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Nonparametric Estimation in Nonlinear Time-varying

Autoregressive Locally Stationary Processes with ARCH-errors

Abderrahim Bourhattas∗,1 and Naâmane Läıb1

1CY Cergy Paris Université, Laboratoire AGM, UMR 8088 du CNRS. F-95000 Cergy,

France.

Abstract. This paper investigates the asymptotic properties of the Kernel estimators for the con-

ditional mean and variance functions in a time-varying nonlinear autoregressive locally stationary

process with ARCH errors (tvNAR) of order d > 1. We establish the uniform almost sure consis-

tency for these estimators with rate under assumptions of local stationarity and local ergodicity.

Special attention is also paid to the Kernel density estimation of the tvNAR process. The results

are derived without assuming a specific type of mixing conditions or a particular physical depen-

dence measure on the data. Consequently, our results are applicable to a wide range of dependent

processes, including those satisfying strong mixing conditions.

Key words. Locally stationary processes, Nonparametric estimation, Ergodicity, Nonlinear het-

eroscedastic models, Uniform convergence rates.

Subject Classifications: 62G05, 62G07, 62G08, 62M10.

1 Introduction

Stationary time series are commonly used to construct models that accurately fit data and predict

random phenomena. The stationarity assumption plays an important role in time series analysis,

since it allows particularly to use the ergodic theorem, one of the main tools to derive the consistency

of estimators. Unfortunately, stationary time series models do not fully capture the complexities

of the real world. Many financial and economic time series exhibit nonstationary behavior, as

highlighted by Mikosch and Starica (2004).

Various nonstationarity concepts have been proposed in the past, with one notable approach being

local stationarity introduced by Dahlhaus (1996a,b, 1997). Initially, the author defined this concept

based on spectral representation and later extended it temporally. This extension, first introduced

in Subba Rao (2006) and Dahlhaus and Subba Rao (2006) emphasizes the local approximation of

a process by a stationary one near specific dates, while maintaining controlled errors.

Truquet (2019) generalized this notion to discrete state models (and Markov chains).

∗Corresponding author: abderrahim.bourhattas@cyu.fr
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With the help of the functional dependence measure, originally introduced by Wu (2005) for

Bernoulli shift processes, Dahlhaus et al. (2019) started building the foundation for a compre-

hensive framework designed to address nonlinear locally stationary processes.

Notice also that, Bardet and Doukhan (2017) have considered a class of time varying linear

AR(1) processes, with local stationarity and periodic features. They proposed a kernel based

non-parametric estimation of the time-varying coefficient and established its limiting law.

In addition, it’s worth noting the contributions of Bardet et al. (2020, 2022). The field has been

enriched by significant works like those by Dahlhaus et al. (1997), Nason et al. (2000)), Sakiyama

and Taniguchi (2004), Zhang and Wu (2015), Wu and Zhou (2011), among others. Additional

research focusing on bandwidth selection includes the works of Dahlhaus and Giraitis (1998) and

as well as Richter and Dahlhaus (2019).

Although locally stationary models have primarily been used within the parametric framework, it

is worth noting that Vogt (2012) and the work of Zhang and Wu (2015) have focused on the study

of nonparametric time series regression models. We will be particularly interested in Vogt (2012)’s

paper, where the author examined a general class of nonparametric time series regression models

that can be locally approximated by stationary processes.

This paper deals with the nonparametric estimation of a nonstationary version of the model :

Xi = m
(
Xi−1

)
+ U

(
Xi−1

)
εi, i = 1, . . . , n, (1.1)

where Xi−1 =
(
Xi−1, . . . , Xi−k, . . . , Xi−d

)
∈ Rd.

In the context of stationarity, several papers have been published in the past dealing with the

probabilistic properties and nonparametric estimation of the functions m and U . Among others,

Masry and Tjøstheim (1995) considered kernel estimates mn and U2
n, and demonstrated their strong

consistency with rates, as well as their asymptotic normality under a mixing condition. Hardle and

Tsybakov (1997) tackled the estimation of m and U2 using local polynomial regression methods,

under strong mixing condition assumption. Läıb (2005) established the uniform convergence rate

of the kernel estimators mn and U2
n and derived their asymptotic normality, within the framework

of stationarity and ergodicity conditions.

To provide a more structured context, our work concerns Vogt (2012)’s non-stationary time-varying

nonlinear autoregressive model (tvNAR) with ARCH errors of order d (d > 1) defined by

Xi,n = m
(
i/n,Xi−1,n

)
+ U

(
i/n,Xi−1,n

)
εi, i = 1, . . . , n, (1.2)

where Xi−1,n =
(
Xi−1,n, . . . , Xi−k,n, . . . , Xi−d,n

)
∈ Rd.

The functions m(u, x) and U(u, x) are R2-valued smooth functions of rescaled time u ∈]0, 1] and

x ∈ Rd. The real random variables εi’s are assumed to be i.i.d. with mean zero and variance one.

Vogt (2012) extensively investigated the probabilistic properties of the model (1.2), and developed

estimation theory for the nonparametric regression function defined by (1.3).

Yi,n = m
(
i/n, Xi,n

)
+ εi,n for i = 1, . . . , n (1.3)

with E
(
εi,n|Xi,n

)
= 0 almost surely (a.s.), where Yi,n and Xi,n represent random variables of
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dimension 1 and d, respectively. Specifically, he derived the uniform convergence rate for a Kernel

regression estimate of the function m and established its asymptotic normality under α-mixing

condition.

We consider the model (1.2), and define Fi,n := σ (Xl,n; l 6 i) as the array of σ-fields generated

by (Xl,n).

Thus, for any i ≥ 1, E(Xi,n|Fi−1,n) = m
(
i/n,Xi−1,n

)
, which can be interpreted as the predicted

value given the set of information Fi−1,n. Moreover, Var(Xi,n|Fi−1,n) = U2
(
i/n,Xi−1,n

)
measures

the risk associated with this prediction. This class of models includes many relevant examples

discussed in the literature.

We will stipulate that m(u, x) = m(0, x) and U(u, x) = U(0, x) for all u 6 0. This implies that

Xi,n = Xi(0) for all i 6 0, allowing us to consider only i > 0.

We investigate the asymptotic properties of the Kernel estimators for the conditional mean and

variance functions in model (1.2), as well as the Kernel density estimation.

More precisely, we establish uniform almost sure consistency with rate for the conditional mean

and conditional variance appearing in Model (1.2), under the assumptions of local stationarity and

local ergodicity. Additionally, we show the uniform convergence of the Kernel density estimate.

Here, local ergodicity refers to the property of ergodicity applying to the stationary approximation

processes.

Our paper extends the work of Läıb (2005) and Masry and Tjøstheim (1995) to the locally stationary

case. It also completes and extends Vogt (2012)’s work in a specific aspect. Without any mixing

assumption, we only use ergodicity to investigate the uniform a.s. convergence for both mean and

variance, rather than considering the uniform consistency in probability of the mean.

Additionally, we address the issue of the uniform convergence of the Kernel density estimate.

Our approach employs techniques involving martingale differences devices and projections onto

suitable σ-fields, as in Zhang and Wu (2015).

Note that despite this approach allowing us to achieve an optimal convergence rate for the condi-

tional mean and variance functions, it may not provide a convergence rate for the Kernel density

estimate (see, Remark 4.2).

