectured with
Project Treble, thus targeting an Android version greater or equal
than 8.0. The most common violation, found on 150 kernels, relates
to the absence of kernel memory protections aimed at marking
sensitive memory regions and sections read-only or non-executable
(which can be enabled with CONFIG_DEBUG_RODATA or
CONFIG_STRICT_KERNEL_RWX).

We also identified 10% (241 out of 2,396) of the kernels (from
10 vendors) do not implement one or more strongly recommended
features. This time, we noticed how 160 vendors did not enable
CONFIG_RANDOMIZE_BASE (no Kernel Address Space Layout
Randomization); hence, these kernels do not implement any random-
ization of their base address once loaded. Although these features
are not mandatory, the Vendor Test Suites inform the vendor if any
strongly recommended features are missing. Thus, even though
these vendors were warned about the lack of these features, they
ignored the advice and did not include them in their final product.

Table II shows the evolution of violations across different SDK
levels. The table shows that the re-architecture introduced with
Project Treble and the testing performed with the VTS are not

TABLE I
KNOWLEDGE BASE: THE TABLE SUMMARIZES ALL THE SYSTEM HARDENING REQUIREMENTS DEFINED IN THE ANDROID COMPATIBILITY DEFINITION DOCUMENT

(BOTH THE must (I.E., MANDATORY) AND THE strongly recommended) THIRD-PARTY VENDORS SHOULD IMPLEMENT TO BRAND THEMSELVES AS “ANDROID”

SDK Version CDD

MUST STRONGLY
RECOMMENDED

4 - 17 1.6 - 4.2 – –
18 4.3 SELinux: support Permissive Mode –
19 4.4 SELinux: contexts installd, netd, and vold in Enforcing Mode SELinux: other domains remain in Permissive Mode

20 - 23 5.0 - 6.1
SELinux: global Enforcing Mode

–SELinux: all domains in Enforcing Mode
SELinux: not modify, omit, or replace the neverallow rules
present within the SELinux AOSP folder

24 - 25 7.0 - 7.1 Kernel: support for seccomp-BPF support (TSYNC) –

26 - 27 8.0 - 8.1

Kernel: support for
CONFIG CC STACKPROTECTOR REGULAR or
CONFIG CC STACKPROTECTOR STRONG

Kernel: support for data read-only after initialization
(ro after init)
Kernel: support for
CONFIG HARDENED USERCOPY

Kernel: support for CONFIG DEBUG RODATA or
CONFIG STRICT KERNEL RWX

Kernel: support for CONFIG CPU SW DOMAIN PAN or
CONFIG ARM64 SW TTBR0 PAN
Kernel: support for CONFIG RANDOMIZE BASE

28 9
Kernel: support for CONFIG PAGE TABLE ISOLATION
or CONFIG UNMAP KERNEL AT EL0 Userspace: do not disable CFI/IntSan on components that have

it enabledKernel: support for CONFIG HARDENED USERCOPY

TABLE II
VIOLATIONS REGARDING THE KERNEL CONFIGURATION

SDK Version # Kernel # Violations
CDD

Strongly
Recommended

18 4.3 77 26 (33.8%) –
19 4.4 599 3 (0.5%) –
26 8.0 145 50 (34.5%) 70 (48.3%)
27 8.1 140 33 (23.6%) 66 (47.1%)
28 9.0 196 78 (39.8%) 101 (51.5%)

2396 190 (7.9%) 237 (9.9%)

enough to counter the problem of customization on Android from
the Kernel Security perspective.

On the contrary, it can be observed that many kernels still do
not comply with the directives imposed by Google and continue to
release on the market devices equipped with kernels that do not meet
the mandatory security specifications. The numerous tests should
have identified (and likely actually did identify) all these violations,
which would be enough to mark the final ROMs as non-compliant.

B. SELinux Compliance

For each Android version that supports SELinux, AOSP provides
a standard policy that vendors can use as a base to build and
customize their SELinux configuration. As discussed in Sec-
tion III-D, starting from Android 4.3, Google introduced as a
strong requirement that all third-party vendors must adopt this new
Mandatory Access Control system. The CDD mandates that third-
party vendors must support SELinux in Permissive Mode1. Instead,
from Android 4.4, Google started to protect few critical services with
SELinux and forced the vendors to do the same: hence, vendors were
required to set up SELinux in Enforcing Mode at least for the three
domains installd, netd, and vold. Starting from Android

1When SELinux runs in Permissive Mode, every violation is logged, but not
enforced, so to provide vendors enough information for an adequate fix to the
component causing the error.

5.0, instead, vendors were required to set up SELinux in Enforcing
Mode for all the domains. Moreover, from this version, vendors must
not modify, omit, or replace some AOSP specific rules, which act
as a safety net for misconfigurations. These rules are the so-called
neverallow rules: if a custom SELinux policy directly or indi-
rectly violates any of these rules, the SELinux toolchain would throw
a compilation error, thus preventing the adoption of unsafe config-
urations from the beginning. With these rules, it is possible to avoid
and mitigate potential known security issues and harmful behaviors,
such as forbidding any third-party application to write to files in the
/sys directory or preventing them from receiving and sending
uevent messages. We note that modifying (or removing) any
of these neverallow rules is a strict violation of the CDD.

To determine whether a ROM is compliant with the SELinux
requirements, we proceed in two steps. First, we look at violations
related to Permissive Mode by inspecting the SELinux policy
available in the ROM (since it is possible to retrieve all the
permissive domains directly from the compiled policy). Second,
we look for vendors that manipulated the base policy provided in
AOSP to overcome the restrictions imposed by the neverallow
rules. For this, we retrieve the tag of used as a base image by the
vendor (see Section III-B), and we compare the two sets of policies.

Out of the 2,907 ROMs, we identified 1,090 of them not
containing a SELinux policy. Of these 1,090, 452 are targeting an
Android version lower than 4.3, and it is thus expected that they
do not have any policy.

Since SELinux must have kernel support to work, we decided
to intersect the remaining ROMs with the results extracted from
the previous kernel analysis (see Section V-A) and we identified
how 29 lack CONFIG_SECURITY_SELINUX: for those, it is
expected that we do not find SELinux configurations.

The remaining 609 ROMs are divided as follows: for 167 we
were not able to obtain the boot.img, and for 91 of them we
were not able to extract neither the kernel configuration nor the
symbol table; thus, we cannot perform any measurement on these

TABLE III
VIOLATIONS REGARDING THE CONFIGURATION OF A PERMISSIVE DOMAIN IN

THE SELINUX POLICY

SDK Version # ROM CDD
Violations

Permissive Domains
Max Min Avg σ

21 5.0 1/58 (1.7%) 5 5 5.0 0
22 5.1 26/251 (10.3%) 7 1 3.1 2.2
23 6.0 21/359 (5.8%) 5 1 2.0 1.3
24 7.0 11/226 (4.8%) 2 1 1.0 0.3
25 7.1 2/163 (1.2%) 1 1 1.0 0
26 8.0 21/141 (14.8%) 4 1 2.0 1.3
27 8.1 18/139 (12.9%) 1 1 1.0 0
28 9.0 8/196 (4.0%) 1 1 1.0 0

108/1533 (7.0%)

ROMs. For 351 ROMs, we identified that they correctly support
SELinux at kernel level, but no policy has been found: we suppose
these might be incremental updates, not containing the policy.