The paper is organized as follows : Section 2 introduces the model, defines local stationarity, and

presents the notations, main hypotheses, and probabilistic properties of the model. In Section

3, we define the kernel estimators of the conditional mean and variance functions, and introduce

additional assumptions. Section 4 presents the main results of the study. Section 5 provides the

proofs of the main results. For brevity, some of the proofs are deferred to the appendix.

2 Locally stationary processes and properties of the

tvNAR-model

2.1 Definition of a Locally stationary process

This subsection provides a definition of a locally stationary process, primarily based on Dahlhaus

and Subba Rao (2006) and Vogt (2012).
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The functions m and U are identified a.s. on the grid of points i
n for i = 1, . . . , n, forming a dense

subset of the interval [0, 1], as the value of n tends to infinity. Therefore, m and U are identified a.s.

at all rescaled time points u ∈ [0, 1] since they are assumed to be continuous in the time direction.

This allows us to approximate the tvNAR-process defined in (1.2) by a stationary process in a

neighborhood of a fixed point i (or in rescaled time u).

First, let’s introduce the following definition : For a given u ∈]0, 1], the stochastic processXi(u) : i ∈ Z,

is referred to as a stationary process associated with the tvNAR-process at time point u if it satisfies

:

Xi(u) = m (u,Xi−1(u)) + U (u,Xi−1(u)) εi, i = 1, . . . , n, (2.1)

where the rescaled time argument is fixed at u and Xi−1(u) = (Xi−1(u), . . . , Xi−k(u), . . . , Xi−d(u)) ∈
Rd.
Comparing (1.2) with (2.1), it seems clear that if i

n is close to u, then Xi,n and Xi(u) should be

close and the proximity degree should depend both on the rescaling factor n and the deviation∣∣ i
n − u

∣∣ (see Dahlhaus and Subba Rao (2006)). This gives the next definition :

Definition 2.1. [Dahlhaus and Subba Rao (2006), Vogt (2012)] (Xi,n)i∈N? is locally stationary if

for each rescaled time point u ∈]0, 1] there exists an associated process (Xi(u)) such that :

(i) (Xi(u)) is strictly stationary and has a stationary density fXi(u),

(ii) it holds that

|Xi,n −Xi(u)| ≤
(∣∣ i
n
− u
∣∣+

1

n

)
Vi,n(u) a.s. (2.2)

where Vi,n(u) is a positive process such that

E [Vi,n(u)ρ] < C for some ρ > 0 and C <∞ independent of u, i and n.

This is the definition that will be used throughout this article.

2.2 Assumptions and properties of the tvNAR-model

This subsection mainly recalls the work of [Vogt (2012)] presenting the assumptions that are neces-

sary to establish the local stationarity of the tvNAR process, guarantee the existence of a stationary

solution of model (2.1), its density and that of the local stationary Xi,n, as well as the approximation

(2.2).

To facilitate this, we introduce some notations that will be used in the sequel.

We denote C1 the space of continuously differentiable functions. We define Ih := [Ch, 1 − Ch],

where h is the bandwith of estimation, C is a positive constant and can take different values from

one expression to another, and let S be a fixed compact subset of Rd. Additionally, Å denotes the

interior of a subset A of Rk. We will now list the conditions on m :

(M1) m is bounded : ∃Cm <∞, |m(., .)| 6 Cm.

(M2) m is lipschitz with respect to u : ∃Lm <∞, |m(u, x)−m(v, x)| 6 Lm|u− v| for all x ∈ Rd.
(M3) m is continuously differentiable with respect to x and

∃C <∞,∃δ < 1, sup
u∈[0,1],‖x‖>C

∣∣∣∂m(u,x)
∂xj

∣∣∣6 δ.
The function U satisfies the following conditions :
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(U1) U is bounded from above and from below : ∃cu > 0, ∃Cu <∞, cu 6 |U(., .)| 6 Cu.

(U2) U is lipschitz with respect to u : ∃Lu <∞, |U(u, x)− U(v, x)| 6 Lu|u− v| for all x ∈ Rd.
(U3) U is C1 with respect to x and ∃C <∞, sup

u∈[0,1],‖x‖>C

∣∣∣∂U(u,x)
∂xj

∣∣∣6 δ < 1.

The error term is required to satisfy :

(E1) The random variables (r.v.) εi have a common positive continuous density fε.

(E2) The density fε is bounded and lipschitz : ∃Lε <∞, |fε(x)− fε(y)| 6 Lε|x− y| for all x ∈ Rd.
The theorems below summarize the properties of the tvNAR model.

Theorem 2.2. [Vogt (2012), Theorems 3.1.-3.2.]. If the assumptions (M1)-(M3), (U1)-(U3)

and (E1) are satisfied, then :

(i) for each u ∈ R, the model (2.1) has a strictly stationary solution Xi(u) ;

(ii) the random variables Xi(u) have a density fXi(u) w.r.t. Lebesgue measure ;

(iii) the random variables Xi,n have a density fXi,n w.r.t. Lebesgue measure.

(iv)

|Xi,n −Xi(u)| ≤
(∣∣∣ i
n
− u
∣∣∣+

1

n

)
Vi,n(u) a.s. (2.3)

where Vi,n(u) is a positive process such that E [|Vi,n(u)|ρ] < C for some ρ > 0 and C < ∞
independent of u, i and n.

Theorem 2.3. [Vogt (2012), Theorem 3.3.]. Let f(u, x) := fXi(u) be the density of

Xi(u) = (Xi(u), Xi−1(u), ..., Xi−d+1(u)).

Then we have, under assumptions of Theorem 2.2 and condition (E2), that

|f(u, x)− f(v, x)| 6 Lx|u− v|p

for some constant 0 < p < 1 and Lx <∞ continuously depending on x.

3 Kernel estimation for the conditional mean and variance

In this section, we introduce kernel estimators of the conditional mean and the variance functions

of the model (1.2). For (u, x) ∈ [0, 1]×Rd, we define a kernel estimate for the function m as follows:

mn(u, x) =

n∑
i=d+1

Xi,nKh(u− i
n)Kh(x−Xi−1,n)

n∑
i=d+1

Kh(u− i
n)Kh(x−Xi−1,n)

=

n∑
i=d+1

Xi,nKh(u− i
n)
∏d
j=1Kh(xj −Xj

i−1,n)

n∑
i=d+1

Kh(u− i
n)
∏d
j=1Kh(xj −Xj

i−1,n)

=:
Nn(u, x)

Dn(u, x)
, (3.1)

where x = (x1, x2, . . . , xd), K denotes a one-dimensional kernel function and K a d-dimensional

one. We use the notation Kh(s) = K(s/h). For convenience, we work with a product kernel and

assume that the bandwidth h is the same in each direction. Our results can however be easily

modified to allow for non-product kernels and different bandwidths.
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Dividing both the numerator and the denominator by (n− d)hd+1, we can also write :

mn(u, x) =
((n− d)hd+1)−1Nn(u, x)

fn(u, x)

where fn(u, x) = 1
(n−d)hd+1

n∑
i=d+1

Kh(u− i
n)Kh(x−Xi−1,n) is the kernel estimator of the density of

Xi−1,n.

Notice that U2(x) = Var(Xi,n|Xi−1,n = x) = E[
(
Xi,n−m

(
i
n ,Xi−1,n

))2|Xi = x]. Therefore, knowing

mn, we can define the kernel estimator for the conditional variance U2(u, x) as follows:

U2
n(u, x) =

1

fn(u, x)

1

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)

[
Xi,n −mn

(
i
n ,Xi−1,n

)]2
(3.2)

3.1 Notations and Assumptions

We begin by introducing some notations that will be used in the sequel. Let (Ω,F , µ) be a σ-finite

measure space, where Ω denotes the underlying space, F the σ-algebra of measurable sets, and µ

is the measure on (Ω,F). The space of integrable functions on Ω with respect to µ is denoted as

L1.

We define the triangular array of sigma-algebras Fi,n = σ (X0,n, X1,n, ..., Xi,n).

We will denote f
Fi−1,n

Y the conditional density of Y given Fi−1,n. We denote EFi−1,n(Y ) or

E(Y |Fi−1,n) the conditional expectation of Y with respect to Fi−1,n. C0 (R) will be the space

of continuous functions that tend to zero at infinity, with the sup norm denoted by ‖·‖. S is a fixed

compact set of Rd on which the uniform convergence will be proved. Ih is the interval [Ch, 1−Ch]

for some constant C > 0. The indicator function of a set E will be noted IE .

In order to state our results, we need the following assumptions, inspired by Vogt (2012).

Assumption (P). Regarding the process :

(P1) The process (Xi,n) is locally stationary in the sense of Definition 2.1 and the stationary

approximation process Xi(u) is ergodic.

(P2) The process Vi,n controlling the lack of stationarity satisfies E(V ρ
i,n|Hi−1,n) 6 C <∞.

where ρ is the same as in Equation (2.2).

(P3) The density f(u, x) := fXi(u)(x) satisfies the following :

(i) f(u, x) is continuously differentiable w.r.t. u for each x ∈ Rd.

(ii) f(u, x) is continuously differentiable w.r.t. x for each u ∈ [0, 1].

(iii) f(u, x) satisfies inf
u∈[0,1], x∈S

f(u, x) = δ > 0.

(P4) m(u, x) is twice continuously differentiable w.r.t. x for each u ∈ [0, 1].

Assumption (CD) The conditional density of Xi,n is bounded, i.e. ∃f∗ ∈ R+, independent of i

and n such that, fXi,n(· |Fi−1,n) 6 f∗.

Assumption (K) Regrading the kernel :
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(K1) The kernel K is bounded by K,
∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du = κ2 < ∞,

and
∫
K2(u)du = κ2 <∞.

(K2) K has compact support, that is K(v) = 0 for all |v| > Ck, for some Ck <∞
and is Lipschitz : ∃LK <∞, |K(u)−K(v)| 6 LK |u− v| for all u, v ∈ R.
In order to obtain uniform convergence with rate, we need some supplementary assumptions :

Assumption (S1). ∃ s > 2, ∃CT <∞, E(|εi|s) 6 CT .

To guarantee the uniform convergence of the variance estimator, assumption (S1) should be

strengthened to :

Assumption (S2) ∃ s > 4, ∃Cv <∞, E(|εi|s) 6 Cv.
We will also need the additional assumptions, on U :

Assumption (S3) U(., .) is lipschitz of order γ > 1 , i.e. ∃Lu2 <∞,
|U(u, x)−U(v, x)| 6 Lu2|u− v|γ and |U(u, x)−U(u, y)| 6 Lu2|x− y|γ for all u, v ∈ [0, 1], x, y ∈ Rd.

And the classical conditions on the bandwidth :

Assumption(H) The bandwidth h satisfies : h→ 0 and nhd+1 →∞.

The expected rate of convergence is : Oa.s(an) with an =

(
lnn

nhd+1

)1/2

together with some extra

terms that are due to non stationarity.

Comments on the hypotheses. Conditions (P) and (K) are the same as those in Vogt (2012)

with the addition of the ergodicity of the stationary process Xi(u) and the condition (P2) which is

stronger than the definition of local stationarity. On the other hand, condition (P3)(iii) is needed

to provide a uniform lower bound for inf fn(u, x) over the set [0, 1]×S. This is essential for deriving

the uniform convergence of the regression estimator. Condition (S1) is necessary to deal with the

tail part after truncation for the mean and (S2) for the variance. Condition (S3) gives the last

term of the rate of convergence of the variance. The parameter γ is at least 1 thanks to assumptions

(U1), (U2) and (U3).

4 Main results

4.1 Uniform almost sure convergence of the density kernel estimator fn(u, x)

The uniform convergence of the kernel estimator fn(u, x) of the density f(u, x) = fXi(u)(x) of the

stationary approximation of Xi,n is a crucial requirement for all the results presented in this paper.

Below, we state and prove this result and give the proof in Appendix B.

Proposition 4.1. Under the assumptions of theorem 2.2, (P), (K), (CD) and (H), we have

sup
u∈Ih,x∈S

|fn(u, x)− f(u, x)| = oa.s.(1) (4.1)

Remark 4.2. A similar result of the statement (4.1) is obtained by Vogt (2012), in the context

of time-varying regression model and mixing assumption, by splitting the estimator fn(u, x) into a

variance part and a bias part. The bias is non random and its asymptotic behavior is obtained from

Taylor expansion of de density f(u, x) under some regularities conditions on f . In our case, the

bias is a random variable and the presence of the Kernel relatively to the scale parameter makes its
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treatment more complicated. In order to handle its asymptotic behavior, we split it into a sum of

three terms. First, we deal with the first two terms using the stationary approximation of Xi,n and

the properties of the Kernel. The third term, which is the most import part of this decomposition,

needs several approximations, along with the properties of the ergodicity (assumption (P1)).

Notice that, our results are obtained without any dependence condition. But they do not provide

convergence rate for the density estimation.

To estimate the convergence rate in (4.1), additional assumptions, such as the physical dependence

measure introduced by Wu (2005), or Läıb and Louani (2019)), become necessary.

4.2 Uniform convergence of the conditional mean estimator

The following theorem states the uniform almost sure convergence, with rate, of the estimator mn

for u ∈ Ih and x in a fixed compact set S of Rd.

Theorem 4.3. Under the assumptions of Theorem 2.2, and conditions (P),(CD),(K),(S1) and

(H), we have :

sup
u∈Ih, x∈S

|mn(u, x)−m(u, x)| = Oa.s.

(√
lnn

n hd+1
+

1

nr hd
+ h2

)
, (4.2)

with r = min(1, ρ) and ρ is as in Theorem 2.2.

4.3 Uniform convergence of the volatility estimator

The following theorem states the uniform convergence with rate of the estimator U2
n for u ∈ Ih and

x in a fixed compact set S of Rd.

Theorem 4.4. Under the assumptions of Theorem 2.2, and conditions (P),(CD),(K),(H),(S2)

and (S3), we have that :

sup
u∈Ih, x∈S

|U2
n(u, x)− U2(u, x)| = Oa.s.

(√
lnn

n hd+1

)
+Oa.s.

(
1

n2r h2d

)
+Oa.s.(h),

where γ is defined in (S3), r = min(1, ρ) and ρ is as in Theorem 2.2.

Remarks on the main results and discussion

Theorem 4.3 generalizes Theorem 4.2 of Vogt (2012), established for the locally stationary mixing

tvNAR regression model. We actually don’t use Assumption (E3) of Vogt (2012) which guarantees

the mixing property of the process. Yet this extension provides the same optimal convergence rate

as the one found in Vogt (2012), but for almost sure uniform convergence and using only local

ergodicity.