We now focus our discussion on the remaining 1,817 ROMs that
define a SELinux policy. Out of them, 7% (108 ROMs) violate the
CDD specification for their corresponding Android version as they
still define one or more permissive domains. We found this
violation spread across 16 different vendors. We also analyzed the
distribution of these violations with respect to their SDK level to de-
termine whether this problem only affects older versions of Android.
Surprisingly, we noticed that even if Google forbids permissive
domains starting from Android 5.0 (and thus from SDK 20), several
ROMs are still not complaint even after four major releases, and
after an almost complete redesign of SELinux on Android 8 [25].

Table III summarizes the results of this analysis. We divided the
results before and after the introduction of Project Treble to show
once more how the problem persisted even after the introduction
of the new system design.

We then performed the second analysis to identify whether a
vendor tampered with any of the predefined neverallow rules,
which is a strict violation of the CDD, starting from Android 5.0.
However, detecting this type of violation is not straightforward.
Each Android version contains a preset of SELinux rules: the
neverallow rules are part of this base policy. At compilation
time, the SELinux policy compiler verifies if any rules defined in
the policy are in contrast with what is defined by the neverallow
rules: if a violation is identified, the compiler throws a compilation
error. However, these checks are performed only at compilation
time and are not enforced at runtime. Therefore, potentially, a
third-party vendor facing a violation of a neverallow rule
introduced by one of its customizations may be tempted to “solve”
the issue by just changing or removing the neverallow rule
that prevents the compilation of the final policy. Thus, by analyzing
only the vendor policy of the final ROM is not possible to conclude
whether it violates the CDD requirement.

To detect these violations, we proceed as follows: for each ROM,
we first retrieved the tag used by the vendor as a base system (see
Section III-B), and we save both the textual and the compiled version
of the policy. Then, we identify all the differences between the
compiled policies, and we collect the customizations introduced by
the vendor. For each of the additional vendor-only rules, we then try

TABLE IV
VIOLATIONS REGARDING THE DEFINITION OF ALLOWRULES IN CONTRAST

WITH A NEVERALLOW RULE DEFINED IN THE AOSP SELINUX BASE POLICY

SDK Version # ROM CDD
Violations

Neverallow Rules Violations
Max Min Avg σ

21 5.0 1/58 (1.7%) 8 8 8.0 0
22 5.1 20/251 (7.9%) 39 1 4.6 10.4
23 6.0 58/359 (16.1%) 121 1 3.6 15.7
24 7.0 8/226 (3.5%) 10 1 7.2 3.9
25 7.1 3/163 (1.8%) 158 1 56.3 88.1
26 8.0 121/141 (85.8%) 27 1 7.2 7.7
27 8.1 110/139 (79.1%) 25 2 7.2 7.5
28 9.0 122/196 (62.2%) 37 1 4.0 8.8

443/1533 (28.9%)

to recompile the original AOSP policy with the addition of the new
rule, and we check for compilation errors. In case of compilation
errors, we finally check whether it is due to a neverallow rule
violation, and if so, we mark the vendor policy as not compliant.

Out of 1,533 ROMs with a SELinux policy (and that target
Android ≥ 5), we identified that 29% of them (443) violated the
CDD by defining one or more rules violating one of them default
neverallow rules. For all these images, from 21 unique vendors, it
was possible to identify SELinux policies allowing operations that
were not supposed to be available. Table IV summarizes the results
of this second analysis. Also in this case, the introduction of Project
Treble failed to mitigate the vendors’ problems related to SELinux
customizations. As can be seen from Table IV, if we consider the
results for SDK level 26, 27, and 28, we see how this problem has
increased dramatically, reaching peaks of 85% of the ROMs having
at least one violation.

Although the Vendor Test Suites contain tests to check for
SELinux violations, and specifically to identify this type of
violations [26], the results we have collected show that not only
these are easily bypassable by vendors, but that vendors actually
do violate them very often, making them not compliant with the
CDD, and potentially introducing security issues. We would like
to note that these results do not imply maliciousness: we believe
most of the vendors use this practice to fix compatibility issues
introduced by their customizations quickly. Indeed, modifying
or commenting out a neverallow rule is much easier than
potentially re-architecting a customization to fit the requirements.

C. Binary Compliance

The last category of system hardening defined by Google
is related to user-space binaries. As previously discussed, the
requirements for binaries were introduced only in Android 9, and so
far, they only cover two aspects: Control Flow Integrity (CFI) and
Integer Overflow Sanitization (IntSan). CFI is a security mechanism
that tries to prevent changes to the control flow of a compiled binary,
making exploitations that require hijacking the “expected” control
flow much harder. IntSan provides instead compile-time instrumenta-
tion to detect signed and unsigned arithmetic integer overflow. When
an overflow is detected, the process safely aborts. Both protection
systems have been gradually introduced by Google to harden the
Android Media Stack component [27], [28], which has been subject

to numerous attacks over the years, including Stagefright [29], which
could have been prevented with these two hardening techniques.

To take advantage of these new protections, the developer must
use a compiler that supports them. Officially, Google uses and
supports Clang, but both features are also available on the GCC
compiler.

As presented in Table I, the only requirement for the user-space
binaries is defined as strongly recommended, and it asks vendors
to not remove CFI or IntSan compiler mitigations from components
that have them enabled. Thus, to identify if vendors adhere to this
recommendation, we proceed as follows: for each ROM, we first
identify its AOSP base image (see Section III-B). Then, we extract
all binaries shared between the vendor ROM and the corresponding
AOSP base image. Finally, for each of these binaries, we tested their
security features: if the original binary (present in the AOSP base
image) has CFI or IntSan enabled and the corresponding binary in
the third-party ROM does not, we mark the ROM as not respecting
the recommendation suggested in the CDD.

Since both defense mechanisms were introduced in the CDD
from Android 9, we only considered the 196 ROMs with SDK
≥ 28. Among them, 85 (43.37%) contained at least one binary
that disabled CFI and 104 (53.06%) contained at least one that
disabled IntSan. In these cases, six unique vendors lowered the
security of a binary, with respect to AOSP, thus violating the CDD
recommendation.

However, these vendors did not entirely disable CFI or IntSan for
all the binaries: on average, among the ROMs that have violated the
recommendations, the vendors disabled CFI for 38.7% (σ=36.5)
of the binaries, while they disabled IntSan for 35.8% (σ=34.9) of
them.

VI. ADDITIONAL CUSTOMIZATIONS

This section discusses our analysis of OEM customizations that,
even though may not constitute a strict violation of the requirements,
do negatively impact the security posture of the overall ROM.