The locally stationary behavior of the model changes the asymptotic analysis of the bias component.

Specifically, it introduces an additional component of order 1/nrhd+1 in the expression of the

convergence rate given in (4.2). This component arises from the replacement of the variable Xi,n

by Xi(i/n) in the bias term, measuring the deviation from stationarity. The larger the value of

r, the smaller the deviation of Xi,n from its stationary approximation, and hence, the smaller the

additional non-stationarity bias.
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If we choose h = O
(
logn
n

) d
(d+1)(d+4)

, the convergence rate given in (4.2) becomes

Oa.s.

(√
lnn

n hd+1
+

1

nr hd

)
= a.s.

( lnn

n

) 2
d+4

+
(lnn)

− d2

(d+1)(d+4)

n
r− d2

(d+1)(d+4)

 .

Moreover, if r > d2+2d+2
d2+5d+4

, which includes the case when the underlying process is stationary (r = 1),

then the above rate reduces to Oa.s.(an) = Oa.s.

((
lnn

n

) 2
d+4

)
reaching the classical optimal rate

for nonparametric regression estimation (see Masry and Tjøstheim (1995), Corollary 3.1)

Theorem 4.4 generalizes Corollary 3.2 of Masry and Tjøstheim (1995), which was stated in the

context of a stationary and mixing case, and Theorem 2 of Läıb (2005), established in the framework

of stationarity and ergodicity. Similarly, we arrive at the same conclusion as above.

5 Proofs

5.1 Preliminary results

Before we prove our results, we start from the definition of the Kernel estimate in (3.1) and use

equation (1.2), to write

mn(u, x)−m(u, x) = fn(u, x)−1((n− d)hd+1)−1
n∑

i=d+1

Kh(u− i

n
)Kh(x−Xi−1,n) [Xi,n −m(u, x)]

= fn(u, x)−1((n− d)hd+1)−1
n∑

i=d+1

Kh(u− i

n
)Kh(x−Xi−1,n)

[
m(

i

n
,Xi−1,n)−m(u, x)

]

+ fn(u, x)−1((n− d)hd+1)−1
n∑

i=d+1

Kh(u− i

n
)Kh(x−Xi−1,n)U(

i

n
,Xi−1,n)εi

=: fn(u, x)−1 (Tn(u, x) + Vn(u, x)) (5.1)

with fn(u, x) =
1

(n− d)hd+1

n∑
i=d+1

Kh(u− i

n
)Kh(x−Xi−1,n)U(

i

n
,Xi−1,n)εi.

Now, in order to separate the bias from the variance part, we define

Tn(u, x) =: ((n−d)hd+1)−1
n∑

i=d+1

E
(
Kh(u− i

n
)Kh(x−Xi−1,n)

[
m(

i

n
,Xi−1,n)−m(u, x)

]
|Fi−2,n

)
and rewrite the term Tn as

Tn(u, x) = Tn(u, x) +
[
Tn(u, x)− Tn(u, x)

]
=: Bn(u, x) +Wn(u, x) (5.2)

Thus

mn(u, x)−m(u, x) = fn(u, x)−1 (Bn(u, x) +Wn(u, x) + Vn(u, x)) . (5.3)

We begin by studying the variance term Vn(u, x) +Wn(u, x) defined in (5.3) and in (5.2), through

the next proposition :

9



Proposition 5.1. Under the assumptions of Theorem 2.4, and conditions (P),(CD),(K),(S1)

and (H), we have :

sup
u∈[0,1], x∈S

|Vn(u, x) +Wn(u, x)| = O(an) = Oa.s.

(√
lnn

nhd+1

)
. (5.4)

Proof of Proposition 5.1. As |Vn +Wn| 6 |Vn|+ |Wn|, let’s start by the term Vn :

Vn(u, x) =
1

(n− d)hd+1

n∑
i=d+1

Kh(u− i

n
)Kh(x−Xi−1,n)U(

i

n
,Xi−1,n)εi =:

1

(n− d)hd+1

n∑
i=d+1

Zi,n

Observe that Zi,n is Fi−1,n-adapted and that since E (εi|Fi−1,n) = 0, we have that :

E (Zi,n|Fi−2,n) = E
(
Kh(u− i

n
)Kh(x−Xi−1,n)U(

i

n
,Xi−1,n)εi|Fi−2,n

)
= Kh(u− i

n
)E
(

Kh(x−Xi−1,n)U(
i

n
,Xi−1,n)εi|Fi−2,n

)
= Kh(u− i

n
)E
(

Kh(x−Xi−1,n)U(
i

n
,Xi−1,n)E (εi|Fi−1,n) |Fi−2,n

)
= 0.

This makes the Zi,n martingale differences with respect to the σ-algebras Fi−1,n.

In order to bound uniformly Vn on the compact set S, we can suppose S = {x ∈ Rd : ||x||∞ ≤ CS}.
To cover S, we consider a grid using regions (hypercubes) centered at points (uk, xk) of the form

Bn,k =
{

(u, x) ∈ Rd+1 : ||(u, x)− (uk, xk)||∞ ≤ anh
}

with an =
√

lnn
nhd+1 .

Selecting (uk, xk) ∈ Bn,k such that B̊n,i ∩ B̊n,j = ∅ for each i 6= j and Bn,k ⊂ S, one may say that

the set S can be covered by N closed hypercubes Bn,k, with N ≤
Cd+1
S

hd+1ad+1
n

. Therefore,

sup
(u,x)∈Bn

|Vn(u, x)| ≤ max
1≤k≤N

sup
(u,x)∈Bn,k

|Vn(u, x)|

≤ max
1≤k≤N

sup
(u, x)∈Bn,k

|Vn(u, x)− Vn(uk, xk)|+ max
1≤k≤N

|Vn(uk, xk)| . (5.5)

Assumption (K2) implies that for any v1, v2, we have

|v1 − v2| ≤ δ ≤ Ck =⇒ |K(v1)−K(v2)| ≤ δK?(v1),

where K?(v) = LKI||v||∞62Ck
for a kernel of dimension 1(see, Hansen (2008)) and K?(x) =

ΛKI{||x||∞62Ck} for the d+ 1-dimensional kernel, with ΛK = (d+ 1)K
d
LK .

Note that for any (u, x) ∈ Bn,k, we have
||(u, x)− (uk, xk)||

h
≤ an, we can choose δ = an ≤ Ck for

n large enough. It follows then, for (u, x) ∈ Bn,k and n sufficiently large, that∣∣∣∣∣∣Kh

(
u− i

n

) n∏
j=1

Kh

(
xj −Xj

i,n

)
−Kh

(
uk −

i

n

) n∏
j=1

Kh

(
xjk −X

j
i,n

)∣∣∣∣∣∣ ≤ anK∗h
(
uk −

i

n
, xk −Xi,n

)
.