A. New Functions in System Libraries

The vast majority of Android’s core system components are still
written in unsafe memory languages like C and C++ and shipped
as ELF libraries. Vendors can add functionalities to such libraries,
which can result in an increased attack surface. A recent (fixed
in May 2020) impactful example is a bug found in Samsung’s
customizations of Google’s Skia library [2]. The library is used to
process pictures for many applications, and Samsung customized
it to add support for new proprietary formats. Unfortunately, one of
these functions was vulnerable to memory corruption bugs, and the
exploitation of this vulnerability allowed an unauthenticated remote
attacker (i.e., 0-click) to execute arbitrary code on the device.

To assess the prevalence of vendor customizations that add
functionalities, given a ROM as input, we first inspect all binaries
that are also found in the original AOSP (we refer to this subset
of binaries with the term Shared Libraries), and we extract the
list of exported functions that were not present in the original
version. Since a vendor can use different library versions that might
have been taken from another AOSP branch, we opted for the
following conservative approach: we consider a ROM to have

0%

10%

20%

30%

(I) Mean of percentages of Shared Libraries with new functions

10 15 16 17 18 19 21 22 23 24 25 26 27 28
SDK Level

0

25

50

75

100

125

(II) Mean of numbers of new functions introduced in a Shared Library

Never found in AOSP, i.e., actual vendors' customization
Only found in previous AOSP releases

Fig. 2. Analysis of new exported functions introduced in AOSP libraries

added functionality to a given binary if it contains symbols that do
not appear in any (i.e., older or newer) AOSP releases.

Figure 2 summarizes our findings. The two bar plots share the
same x-axis (the SDK level) and report respectively the mean of
the percentages of Shared Libraries in a ROM in which a vendor
has introduced new functions and the numbers of new functions
(when a vendor introduced at least one). The dark bar highlights
the actual vendors’ customizations, while the soft bar displays a
modification found in a previous version of AOSP. There is no soft
bar in the correspondence of SDK 10 because there are no ROMs
older than that in our dataset.

The results show an almost constant trend of roughly 80 new func-
tions added to 20% of the system libraries, thus vanishing Project
Treble’s efforts. Nevertheless, we also note that vendors are still
using old AOSP functions, maybe because their code still depends
on them. However, using a function that is no longer maintained in
AOSP can be dangerous because it does not receive security patches.

B. Compile-time Hardening

In addition to the CDD, Google also maintains a Security
Enhancements (SE) webpage [30], in which it presents the security
and privacy enhancements for each Android version. While the
CDD only started to discuss binary hardening in Android 9 (2018),
the SE discusses this topic since Android 3 (2009). This webpage
is not directly linked from the CDD, so it is not mandatory for the
OEMs to implement such enhancements. However, since these
aspects are security-relevant, we analyzed customizations related
to these aspects as well.

We first went over all the security features reported in the SE
and collected all mitigation techniques related to binary hardening:
I) Stack Canaries, II) No eXecute (NX), III) Position Independent
Executables (PIE), IV) Full Relocation Read-Only (Full RELRO),
V) Fortify Source, and VI) the use of setuid/setgid binaries.
(We do not mention CFI here because it was already discussed in
the previous section.) We then compiled a list of artifacts whose

0%

50%

100%
Stack Canaries (I)

0%

50%

100%
NX (II)

0%

50%

100%
PIE (III)

0%

50%

100%
Full RELRO (IV)

10 15 16 17 18 19 21 22 23 24 25 26 27 28
SDK Level

0%

50%

100%
FORTIFY_SOURCE (V)

First SE appearance AOSP binaries Vendors' binaries

Fig. 3. Mean of percentages of binaries using a certain security feature

presence or absence can be used to infer whether an ELF binary
implements or not each mitigation technique. The list is available
in Table V in the Appendix, annotated with a full description of
the features.

This information allowed us to compare the security-related
compiler options used by vendors for their binaries with respect
to the one used by the corresponding AOSP base image. First, we
found a positive indication. The vendor’s binaries in common with
the AOSP base image have the same mitigation techniques, that
is, third-party vendors do not (usually) modify the AOSP settings.

However, the results are different when we compare the binaries
that are only present in the vendor’s ROM (i.e., those binaries that
are not present in any version of vanilla AOSP). Figure 3 presents
the result of this analysis as the mean computed over the ROMs
aggregated by SDK version. The vertical red line shows the point in
time when the security feature was mentioned in the SE for the first
time (Stack Canaries and NX have no vertical line because they were
introduced even before SDK 10). The dash-dotted line represents
the means of AOSP binaries, while the continuous line (supplied
with standard deviation) the vendors’ binaries. All graphs clearly
show that the new binaries added by the vendors consistently use
fewer mitigation techniques than the binaries in AOSP. At a closer
look, we can also observe other interesting trends. For instance,
even if stack canaries are the oldest security feature presented in the
SE, it took several years for vendors to adopt them (and still today,

10 15 16 17 18 19 21 22 23 24 25 26 27 28
SDK Level

0

50

100

150

200

250

Se
rv

ice

Service
Service at Boot as Root

Fig. 4. Evolution of new services defined through Android Init Scripts

around 40% of vendors binary lack this basic feature), probably
because it slightly penalizes the performance [31]. NX adoption
and Full RELRO have instead always been very common in AOSP
binaries, while the gap with the vendors’ binaries is still substantial.

Moreover, we found an inconsistency concerning NX adoption:
the CDD never mentions NX, while the CTS contains a test to verify
at run-time if NX is enabled [32]. SE webpage presents NX in
Android 2.3, released in December 2010, and the test was committed
in March 2011. This fact is odd because the test is checking (and
thus enforcing) for a feature that is not explicitly requested.

Finally, we measured the prevalence of setuid/setgid files.
Since Android 4.3 (SDK 18), the AOSP removed all setuid exe-
cutables. Among the vendor binaries, we found that 319/447 (71%)
of the ROMs with SDK <18 and 371/2453 (15%) of the ROMs
with SDK≥18 contain at least one setuid executable. In partic-
ular, ROMs with SDK≥18 should never contain any setuid ex-
ecutables (and in fact AOSP contains none). At a closer analysis, the
binaries that appear more frequently in those ROMs are su (18%),
procmem (17%), netcfg (16%), procrank (12%), and
tcpdump (11%). Developers often use these executables for
debugging purposes, but they should be removed from the final
released ROM since the presence of setuid executables can
severely affect the overall security posture of the device.

C. Android Init Script Customizations

Android OS relies on a custom init script system to start binaries
at boot time. Unfortunately, this component has been subject to
numerous security problems in the past, in many cases, due to
changes introduced by vendors [16].

To study this aspect, our system extracts from each ROM how
many new services it defines with respect to its corresponding
AOSP base image. However, not all services are started every time.
Therefore, among them, we mainly focus on those that start at
system boot and that run with root user privileges.

Figure 4 summarizes our findings. For each SDK level, the figure
displays the distribution of the number of new services: the left

side of the violin plot covers all new services, while the right side
only covers those that start at boot and with root permissions. The
plot shows how, over the years, vendors have made considerable
changes to init scripts and, in particular, how the total number of
newly defined services is constantly growing—with some ROMs
defining almost 250 additional services compared with AOSP.

To put this in terms of absolute numbers, for instance, an AOSP
8.0 (SDK 26) had, on average, 59 services defined in the init script,
while an average ROM had 90, with a peak of vendors defining
195 additional services. The astonishing number of services that
start as root is worrisome, and vendors are likely violating the least
privilege principle. It is, in fact, much more straightforward for
vendors to run a binary as root with respect to running it with less
privilege, granting it only the capabilities that are strictly needed,
and properly configuring SELinux policies.

Another interesting trend we observed while analyzing the init
script ecosystem is how vendors customize AOSP specific services
by changing or adding a root user as the owner of the service. Even
though the numbers are not very high, we noticed how, over the
years, starting from Android 4.0.3, on average, vendors customize
at least one service. This customization is very hard to explain
since these core services are supposed to run on the system without
modification. Extending the permissions of these services might
result in having an unnecessary over-privileged service. One possible
cause of this change might be due to aggressive and dangerous
customization that requires root privileges to work correctly.

We also cross-referenced the list of new services with the
results obtained in the previous subsection, where we found
binaries usually used for debugging purposes in commercial
ROMs. Surprisingly, we found that some of those binaries are also
automatically started at boot. For instance, we identified 18 ROMs
(of 2 different vendors) configured to start tcpdump at boot and
with root privileges. In this case, a manual investigation showed
that the tcpdump process was configured to monitor incoming
packets on all the interfaces and save the first 134 bytes of data
from each packet into a log file. To make it worse, some of these
ROMs use tcpdump version 4.9.2, which is outdated (it was
released in 2017) and is affected by several CVEs [33], [34] some
of which with public proof-of-concept exploits. Surprisingly, we
identified these problems even in a ROM branded as Android One,
and built in 2019. Listening and processing packets from untrusted
sources expose the device to potential remote and local attackers,
thus severely negatively affecting the entire device’s security.

D. SELinux Customization

As presented in Section V-B, vendors often customize the
SELinux configuration. This section discusses an in-depth analysis
of the most frequent vendor SELinux-related changes and their
impact on the overall system’s security (independently from whether
these changes are compliant with the CDD and other requirements).

SELinux plays a crucial role in the entire security of Android,
and this component can also be used to introduce temporary patches
to mitigate a vulnerability introduced at the software level. For
example, the vold privilege escalation bug was properly mitigated
first by a SELinux rule, before the vulnerable daemon vold was
patched [35], [36]. Unfortunately, there might be cases in which

vendors modify these policies without verifying whether the change
can introduce new vulnerabilities (or make existing vulnerabilities
exploitable). This is the case for Motorola that, by just introducing
one single policy change for some of its devices, has introduced
a logical bug that reverted the patch introduced to mitigate the
problem on vold, allowing attackers to get root [37]. In other cases,
the vulnerability can also be part of the base AOSP policy defined
by Google. This is the case for CVE-2018-9488 in which one of
the default SELinux domain of AOSP was wrongly configured and
allowed a local attacker to perform a privilege escalation [38].

These examples show that defining SELinux policies is a delicate
and error-prone process. However, SELinux changes are necessary
for the vendors. Every new process, file, and resource must be cor-
rectly labeled, and each new change introduced by a vendor must be
configured accordingly. This means that each new component intro-
duced by the vendor potentially requires introducing new domains,
types, classes, and rules. In our analysis, we extracted and analyzed
all vendor rules that were not present in the corresponding basic
AOSP policy. We identify three different cases: 1) rules that modify a
pre-existing rule to extend the permissions and operations allowed on
a given resource; 2) rules that modify an exiting core policy domain
but just by extending it to support new resources introduced by the
vendor; 3) rules that are completely new and that operate on domains
and resources that are not present in the original AOSP policy.

We now present the results of our analysis. Figure 5 shows the
changes to the allowrule defined by a vendor for its system, while
Figure 6 shows the changes affecting the definition of domains,
types, and classes.

For each SDK, the first figure shows the distribution of the
number of SELinux rules present in the policy. The graph combines
a traditional boxplot on the left, showing the first and third quartiles,
with a violin plot on the right side to show the distribution of the
number of ROMs that define a given number of rules. The plot also
includes two dots to indicate the average number of rules present in
the correspondent AOSP policy compared to the average number of
rules found in the different vendor policies. Also note that to accom-
modate outliers better, the Y-axis is plotted on a logarithmic scale.

We noticed how these outliers aggressively modified the default
policy defined in AOSP to add a significant number of rules. For
example, for SDK 27, an AOSP policy contained in average 10,000
rules, but some vendors defined a policy containing more than
232,000 rules (i.e., over a 20x increment). A similar trend also
appears in the changes to the definition of domains, types, and
classes, as presented in Figure 6.

These results highlight how the problem of customization has
significantly affected SELinux policies and how vendors often
behave very differently from one another. If we consider that even
very restrictive policies with a very limited number of rules, such
as those provided by AOSP, have been found to contain problems,
it is difficult to foresee vendors’ policies that introduce a number
of rules 20 times greater than the average can be free from logical
misconfiguration or even from real vulnerabilities introduced by
a completely insecure rule.

Figure 7 presents a more fine-grained breakdown of the changes.
In this case, for each modified rule, we checked if it applies to new

18 19 21 22 23 24 25 26 27 28
SDK Level

300

1k

3k

10k

30k

100k

300k
Al

lo
wr

ul
e

AVG Vendor
AVG AOSP

Fig. 5. Distribution of SELinux rules present in the policy (in log scale)

18 19 21 22 23 24 25 26 27 28
SDK Level

500

1K

1.5K

2K

2.5K

3K

3.5K

Do
m

ai
n,

 T
yp

es
, a

nd
 C

la
ss

es

AVG Vendor
AVG AOSP

Fig. 6. Distribution of SELinux domains, types, and classes present in the policy

18 19 21 22 23 24 25 26 27 28
SDK Level

7

50

400

3k

20k

Al
lo

w
Ru

le
s C

us
to

m
iza

tio
ns

New Permissions
New Vendor rules
Rules on Vendor Domains

Rules on AOSP domain,
Vendor type/class
Sensitive Domains

Fig. 7. Evolution and Classification of Rule Changes

domains added by the vendor, if it interests AOSP domains, if it
is adding permissions to a previous rule, or if it is a modification
that interests sensitive domains. The graph shows that most of the
vendors’ changes consist of rules that involve new domains that are
not present in the original AOSP policy. These new rules are usually
introduced by the vendors to configure custom components properly.
We also observe a substantial number of changes to rules that
affect domains shared with AOSP, but which see the introduction
of classes and types that are not present in the basic policy. These
numbers exemplify the problem of customization by showing how
many changes the vendor makes to the initial policy configuration
so that new third-party components can interact correctly with the
entire system. But this also shows how intrusive vendor changes are,
and how, as noted above, this dangerous trend is continuing to grow.