This allows us to write : |Zi,n(u, x)− Zi,n(uk, xk)| 6 anK∗h
(
uk − i

n , xk −Xi,n

) ∣∣U( in ,Xi−1,n)εi
∣∣ .
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By replacing K(u)K(x) with K∗(u, x) in Vn, we can define

Ṽn(uk, xk) :=
1

(n− d)hd+1

n∑
i=d+1

K∗h(uk −
i

n
, xk −Xi−1,n)U(

i

n
,Xi−1,n)εi (5.6)

Thus,

sup
(u,x)∈Bn,k

|Vn(u, x)| ≤ sup
(u,x)∈Bn,k

[|Vn(u, x)− Vn(uk, xk)|+ |Vn(uk, xk)|]

≤ |Vn(uk, xk)|+ an|Ṽn(uk, xk)|

≤ |Vn(uk, xk)|+ |Ṽn(uk, xk)| since an ≤ 1 for n large enough. (5.7)

Consequently,

P
(

sup
(u,x)∈Bn

|Vn(u, x)| ≥ 2an

)
≤ N max

1≤k≤N
P (|Vn(uk, xk)| ≥ an) +N max

1≤k≤N
P
(
|Ṽn(uk, xk)| ≥ an

)
=: Q1,n +Q2,n. (5.8)

The two terms can be treated similarly. We focus our attention on the first one and denote by

Vn(u, x) =
1

(n− d)hd+1

n∑
i=d+1

Zi,n(u, x), (5.9)

where Zi,n(u, x) = Kh(u− i
n)Kh(x−Xi−1,n) U( in ,Xi−1,n)εi.

In the most general case, the εi are not bounded. We have to deal with the tail part by truncation.

Let’s consider a sequence tn diverging to ∞ as n→∞ and satisfying :

tnan = O(1) and
∑
n>1

t−sn <∞ and t1−sn = O(an). (5.10)

Now we can decompose εi as follows : εi = εiI{|εi|<tn} + εiI{|εi|>tn} =: ε−i + ε+i . Therefore,

Zi,n(u, x) = Z−i,n(u, x)+Z+
i,n(u, x), with Z±i,n(u, x) = Kh(u− i

n
)Kh(x−Xi−1,n)U(

i

n
,Xi−1,n)ε±i .

Next, we decompose Zi,n in three parts :

Zi,n(u, x) = Z+
i,n(u, x) +

[
Z−i,n(u, x)− E

(
Z−i,n(u, x)|Fi−2,n

)]
+ E

(
Z−i,n(u, x)|Fi−2,n

)
. (5.11)

Summing up for i = d+ 1, .., n and multiplying by 1
(n−d)hd+1 gives

Vn(u, x) = Vn,1(u, x) + Vn,2(u, x) + Vn,3(u, x). (5.12)

The next lemmas will deal with each of these three terms beginning by the first one.

Lemma 5.2. Under assumption (S1) and (5.10), we have :

ε+i = 0, and thus Vn,1 = 0 with probability 1 for sufficiently large n.

Proof. -

P(|εi| > tn) 6
E(|εi|s)
tsn

6
C

tsn
by Markov inequality.

11



∑
n>1

t−sn <∞ =⇒ |εi| 6 tn with probability 1 for sufficiently large n. The lemma follows. �

The following lemma concerns the third term.

Lemma 5.3. Under assumption (S1) and (5.10), we have :

Vn,3(u, x) = Oa.s.(an).

Proof. -

For the sake of simplicity, we will omit the arguments (uk, xk) below. Since we know that E (Zi,n|Fi−2,n) =

0 we can deduce that : E
(
Z−i,n|Fi−2,n

)
= −E

(
Z+
i,n|Fi−2,n

)
. Thus∣∣∣E(Z−i,n|Fi−2,n)∣∣∣ =

∣∣∣E(Z+
i,n|Fi−2,n

)∣∣∣ 6 E
(∣∣∣Z+

i,n

∣∣∣ |Fi−2,n) .
Using the boundedness of U , gives∣∣∣E(Z−i,n|Fi−2,n)∣∣∣ 6 CKh(u− i

n
)E
(
Kh(x−Xi−1,n)

∣∣ε+i ∣∣ |Fi−2,n)
6 CKh(u− i

n
)E
(
E
(
Kh(x−Xi−1,n)

∣∣ε+i ∣∣ |Fi−1,n) |Fi−2,n)
6 CKh(u− i

n
)E
(
Kh(x−Xi−1,n)E

(∣∣ε+i ∣∣ |Fi−1,n) |Fi−2,n)
6 CKh(u− i

n
)E
(
Kh(x−Xi−1,n)E

(∣∣ε+i ∣∣ |) |Fi−2,n) .
Using assumptions (S1) and (CV) to obtain

∣∣∣E(Z−i,n|Fi−2,n)∣∣∣ 6 CKh(u− i

n
)E

(
Kh(x−Xi−1,n)× E

(∣∣ε+i ∣∣s
ts−1n

)
|Fi−2,n

)

6
C

ts−1n
Kh(u− i

n
)E (Kh(x−Xi−1,n)|Fi−2,n)

6
C

ts−1n
Kh(u− i

n
)

∫
Rd

Kh(x− t)|fFi−2,n

Xi−1,n
(t)dt

6
C

ts−1n
Kh(u− i

n
)hd
∫
Rd

K(y)|fFi−2,n

Xi−1,n
(x− hy)dy 6 C

hd

ts−1n
Kh(u− i

n
)

Next we obtain :

Vn,3(u, x) = 1
(n−d)hd+1

n∑
i=d+1

∣∣∣E(Z−i,n(u, x)|Fi−2,n
)∣∣∣ 6 1

(n− d)hd+1

n∑
i=d+1

C
hd

ts−1n
Kh(u− i

n
).

With the help of lemma 6.1, we then get : |Vn,3(u, x)| 6 C

ts−1n
= O(an). �

We go back to the variance term Vn. To summarize, we have :

Vn,1 = 0 with probability one for n large enough and thus Vn = Vn,2 + Vn,3 for n large enough.

On the other hand, we have Vn,3 = Oa.s.(an) and we can write for some α > 0 and sufficiently large

n, that, with probability one, we have

|Vn(u, x)| 6 |Vn,2(u, x)|+ |Vn,3(u, x)| 6 |Vn,2(u, x)|+ αan.

12



Consequently, P (|Vn(u, x)| > 2αan) 6 P (|Vn,2(u, x)| > αan) .

Thus, we can replace Vn(uk, xk) by Vn,2(uk, xk) in the expression of Q1,n.

Now, recall that Vn,2(uk, xk) := 1
(n−d)hd+1

n∑
i=d+1

Mi,n whereMi,n = Z−i,n(uk, xk)−E
(
Z−i,n(uk, xk)|Fi−1,n

)
,

and Q1,n = N max1≤k≤N P (|Vn(uk, xk)| ≥ an).

We will state and prove the next lemma :

Lemma 5.4. Under the assumptions of Theorem 2.4, conditions (P), (K1)-(K2), (H1), then,

we have for a fixed compact set S ⊂ Rd, that∑
n>d+1

Q1,n <∞. (5.13)

Proof. -

Recall that since |ε−i | 6 tn, U and K are bounded, we have |Z−i,n| 6 Ctn and also |Mi,n| 6 Ctn. In

order to apply the Freedman (1975) inequality we need to give an upper bound for the conditional

variance of Mi,n with the help of assumption (CV). We will omit the arguments(uk, xk) and denote

Z−i,n = E
(
Z−i,n(uk, xk)|Fi−2,n

)
. We can thus write

vi = E
(
M2
i,n|Fi−2,n

)
= E

((
Z−i,n − Z

−
i,n

)2
|Fi−2,n

)
= E

(
(Z−i,n)2|Fi−2,n

)
−
(
Z−i,n

)2
6 E

(
(Z−i,n)2|Fi−2,n

)
6 K2

h(u− i

n
)E

(
K2

h(xk −Xi−1,n)

(
U(

i

n
,Xi−1,n)εi

)2

|Fi−2,n

)

6 K2
h(u− i

n
)E

(
E

(
K2

h(xk −Xi−1,n)

(
U(

i

n
,Xi−1,n)εi

)2

|Fi−1,n

)
|Fi−2,n

)

6 C2
UK

2
h(u− i

n
)E
(
K2

h(xk −Xi−1,n)|Fi−2,n
)
6 C2

UK
2
h(u− i

n
)

∫
Rd

K2
h(xk − t)f

Fi−2,n

Xi−1,n
(t)dt.