A more important finding emphasized by Figure 7 is the number
of changes vendors made to the base policy, by extending the permis-
sions and privileges for default AOSP domains. In principle, these
rules only affect AOSP components that the vendor should not mod-
ify. However, if a vendor applies some customizations to services
running on these domains, some of these modifications might raise a
runtime SELinux violation since one new feature introduced by the
vendor violates a rule defined in the original policy. Furthermore, this

trend has seen a significant increase in versions from SDK 25 to 27.
For instance, in SDK 27, we found vendors introducing more than
130,000 permission changes to the corresponding AOSP core policy.

Depending on the attack model considered, some SELinux policy
changes can be more problematic than others. In particular, two
domains, isolated app, and untrusted app, play a particular role in
the security of the system, and therefore their basic policy included
in AOSP is very restrictive. The isolated app domain is mainly
used as an additional sandbox for the Chrome renderer process,
or to sandbox processes that should not have permissions of their
own. Adding rules to this context could widen the attack surface for
remote attacks, potentially allowing an easier sandbox escape. The
untrusted app domain is used instead for all third-party applications,
and therefore also for potential malware that might be inadvertently
installed by the user. Any change to this predefined policy could
widen the attack surface for local privilege escalation attacks.

Figure 7 shows that vendors modify these domains less often, but
the numbers are still not negligible (e.g., an average of 95 changes
to isolated and untrusted app were introduced in Android SDK 26).

For each domain, we now present significant dangerous changes
made by vendors and discuss their impact on the overall security.

Customization isolated app Domain. We identified a total of
58,776 changes to this context, 1,375 of which are unique. By
manually inspecting these modifications, we identified several
severe and dangerous cases. For instance, in SDK 19, we found
44 different ROMs that allowed an isolated app process to perform
read, write, and ioctl operations directly on kernel drivers. More
recently, some devices targeting SDK 23 and 25 changed a rule that
allows a process running on this domain to perform open, read, and
write operations on application data files. We noticed how this rule
is also violating a neverallow rule for this process since isolated
apps should never directly open application data files themselves.

Customization untrusted app Domain. Across the years, vendors
have made 95,577 changes to this context, 4,228 of which are unique.
Among these customizations, we found old systems (based on
Android 4.4) that allowed an untrusted app process to perform read
and ioctl operations directly on kernel drivers. On newer policies,
the risks have been reduced by removing the ioctl capability, while
still allowing the domain to read from kernel components. Another
interesting finding, affecting newer devices targeting SDK 27, is

related to a rule that allows a process running on this domain to read
files containing the device’s MAC address. Google is restricting
access to this information in many ways, including a neveral-
low rule that prevents this operation [39]. Despite this effort, we
still find vendors that nullify these defensive measures by allowing,
unintentionally, other applications to access this information.

VII. RELATED WORK

There are mainly two areas of works relevant to this paper: the
perils of Android customizations and SELinux policy analysis.

The Perils of Android Customizations. The problems related to
Android’s customizations have been analyzed in prior studies from
different points of view. Aafer et al. [7] have demonstrated how
vendors have introduced severe security issues within their systems
by modifying security components within the Android framework.
Their analysis mainly focused on the framework component, ana-
lyzing the various deltas between the XML security configurations
of the various ROMs, looking for inconsistencies. Dai et al. [40]
instead illustrate how the Android customizations on the framework
might be a direct cause of the patch gapping, showing how vendors
fail to roll out all of the security patches published by Google in a
reasonable time. On the same topic, Daniel et al. [41] suggest that
another reason updates are not provided in a reasonable time may be
due to the large number of entities involved in the supply chain that
have to cooperate for the patch to reach the device. Instead, Zhou
et al. [6] focus their analysis on vendors’ custom drivers, showing
how the customized drivers are often sources of security problems
and how this problem is not so widespread and common in the
drivers offered by the official Android platform. Tian et al. [42]
analyzed over 2,000 Android smartphone firmwares across 11
vendors to extract custom and hidden AT commands. To conclude,
Wu et al. [43] and Gamba et al. [44] analyzed the customization
problems analyzing the pre-installed apps on the device, showing
how vendors’ customizations introduce several issues for what
concerns the security of the system as well as the user privacy.

SELinux Policy Analysis. The analysis of SELinux is a problem
that has been addressed in many ways by previous work. Among
the first works, Reshetova et al. [45] present SELint, a tool that
helps OEMs overcome common challenges and avoid mistakes
when writing SELinux policies. The same authors then present
another tool, in [46], that can improve policy design and analysis.
However, the usage of this tool requires a real device, rooted (or
with an engineering build), and it is thus not possible to use it for
a large scale analysis. Another relevant work is EASEAndroid [47],
which presented an analytic platform for automatic SELinux policy
analysis and refinement. This refinement process is automated
using semi-supervised learning, and it was trained over millions of
SELinux denial logs from real-world devices. Another category of
work focuses on the static analysis of this component. Im et al. [48]
performed the first measurement on the evolution of SELinux
policies available in the official AOSP repository, proposing a
new metric to measure the complexity of a given policy. Last,
Hernandez et al. [49] proposed BigMac, a new policy analysis
framework that works on firmware images and extract attack paths
between processes and can help to identify dangerous rules.

Our work significantly differs and complements all these
previous ones, for both the type of analysis performed and the
components considered, as it is the first to discuss a longitudinal
analysis on OEM customizations, their compliance aspect, and
details about system binaries, libraries, SELinux policies, Android
init scripts, and user- and kernel-space hardening techniques.

VIII. CONCLUDING REMARKS

In this work, we have focused on the four main components that
are responsible for the security of the Android OS: SELinux con-
figurations, system binaries hardening, init scripts, and the Android
Linux kernel. However, over the years, due to changes introduced
by vendors, these same components have also been a source of
severe vulnerabilities. To address this issue, Google has introduced
a number of requirements (e.g., CDD) and many automated routines
to check for a subset of them (e.g., CTS and VTS). Google also
recently re-architectured the Android OS with Project Treble, in an
attempt to disentangle vendors’ customizations from AOSP.

This paper discusses the first longitudinal, large-scale analysis
on a dataset of 2,907 ROMs from 42 different vendors: our results
are worrisome. About 20% of ROMs in our dataset did not meet
at least one of the security requirements imposed by Google, and
among them, to our great surprise, 11 ROMs are branded by Google
itself. We observed 190/2,396 (∼8%), from 10 different vendors,
including Google, contain non-compliant kernels, while 443/1,533
(∼29%) violate the SELinux policies requirements. We also show
how vendors often configure over-privileged services, introduce
dangerous and over-permissive changes to SELinux policy, and do
not use compiler-level mitigations. Finally, our results show that
these problems did not improve over time and with new versions
of Android.

The first insight is that the current set of regulations and checks
is clearly insufficient. The same goes for Project Treble: while
the engineering effort is admirable, it is clear that its impact was
not enough to mitigate the aforementioned problems. The current
testing and verification procedure, which is fundamentally based on
trust since the tests are executed by the vendors themselves, is not ef-
fective at catching problems and it is very often violated. We believe
that the vast majority of vendors act in good faith, but some changes
suggest intentional attempts to circumvent, for practicality reasons,
Google’s safety nets (e.g., SELinux neverallow rules).