After the usual change of variable : y =
x− t
h

, we get

vi 6 C
2
UK

2
h(u− i

n
)hd
∫
Rd

K2(y)f
Fi−2,n

Xi−1,n
(xk − hy)dy 6 C2

Uf
∗K2

h(u− i

n
)hd.

Summing for i = d+ 1, ..., n leads to
n∑

i=d+1

vi =
n∑

i=d+1

E
(
M2
i,n|Fi−2,n

)
6 C2

Uf
∗ hd

n∑
i=d+1

K2
h(u− i

n
)

We then apply Lemma 6.2 to get
n∑

i=d+1

E
(

(M−i,n)2|Fi−2,n
)
6 CUf

∗ (n− d)hd+1

(
κ2 +O

(
1

nh2

))
6 C (n− d)hd+1

for some constant C > 0.

13



We are now ready to apply Freedman (1975) inequality to the sequences S−n,k =
∑n

i=d+1 Z
−
i,n(uk, xk)

.

P
(
|Vn,2(uk, xk)| > αan

)
= P(|S−n,k| > (n− d)hd+1αan)

6 d exp

[
− (n− d)2α2a2n h

2(d+1)

2C(n− d)hd+1 + 2
3Ctn(n− d)αanhd+1

]

6 d exp

[
− (n− d)α2a2n h

2(d+1)

2Chd+1 + 2
3 tnαanh

d+1

]

Knowing the value of an, the assumption (H1) and tnan = O(1) allow us to write

P(|Vn,2(uk, xk)| > αan) 6 d exp

[
−(n− d)α2a2n h

2(d+1)

Cαhd+1

]

taking α large enough leads to :

P(|Vn,2(uk, xk)| > αan) 6 d exp [−Cα lnn] = dn−Cα.

Back to term Q1,n. Observe that

Q1,n = N max
16k6N

P(|Vn,2(uk, xk)| ≥ αan) 6 Ndn−Cα

As N =
(
CS
anh

)d+1
, a choice of α sufficiently large leads to a general term of a convergent series.

This ends the proof of lemma 5.4. �

The same techniques give the same result for Q1,n and as we have

P
(

sup
(u,x)∈Bn

|Vn(u, x)| ≥ 2an

)
6 Q1,n +Q2,n (5.14)

we can conclude, thanks to the Borel-Cantelli lemma that

sup
(u,x)∈Bn

|Vn(u, x)| = Op.s.(an) (5.15)

To deal withWn(u, x), recall that if ωi,n(u, x) := Kh

(
u− i

n

)
Kh(x−Xi−1,n)

[
m

(
i

n
,Xi−1,n

)
−m(u, x)

]
.

Then Tn(u, x) =
1

(n− d)hd+1

n∑
i=d+1

ωi,n(u, x).

Now, thanks to the assumptions (M1)-(M3) on m and (K) on the kernel K, we observe that

ωi,n(u, x) is bounded, has compact support and is Lω-lipschitz with : Lω = (d+1)LKCm+K
d+1

Lm.

We can then write :

Wn(u, x) =
1

(n− d)hd+1

n∑
i=d+1

Yi,n with Yi,n = ωi,n(u, x)− E
[
ωi,n(u, x)

∣∣∣Fi−2,n].
The terms Yi,n are triangular arrays of bounded martingale differences with respect to the sequences

of triangular array σ-fields (Fi−1,n)i≥2.
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Proceeding as for the term Vn(u, x), and without the need for truncation, one may write:

sup
u∈Ih,x∈S

|Wn(u, x)| = O

(√
lnn

n hd+1

)
.

This ends the proof of Proposition 5.1.

We turn now to the study of the bias term Bn(u, x) defined in (5.2)-(5.3). The asymptotic behavior

of Bn(u, x) is the subjet of the following Lemma.

Lemma 5.5. Define Ih = [C1h, 1− C1h], r = min(ρ, 1) and consider a fixed compact subset S.

Then, under the assumptions of Theorem 2.4, and conditions (P),(CD),(K),(S1) and (H), we

have :

sup
u∈Ih,x∈S

|Bn(u, x)| = Oa.s.

(
1

nrhd
+ h2

)
.

Proof. -

We will start by using the same arguments as (Vogt (2012)).

Recall that : Bn = 1
(n−d)hd+1

∑n
i=d+1

{
E
[
ωi,n(u, x)

∣∣∣Fi−2,n]} .
As in Vogt’s proof of part (iii) of Theorem 4.2 Vogt (2012), we consider the Lipschitz continuous

function K̃ defined on R with support [−qC1, qC1] for some constant q > 1, such that K̃(x) = 1 for

all x ∈ [−C1, C1]. Let Ih = [C1h, 1 − C1h]. We note K̃ the d-dimensional product kernel derived

from K̃.

In order to give an upper bound of |Bn,2(u, x)|, we will use the following decomposition

Bn(u, x) = R1(u, x) +R2(u, x) +R3(u, x) +R4(u, x),

where R`(u, x) =
1

(n− d)hd+1

n∑
i=d+1

Kh(u− i/n)EFi−,n {q`(u, x)} with

q1(u, x) = K̃h(x−Xi−1,n)

[
Kh(x−Xi−1,n) − Kh

(
x−Xi−1

(
i− 1

n

))]
×
[
m

(
i− 1

n
, Xi−1,n

)
−m(u, x)

]

q2(u, x) = K̃h(x−Xi−1,n)Kh

(
x−Xi−1

(
i− 1

n

))
×
[
m

(
i− 1

n
,Xi−1,n

)
−m

(
i− 1

n
,Xi−1

(
i− 1

n

))]

q3(u, x) =

[
K̃h(x−Xi−1,n) − K̃h

(
x−Xi−1

(
i− 1

n

))]
× Kh

(
x−Xi−1

(
i− 1

n

))[
m

(
i− 1

n
,Xi−1

(
i− 1

n

))
−m(u, x)

]

q4(u, x) = Kh

(
x−Xi−1

(
i− 1

n

))[
m

(
i− 1

n
,Xi−1

(
i− 1

n

))
−m(u, x)

]
.
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Following the proof of part (iii) of Vogt’s Theorem 3 (which used the approximation of Xi,n by

the stationary process Xi(i/n), and the fact that K is a bounded Lipchtiz function), we get, with

r = min(1, ρ), that∣∣∣Kh(x−Xi−1,n) − Kh

(
x−Xi−1

(
i− 1

n

)) ∣∣∣6 C∣∣∣Kh(x−Xi−1,n) −Kh

(
x−Xi−1

(
i− 1

n

)) ∣∣∣r

6 CLrK

∥∥∥∥∥Xi−1,n −Xi−1
(
i−1
n

)
h

∥∥∥∥∥
r

6 CLrK

∣∣∣ 1

nh
Vi,n

∣∣∣r
On the other hand, the factor : K̃h

(
x−Xi−1

(
i−1
n

)) [
m
(
i−1
n ,Xi−1

(
i−1
n

))
−m(u, x)

]
can be bounded

by Ch. Thus, after applying the conditional expectation, an upper bound for R1 may be obtained:

sup
u∈Ih, x∈S

|R1(u, x)| 6 1

(n− d)hd+1
(Ch)

n∑
i=d+1

(
C

nh

)r
6

C

nrhd+r
for some 0 < C <∞.