Looking forward, we believe more checks should be automated
and that the existing ones should be more accurate. An automatic
framework like the one we presented in this paper, which is already
able to identify CDD violations that are not detected by the existing
test suites, can be used as a basis for these automated analyses.

The second part of our paper shows that there are several areas of
customizations that, even if they do not violate any strict requirement,
are the root cause for severe security problems. While the CDD is
a great starting point, we believe it should be significantly extended
to prevent vendors from customizing their ROMs in ways that go
against many well-established security practices and principles.

In conclusion, we hope this paper inspires future works and
analysis in the important area of OEM customizations, and that
Google adopts a stronger stance on OEM customizations that favor
performance and ease of development rather than security.

~
~

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
constructive feedback. We would also like to thank Slasti Mormanti
and Betty Sebright for their support and insights.

This work was partially supported by the European Research
Council (ERC) under the European Unions Horizon 2020
research and innovation programme (grant agreement No 771844
BitCrumbs).

REFERENCES

[1] S. Cuthbertson, “Sharing what’s new in Android Q.” https:
//www.blog.google/products/android/android-q-io/, 2019.

[2] “Issue 2002: Samsung Android multiple interactionless RCEs and other remote
access issues in Qmage image codec built into Skia.” https://bugs.chromium.
org/p/project-zero/issues/detail?id=2002. Accessed December 22, 2020.

[3] “Android compatibility definition document.” https://source.android.com/com
patibility/cdd. Accessed December 22, 2020.

[4] “Vendor Test Suite (VTS) & Infrastructure.” https://source.android.com/com
patibility/vts. Accessed December 22, 2020.

[5] “Android ONE.” https://www.android.com/one/. Accessed December 22, 2020.
[6] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of

fragmentation: Security hazards in android device driver customizations,” in
2014 IEEE Symposium on Security and Privacy, pp. 409–423, 2014.

[7] Y. Aafer, X. Zhang, and W. Du, “Harvesting inconsistent security configurations
in custom android roms via differential analysis,” in 25th USENIX Security
Symposium (USENIX Security 16), pp. 1153–1168, 2016.

[8] N. Kralevich, “Honey, i shrunk the attack surface,” Black Hat, 2017.
[9] “Android Codenames, Tags, and Build Numbers.” https://source.android.com

/setup/start/build-numbers#source-code-tags-and-builds. Accessed December
22, 2020.

[10] “Android Security: Taming the Complex Ecosystem.” https://wisec19.fiu.ed
u/wp-content/uploads/wisec2019-keynote.pdf. Accessed December 22, 2020.

[11] “Trade Federation Overview.” https://source.android.com/devices/tech/test
infra/tradefed. Accessed December 22, 2020.

[12] “Verifying Boot - Rollback protection.” https://source.android.com/security/
verifiedboot/verified-boot. Accessed December 22, 2020.

[13] “Android 4.4.3 Patch Finally Closes Up An Ancient Vulnerability, Shuts Down
Several Serious Security Exploits.” https://www.androidpolice.com/2014/0
6/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-severa
l-serious-security-exploits/. Accessed December 22, 2020.

[14] “CVE-2018-9488.” https://nvd.nist.gov/vuln/detail/CVE-2018-9488. Accessed
December 22, 2020.

[15] “Android Init Language.” https://android.googlesource.com/platform/system
/core/+/master/init/README.md. Accessed December 22, 2020.

[16] “Practical Android Exploitation.” http://theroot.ninja/PAE.pdf. Accessed
December 22, 2020.

[17] “Linux Kernel Banner.” https://git.kernel.org/pub/scm/linux/kernel/git/torval
ds/linux.git/tree/init/version.c. Accessed December 22, 2020.

[18] “vmlinux-to-elf.” https://github.com/marin-m/vmlinux-to-elf. Accessed
December 22, 2020.

[19] “Factory images for nexus and pixel devices.” https://developers.google.co
m/android/images. Accessed December 22, 2020.

[20] “Firmware file.” https://firmwarefile.com/. Accessed December 22, 2020.
[21] “Stock rom.” https://www.stockrom.net/. Accessed December 22, 2020.
[22] “Mobile vendor market share worldwide.” https://gs.statcounter.com/ven

dor-market-share/mobile/worldwide/#monthly-201003-202007. Accessed
December 22, 2020.

[23] “Loadable Kernel Modules.” https://source.android.com/devices/architectur
e/kernel/loadable-kernel-modules. Accessed December 22, 2020.

[24] “Core Kernel Requirements.” https://source.android.com/devices/architectur
e/kernel/core-kernel-reqs. Accessed December 22, 2020.

[25] “SELinux for Android 8.0.” https://source.android.com/security/selinux/im
ages/SELinux Treble.pdf. Accessed December 22, 2020.

[26] “SELinuxNeverallowTestFrame.py.” https://android.googlesource.com/platf
orm/cts/+/refs/heads/master/tools/selinux/SELinuxNeverallowTestFrame.py.
Accessed December 22, 2020.

[27] “Hardening the media stack.” https://android-developers.googleblog.com/20
16/05/hardening-media-stack.html. Accessed December 22, 2020.

[28] “Control Flow Integrity.” https://source.android.com/devices/tech/debug/cfi.
Accessed December 22, 2020.

[29] “Experts Found a Unicorn in the Heart of Android.” https:
//blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/.
Accessed December 22, 2020.

[30] “Security Enhancements.” https://source.android.com/security/enhancements.
Accessed December 22, 2020.

[31] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of shadow
stacks and stack canaries,” in Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, pp. 555–566, 2015.

[32] “Add Test to Verify NX is Enabled.” https://android-review.googlesource.co
m/c/platform/cts/+/21776. Accessed December 22, 2020.

[33] “Tcpdump Public CVE List.” https://www.tcpdump.org/public-cve-list.txt.
Accessed December 22, 2020.

[34] “Tcpdump Common Vulnerabilities.” https://cve.mitre.org/cgi-bin/cvekey.c
gi?keyword=tcpdump. Accessed December 22, 2020.

[35] H. Meng, V. Thing, Y. Cheng, Z. Dai, and L. Zhang, “A survey of Android
exploits in the wild,” Computers & Security, vol. 76, pp. 71–91, 07 2018.

[36] “Android Vulnerabilities: vold asec.” https://androidvulnerabilities.org/vulne
rabilities/vold asec. Accessed December 22, 2020.

[37] “Root 4.4.X - Pie for Motorola devices.” https://forum.xda-developers.c
om/moto-x/orig-development/root-4-4-x-pie-motorola-devices-t2771623.
Accessed December 22, 2020.

[38] “OATmeal on the Universal Cereal Bus: Exploiting Android phones over
USB.” https://googleprojectzero.blogspot.com/2018/09/oatmeal-on-universa
l-cereal-bus.html. Accessed December 22, 2020.

[39] “Android 6.0 Changes - Access to Hardware Identifier.”
https://developer.android.com/about/versions/marshmallow/android-6.0
-changes.html#behavior-hardware-id. Accessed December 22, 2020.

[40] “BScout: Direct Whole Patch Presence Test for Java Executables,” in 29th
USENIX Security Symposium (USENIX Security 20), (Boston, MA), USENIX
Association, Aug. 2020.

[41] D. Thomas, A. Beresford, and A. Rice, “Security metrics for the android
ecosystem,” pp. 87–98, 10 2015.

[42] D. Tian, G. Hernandez, J. Choi, V. Frost, C. Ruales, K. Butler, P. Traynor,
H. Vijayakumar, L. Harrison, A. Rahmati, and M. Grace, “ATtention Spanned:
Comprehensive Vulnerability Analysis of AT Commands Within the Android
Ecosystem,” in 27th USENIX Security Symposium (USENIX Security 18),
(Baltimore, MD), pp. 351–366, USENIX Association, 2018.

[43] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor
customizations on android security,” pp. 623–634, 11 2013.

[44] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-Rodriguez,
“An analysis of pre-installed android software,” in 2020 IEEE Symposium on
Security and Privacy (SP), pp. 1039–1055, 2020.

[45] E. Reshetova, F. Bonazzi, and N. Asokan, “Selint: An seandroid policy analysis
tool,” pp. 47–58, 01 2017.

[46] E. Reshetova, F. Bonazzi, T. Nyman, R. Borgaonkar, and N. Asokan,
“Characterizing seandroid policies in the wild,” pp. 482–489, 01 2016.

[47] R. Wang, W. Enck, D. Reeves, X. Zhang, P. Ning, D. Xu, W. Zhou, and A. M.
Azab, “Easeandroid: Automatic policy analysis and refinement for security
enhanced android via large-scale semi-supervised learning,” in 24th USENIX
Security Symposium (USENIX Security 15), (Washington, D.C.), pp. 351–366,
USENIX Association, Aug. 2015.

[48] B. Im, A. Chen, and D. S. Wallach, “An historical analysis of the seandroid
policy evolution,” Proceedings of the 34th Annual Computer Security
Applications Conference, 2018.

[49] D. J. T. Grant Hernandez, A. S. Yadav, B. J. Williams, and K. R. Butler,
“Bigmac: Fine-grained policy analysis of android firmware,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020.

https://www.blog.google/products/android/android-q-io/
https://www.blog.google/products/android/android-q-io/
https://bugs.chromium.org/p/project-zero/issues/detail?id=2002
https://bugs.chromium.org/p/project-zero/issues/detail?id=2002
https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/vts
https://source.android.com/compatibility/vts
https://www.android.com/one/
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds
https://wisec19.fiu.edu/wp-content/uploads/wisec2019-keynote.pdf
https://wisec19.fiu.edu/wp-content/uploads/wisec2019-keynote.pdf
https://source.android.com/devices/tech/test_infra/tradefed
https://source.android.com/devices/tech/test_infra/tradefed
https://source.android.com/security/verifiedboot/verified-boot
https://source.android.com/security/verifiedboot/verified-boot
https://www.androidpolice.com/2014/06/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-several-serious-security-exploits/
https://www.androidpolice.com/2014/06/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-several-serious-security-exploits/
https://www.androidpolice.com/2014/06/04/android-4-4-3-patch-finally-closes-ancient-vulnerability-shuts-several-serious-security-exploits/
https://nvd.nist.gov/vuln/detail/CVE-2018-9488
https://android.googlesource.com/platform/system/core/+/master/init/README.md
https://android.googlesource.com/platform/system/core/+/master/init/README.md
http://theroot.ninja/PAE.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/init/version.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/init/version.c
https://github.com/marin-m/vmlinux-to-elf
https://developers.google.com/android/images
https://developers.google.com/android/images
https://firmwarefile.com/
https://www.stockrom.net/
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007
https://gs.statcounter.com/vendor-market-share/mobile/worldwide/#monthly-201003-202007
https://source.android.com/devices/architecture/kernel/loadable-kernel-modules
https://source.android.com/devices/architecture/kernel/loadable-kernel-modules
https://source.android.com/devices/architecture/kernel/core-kernel-reqs
https://source.android.com/devices/architecture/kernel/core-kernel-reqs
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://source.android.com/security/selinux/images/SELinux_Treble.pdf
https://android.googlesource.com/platform/cts/+/refs/heads/master/tools/selinux/SELinuxNeverallowTestFrame.py
https://android.googlesource.com/platform/cts/+/refs/heads/master/tools/selinux/SELinuxNeverallowTestFrame.py
https://android-developers.googleblog.com/2016/05/hardening-media-stack.html
https://android-developers.googleblog.com/2016/05/hardening-media-stack.html
https://source.android.com/devices/tech/debug/cfi
https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
https://blog.zimperium.com/experts-found-a-unicorn-in-the-heart-of-android/
https://source.android.com/security/enhancements
https://android-review.googlesource.com/c/platform/cts/+/21776
https://android-review.googlesource.com/c/platform/cts/+/21776
https://www.tcpdump.org/public-cve-list.txt
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=tcpdump
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=tcpdump
https://androidvulnerabilities.org/vulnerabilities/vold_asec
https://androidvulnerabilities.org/vulnerabilities/vold_asec
https://forum.xda-developers.com/moto-x/orig-development/root-4-4-x-pie-motorola-devices-t2771623
https://forum.xda-developers.com/moto-x/orig-development/root-4-4-x-pie-motorola-devices-t2771623
https://googleprojectzero.blogspot.com/2018/09/oatmeal-on-universal-cereal-bus.html
https://googleprojectzero.blogspot.com/2018/09/oatmeal-on-universal-cereal-bus.html
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id

APPENDIX

A. Compile-time Hardening
This section of the appendix is dedicated to a more detailed

description of mitigation techniques considered in Section VI-B.
For each technique we provide a short description and we explain
which artifacts we considered to detect if and ELF file implements
it or not. We report a final summary in Table V.

I) Stack Canaries. Stack canaries, introduced in Android 1.5, work
by placing a random integer (canary) in memory just before the
stack return pointer. In order to overwrite the return pointer (and thus
take control of the execution flow), stack-based buffer overflows
attacks must also overwrite the canary value. Before a function
returns, the stack canary integrity is checked using the function
__stack_chk_fail (or __intel_security_cookie
in an alternative implementation), and if it appears to be modified
due to an overwrite, the program exits immediately. Thus, we
checked for the presence of the aforementioned function among the
binary’s symbols. We highlight how the stack protector works in two
configurations. The first one protects the buffer only if it is greater
than a certain size (depending on the architecture), while the second
one (named “strong”) protects buffers even if they are one byte size.
We assumed, as safe assumption, that real world binaries have at least
one buffer that can be protected by this compiler defense mechanism.
Even though this assumption might sometimes fail, we believe that
the numbers of binaries without a buffer to protect is negligible and
it is not going to affect the overall results of our measurement.

II) No eXecute (NX). NX marks certain areas of the program
as not executable. NX can be implemented both via software or
hardware (almost all modern processors uses it). In our analysis,
we checked if the GNU_STACK segment of the binaries, which
tells the system whether the stack should be executable or not.