To deal with the term q2, observe that it is is non equal to zero only if

x−Xi−1,n
h

∈ [−qC1, qC1]
d =⇒ Xi−1,n ∈ [x− qC1h, x+ qC1h]

and
x−Xi−1

(
i−1
n

)
h

∈ [−C1, C1]
d =⇒ Xi−1

(
i− 1

n

)
∈ [x− C1h, x+ C1h].

Using the fact thatm is continuous, we can establish that the factor
[
m
(
i−1
n ,Xi−1,n

)
−m

(
i−1
n ,Xi−1

(
i−1
n

))]
is bounded. This allows us to write :∣∣∣m ( i−1n ,Xi−1,n

)
−m

(
i−1
n ,Xi−1

(
i−1
n

))
| 6 C|m

(
i−1
n ,Xi−1,n

)
−m

(
i−1
n ,Xi−1

(
i−1
n

)) ∣∣∣r.
Now using the fact that m is lipschitz, we get :∣∣∣m ( i−1n ,Xi−1,n

)
−m

(
i−1
n ,Xi−1

(
i−1
n

)) ∣∣∣6 C ∥∥Xi−1,n −Xi−1
(
i−1
n

)∥∥r 6 C∣∣∣ 1nVi,n∣∣∣r.
Thus, we can state that :

sup
u∈Ih, x∈S

|R2(u, x)| ≤ C

nrhd
.

Using analogous arguments as for q1(u, x), we can further show that

sup
u,x
|R3(u, x)| 6 C

nrhd+r
.

Finally, applying Lemmas B1 and B2 and exploiting the smoothness conditions on m and f , we

obtain that

R4(u, x) = h2
κ2
2

d∑
i=0

[
2∂im(u, x)∂if(u, x) + ∂2iim(u, x)f(u, x)

]
+O(h2)

uniformly in u and x. This ends the proof of Lemma (5.5). �
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5.2 Proof of Theorem 4.3

Using assumption (P2)(iii) together with Proposition 4.1, and the fact that

1

sup
u∈Ih,x∈S

(f̂n(u, x))−1
= inf

u∈Ih,x∈S
|f̂n(u, x)| ≥ inf

u∈Ih,x∈S
f(u, x)− sup

u∈Ih,x∈S
|f̂n(u, x)− f(u, x)|

we can write sup
u∈Ih,x∈S

(f̂n(u, x))−1 6
1

δ − oa.s.(1)
= Oa.s.(1).

Next, adding the result of Proposition 5.1 to the result of lemma (5.5) ends the proof of Theorem

4.3.

5.3 Proof of Theorem 4.4

Write:

U2
n(u, x)− U2(u, x) (5.16)

=
[
U2
n(u, x)− U2

(
i
n ,Xi−1,n

) ]
+
[
U2
(
i
n ,Xi−1,n

)
− U2(u, x)

]
=: Ñn(u,x)

Dn(u,x)

where U2
n(u, x) is defined in (3.2) and Dn(u, x) = fn(u, x). It follows that

Ñn(u, x) = fn(u, x)
(
U2
n(u, x)− U2(u, x)

)
.

After replacing Xi,n by m
(
i
n ,Xi−1,n

)
+ U

(
i
n ,Xi−1,n

)
εi, we can rewrite Ñn(u, x) as the sum of 4

terms as follows

Ñn(u, x) =
1

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)

[
m
(
i
n ,Xi−1,n

)
−mn

(
i
n ,Xi−1,n

)]2
+

2

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)

[
m
(
i
n ,Xi−1,n

)
−mn

(
i
n ,Xi−1,n

)]
U
(
i
n ,Xi−1,n

)
εi

+
1

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)U2

(
i
n ,Xi−1,n

) (
ε2i − 1

)
+

1

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)

[
U2
(
i
n ,Xi−1,n

)
− U2(u, x)

]
=: A1n +A2n +A3n +A4n.

We need to evaluate the asymptotic behavior of each term in the last equality.

• Study of the first term. Observe that

|A1n| 6
[

sup
u∈Ih,x∈S

|m
(
u, x

)
−mn(u, x)|

]2 1

(n− d)hd+1

∣∣∣ n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)

∣∣∣
6
[

sup
u∈Ih,x∈S

|m
(
u, x

)
−mn(u, x)|

]2|fn(u, x)|.

Now, with the help of Theorem 4.1, we can conclude that:
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A1n = Oa.s.

((√
lnn

n hd+1 + 1
nr hd

+ h2
)2)
|fn(u, x)|.

• Study of the second term defined by

A2n =
2

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)

[
m
(
i
n ,Xi−1,n

)
−mn

(
i
n ,Xi−1,n

)]
U
(
i
n ,Xi−1,n

)
εi.

We have

|A2n| 6 2 sup
u∈Ih,x∈S

|m(u, x)−mn(u, x)| × |Vn|, where

Vn(u, x) =
1

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)U

(
i
n ,Xi−1,n

)
εi.

Making use of Theorem 4.1. and Lemma 5.1, we can conclude that :

A2n = Oa.s.

(√
lnn

n hd+1

)
×Oa.s.

(√
lnn

n hd+1 + 1
nr hd

+ h2
)

• Study of the third term :

A3n =
1

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)U2

(
i
n ,Xi−1,n

) (
ε2i − 1

)
.

With the help of the additionnal assumption (S2) and the fact that this term is a sum of martingale

differences, we can proceed in the same way as in Lemma 5.1, and get :

A3n = Oa.s.

(√
lnn

n hd+1

)
• Study of the fourth term :

A4n =
1

(n− d)hd+1

n∑
i=d+1

Kh

(
u− i−1

n

)
Kh(x−Xi−1,n)

[
U2
(
i
n , Xi−1,n

)
− U2(u, x)

]
.

Assumption (S3), combined with the compact support of K, implies

A4n = Oa.s.(h
γ)|fn(u, x)|.

The assumption inf
u∈[0,1], x∈S

f(u, x) = δ > 0 and Proposition 4.1 guarantee that sup
u∈Ih,x∈S

(fn(u, x))−1 =

Oa.s(1), which completes the proof. �.
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6 Annex A

In order to prove Proposition 4.1 as well as Theorem 4.3 and Theorem 4.4, we need the 2 following

auxiliary Lemmas :

Lemma 6.1. Suppose the Kernel K satisfies (K1)-(K2) and let Ih = [Ckh, 1− Ckh]. Then, we

have for k = 0, 1, 2,

sup
u∈Ih

∣∣∣∣∣ 1

nh

n∑
i=1

Kh

(
u− i

n

)(
u− i/n

h

)k
−
∫ 1

0

1

h
Kh(u− v)

(
u− v
h

)k
dv

∣∣∣∣∣ = O

(
1

nh2

)
.