III) Position Independent Executables (PIE). The code of a PIE
binary can be placed into random locations in memory, and it
executes properly regardless of its absolute address. PIE works in
tandem with Address Space Layout Randomization (ASLR). ASLR
randomly arranges the address space positions of key data areas of a
process (e.g., the base of the executable, stack, heap, and libraries). If
the executable is position independent, the location of the executable
code within the process is also randomized, making it more difficult
for an attacker to predict target addresses. As of Android 4.0 (SDK
15), the kernel gained support for ASLR, but Android still lacked
userspace support. The Android 4.1 (SDK 16) release introduced
support for full ASLR by enabling heap randomization and adding
linker support for PIE. Android 5 (SDK 21) is the latest step
forwards, as non-PIE executable support was dropped, and all
processes now have full ASLR. The third graph of Figure 3 reflects
the history flow: the growth since its introduction (SDK 16), and a
second increase when the non-PIE executable support was dropped
in (SDK 21). PIE is the security enhancement with the greater
adoption because, after Android 5, the linker does not load non-
PIE executables. A PIE ELF file is of the type ET_DYN, and its
.dynamic section contains the DT_DEBUG tag.

IV) Full Relocation Read-Only (RELRO). A dynamically linked
ELF binary uses a look-up table called Global Offset Table (GOT)

to dynamically resolve functions located in shared libraries. The
dynamic linker defers function-call resolution to the point when the
function is called rather than at load time. This technique is known
as lazy binding, and it needs that the GOT lives in a predefined place
and is writable. Hence, if an attacker finds a bug allowing them to
write a few bytes (as many as the length of a valid address), they can
overwrite a GOT entry. If a GOT entry is properly overwritten, the
attacker can hijack a library call to their malicious code. However,
the immediate binding is a valid countermeasure: the linker can
resolve all the dynamically linked functions at the beginning of
execution and make the GOT read-only. This mitigation is known
as Full RELRO, and it appears in the SE of Android 4.1. If an ELF
implements the Full RELRO, it has the GNU_RELRO segment and
its .dynamic section contains the DT_BIND_NOW tag. The
GNU_RELRO segment indicates the memory region which should
be made read-only after relocation is done, while the .dynamic
section contains an array of tags. The DT_BIND_NOW tag in-
dicates the linker that all relocations must be processed before
returning control to the program, i.e., using immediate binding.

V) FORTIFY_SOURCE. This is a macro (available in both GCC
and Clang) that provides lightweight checks for detecting buffer
overflows in various dangerous functions, like memcpy. Some of
the checks can be performed at compile time while other checks
take place at run-time and result in a run-time error if the check
fails. FORTIFY_SOURCE works in two phases: first, it tries
to computes the number of bytes of the destination buffer used
in a dangerous function. If it succeed, it replaces the dangerous
functions with their secure _chk counterpart (e.g., memcpy →
__memcpy_chk) adding as new argument the size of the buffer.
If an attacker tries to copy more bytes, the _chk function detects
the overflow and the program’s execution is stopped. If the first
step fails, the compiler cannot harden a function (e.g., it might
fail with dynamic memory allocated buffers). For dynamically
linked executables, the libc contains the implementation of the
_chk functions. Therefore, we first checked whether the libc
supports FORTIFY_SOURCE, that is, the libc contains at
least one _chk function among its exported symbols. If yes, for
each binary, we check if it contains at least one _chk function
among its imported symbols.

VI) setuid/setgid. These are a special type of file permissions
that permit users to run specific executables with temporarily
elevated privileges, to perform a specific task.

B. Kernel Configuration Mappings

Table VI contains, for each of the configurations defined in
the CDD, the correspondent Kernel Symbol introduced while
enabling the specific configuration. We noticed how, some kernel
configurations might map to the same symbol, while other kernel
configurations, depending on the version of the kernel, might
change the symbol used. For these configurations, we rely on
regular expressions to identify valid symbols. For 3 configurations,
we were not able to identify any symbol for the mapping.

TABLE V
MITIGATION TECHNIQUES

SDK Version Enhancement Artifact

3 1.5 Stack Canaries __stack_chk_fail function symbol, or
__intel_security_cookie function symbol

9 2.3 No eXecute (NX) GNU_STACK segment RW-

16 4.1 Position Independent Executables (PIE) ELF type ET_DYN, and
.dynamic section with DT_DEBUG tag

Full Read-only Relocations (RELRO) GNU_RELRO segment, and
.dynamic section with DT_BIND_NOW tag

17 4.2 FORTIFY SOURCE *_chk function symbols, and
*_chk exported function in libc

18 4.3 No setuid/setgid programs setuid/setguid bit in file’s permission

TABLE VI
MAPPINGS KERNEL CONFIGURATION TO ELF SYMBOLS

Kernel Configuration Kernel Symbol
CONFIG SECURITY SELINUX Symbol contains selinux
CONFIG SECCOMP Symbol contains seccomp
CONFIG CC STACKPROTECTOR REGULAR __stack_chk_fail
CONFIG CC STACKPROTECTOR STRONG __stack_chk_guard
CONFIG DEBUG RODATA rodata_enabled, set_debug_rodata, __setup_set_debug_rodata
CONFIG STRICT KERNEL RWX mark_readonly
CONFIG HARDENED USERCOPY __check_heap_object, __check_object_size
CONFIG ARM64 SW TTBR0 PAN reserved_ttbr0
CONFIG RANDOMIZE BASE Symbol contains kaslr
CONFIG PAGE TABLE ISOLATION tlb_flush_mmu_tlbonly
CONFIG UNMAP KERNEL AT EL0 __initcall_map_entry_trampoline1
CONFIG HARDEN BRANCH PREDICTOR __nospectre_v2
CONFIG SHADOW CALL STACK init_shadow_call_stack
CONFIG SECURITY DMESG RESTRICT dmesg_restrict
CONFIG SECURITY KPTR RESTRICT kptr_restrict
CONFIG ARM64 PAN cpu_enable_pan
CONFIG CFI CLANG Symbol contains __cfi_*
CONFIG DEFAULT MMAP MIN ADDR No symbol mapping found, variable
CONFIG CPU SW DOMAIN PAN No symbol mapping, inline assembly
CONFIG LTO CLANG No symbol mapping found

	Introduction
	Life of a ROM
	What is in a ROM
	ROM Customization
	Compliance Checks and Requirements

	ROM Analysis Framework
	Architecture Overview
	Tag Identification
	Analysis of Binary Customization
	Analysis of SELinux Policies
	Analysis of Init Scripts
	Kernel Security Analysis

	Dataset Characterization
	Compliance
	Kernel Configurations Compliance
	SELinux Compliance
	Binary Compliance

	Additional Customizations
	New Functions in System Libraries
	Compile-time Hardening
	Android Init Script Customizations
	SELinux Customization

	Related Work
	Concluding Remarks
	References
	Compile-time Hardening
	Kernel Configuration Mappings