Lemma 6.2. Suppose the Kernel K satisfies (K1)-(K2) and let g : [0, 1]×Rd → R, (u, x) 7→ g(u, x)

be continuous differentiable w.r.t. u. Then, we have for a fixed compact set S ⊂ Rd,

sup
u∈Ih,x∈S

∣∣∣∣∣ 1

nh

n∑
i=1

Kh

(
u− i

n

)
g

(
i

n
, x

)
− g(u, x)

∣∣∣∣∣ = O

(
1

nh2

)
+ o(h).

These lemmas are specially needed to prove the last part of Theorem 4.3 and to prove the consistency

of the kernel estimator of the density (see annex B).

The proofs of these lemmas are straightforward using integral approximation by Riemann sums.

7 Annex B (Proof of Proposition 4.1)

7.1 A lemma

Before proving theorem 4.1, we begin by introducing a useful lemma and give its proof.

Lemma 7.1. Under assumptions (P), (K), (CD) and (H), we have :

E (Kh(x−Xi,n)|Fi−1,n) = hdf
Fi−1,n

Xi(
i
n
)

(x) +Oa.s.(h
d+2 +

1

nrhr
) (7.1)

E
(
K2
h(x−Xi,n)|Fi−1,n

)
= κ2h

df
Fi−1,n

Xi(
i
n
)

(x) +Oa.s.(h
d+2 +

1

nrhr
) (7.2)

where r = min(1, ρ), and ρ is given in Definition 2.1.

Proof. As in Vogt’s proof of part (iii) of Theorem 4.2 Vogt (2012), we consider the Lipschitz

continuous function K̃ defined on R with support [−qCk, qCk] for some constant q > 1, such that

K̃(x) = 1 for all x ∈ [−Ck, Ck]. We note K̃ the d-dimensional product kernel derived from K̃.

We can thus decompose Kh(x−Xi,n) as the sum of 3 terms Kh(x−Xi,n) = b1 + b2 + b3 with
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b1 = K̃h(x−Xi,n)
[
Kh(x−Xi,n) −Kh

(
x−Xi

(
i
n

))]
b2 =

[
K̃h(x−Xi,n) − K̃h

(
x−Xi

(
i
n

))]
Kh

(
x−Xi

(
i
n

))
b3 = Kh

(
x−Xi

(
i
n

))
Using the approximation of Xi,n by the stationary process Xi(i/n), and the fact that K is a bounded

Lipschitz function), we get, with r = min(1, ρ), that∣∣∣Kh(x−Xi,n) − Kh

(
x−Xi

(
i

n

)) ∣∣∣6 C∣∣∣Kh(x−Xi,n) −Kh

(
x−Xi

(
i

n

)) ∣∣∣r

6 C

∥∥∥∥∥Xi,n −Xi

(
i
n

)
h

∥∥∥∥∥
r

6 C
∣∣∣ 1

nh
Vi,n

∣∣∣r
On the other hand, the factor : K̃h

(
x−Xi

(
i
n

))
is bounded. Thus |b1| 6 C

∣∣∣ 1
nhVi,n

∣∣∣r.
We obtain in the same way that |b2| 6 C

∣∣∣ 1
nhVi,n

∣∣∣r.
Now for b3, thanks to the properties of the kernel, and using the classical change of variables, we

have

E (b3|Hi−1,n) = E
(

Kh(x−Xi

(
i

n

)
)|Hi−1,n

)
=

∫
Rd

Kh(x− t)fHi−1,n

Xi(
i
n
)

(t)dt

= hd
∫
Rd

K(z)f
Hi−1,n

Xi(
i
n
)

(x− hz)dy = hdf
Hi−1,n

Xi(
i
n
)

(x) +Oa.s.(h
d+1)

Since Fi,n ⊂ Hi,n,the tower rule and the addition of the 3 terms gives the first result, and the same

technique applied to K2 concludes the proof of the lemma. �

7.2 Proof of theorem 4.1

In order to decompose f̂n(u, x) − f(u, x) into a sum of martingale differences and a bias term we

introduce :

fn(u, x) =
1

(n− d+ 1)hd+1

n∑
i=d

EHi−1,n

{
Kh

(
u− i

n

)
Kh(x−Xi,n)

}
This allows to write

f̂n(u, x)− f(u, x) = f̂n(u, x)− fn(u, x) +
[
fn(u, x)− f(u, x)

]
=: An +Bn. Thus

An =
1

(n− d+ 1)hd+1

n∑
i=d

Kh

(
u− i

n

)[
Kh(x−Xi,n)− EHi−1,n{Kh(x−Xi,n)}

]
Bn =

1

(n− d+ 1)hd+1

n∑
i=d

Kh

(
u− i

n

)
EHi−1,n{Kh(x−Xi,n)}

The term An can be handled in the same way as Vn in theorem 4.2, but without the need for

truncation.

Thus we obtain An = Oa.s.(an) = Oa.s.

(√
lnn

n hd+1

)
= oa.s(1).
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The term Bn, on the other hand, can be decomposed, thanks to lemma 7.1, as

Bn = Bn,1 +Bn,2 +Bn,3 − f(u, x)

with

Bn,i =
1

(n− d+ 1)hd+1

n∑
i=d

Kh

(
u− i

n

)
E(bi|Hi−1,n)

where the bi are the same as in the preceding lemma.

Thanks to the proof of lemma 7.1, we can conclude that

Bn =
1

(n− d+ 1)h

n∑
i=d

Kh

(
u− i

n

)[
f
Hi−1,n

Xi(
i
n
)

(x) +Oa.s.(h
2 +

1

nrhd+r
)

]

With regard to theorem 2.3 and the compact support of K, we can say that

Bn =
1

(n− d+ 1)h

n∑
i=d

Kh

(
u− i

n

)[
f
Hi−1,n

Xi(u)
(x) +Oa.s.(h

p + h2 +
1

nrhd+r
)

]

The stationarity of Xi(u) allows to denote its density fHi−1,n(u, x) = f
Hi−1,n

Xi(u)
(x) = f

Hi−1,n

X0(u)
(x)

The first part of the sum defining Bn can be written

1

(n− d+ 1)h

n∑
i=d

Kh

(
u− i

n

)
fHi−1,n(u, x)

=
1

(n− d+ 1)h

n∑
i=d

[
Kh

(
u− i

n

)
− h
]
fHi−1,n(u, x) + 1

(n−d+1)

∑n
i=d f

Hi−1,n(u, x)

=: Pn +Qn

Using the boundedness of fHi−1,n(u, x) we obtain

|Pn| =
∣∣∣ 1

(n− d+ 1)h

n∑
i=d

[
Kh

(
u− i

n

)
− h
] ∣∣∣fHi−1,n(u, x) 6 C

∣∣∣ 1

(n− d+ 1)h

n∑
i=d

Kh

(
u− i

n

)
− 1

∣∣∣.
It follows from lemmas 6.1, 6.2 that

Pn = O

(
1

nh2

)
+ o(h) = o(1).

On the other hand, the ergodicity of Xi(u) guarantees that

Qn =
1

(n− d+ 1)

n∑
i=d

fHi−1,n(u, x) = f(u, x) + oa.s.(1)

The conclusion is that Bn = f(u, x) + oa.s.(1). And finally :

f̂n(u, x)− f(u, x) = oa.s.(1), which completes the proof. �
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