
HAL Id: hal-04611598
https://hal.science/hal-04611598

Submitted on 13 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lost in the Loader:The Many Faces of the Windows PE
File Format

Dario Nisi, Mariano Graziano, Yanick Fratantonio, Davide Balzarotti

To cite this version:
Dario Nisi, Mariano Graziano, Yanick Fratantonio, Davide Balzarotti. Lost in the Loader:The Many
Faces of the Windows PE File Format. RAID 2021, 24th International Symposium on Research in
Attacks, Intrusions and Defenses, ACM, Oct 2021, San Sebastian, Spain. �10.1145/3471621.3471848�.
�hal-04611598�

https://hal.science/hal-04611598
https://hal.archives-ouvertes.fr

Lost in the Loader:
The Many Faces of the Windows PE File Format

Dario Nisi
EURECOM

dario.nisi@eurecom.fr

Mariano Graziano
Cisco Talos

magrazia@cisco.com

Yanick Fratantonio
Cisco Talos

yfratant@cisco.com

Davide Balzarotti
EURECOM

davide.balzarotti@eurecom.fr

ABSTRACT
A known problem in the security industry is that programs that
deal with executable file formats, such as OS loaders, reverse-
engineering tools, and antivirus software, often have little discrep-
ancies in the way they interpret an input file. These differences can
be abused by attackers to evade detection or complicate reverse
engineering, and are often found by researchers through a manual,
trial-and-error process.

In this paper, we present the first systematic analysis and ex-
ploration of PE parsers. To this end, we developed a framework to
easily capture the details on how different software parses, checks,
and validates whether a file is compliant with a set of specifications.
We then used this framework to create models for the loaders of
three versions of Windows (XP, 7, and 10) and for several reverse-
engineering and antivirus tools. Finally, we used this framework
to automatically compare different models, generate new samples
from amodel, or validate an executable according to a chosenmodel.
Our system also supports more complex tasks, such as “generating
samples that would load on Windows 10 but not on Windows 7.”

The results of our analysis have consequences on several aspects
of system security. We show that popular analysis tools can be com-
pletely bypassed, that the information extracted by these analysis
tools can be easily manipulated, and that it is trivial for malware
authors to fingerprint and “target” only specific versions of an oper-
ating system in ways that are not obvious to someone analyzing the
executable. But, more importantly, we show that there is not one
correct way to parse PE files, and therefore that it is not sufficient
for security tools to fix the many inconsistencies we found in our
experiments. Instead, to tackle the problem at its roots, tools should
allow the analyst to select which of the several loader models they
should emulate.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering;Mal-
ware and its mitigation.

KEYWORDS
executable file formats, malware analysis, parser differentials

RAID ’21, October 6–8, 2021, San Sebastian, Spain
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 24th International
Symposium on Research in Attacks, Intrusions and Defenses (RAID ’21), October 6–8,
2021, San Sebastian, Spain, https://doi.org/10.1145/3471621.3471848.

ACM Reference Format:
Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2021. Lost in the Loader: The Many Faces of the Windows PE File Format. In
24th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID ’21), October 6–8, 2021, San Sebastian, Spain. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3471621.3471848

1 INTRODUCTION
Over the past thirty years, malware authors have developed many
techniques to bypass both static and dynamic analysis tools. The
goal of the attackers is to either bypass or reduce the effectiveness
of malware analysis tools while still producing samples that the
target system would correctly execute.

For example, in a recent study conducted by Cozzi et al. [12],
the authors discovered that malware authors often tamper with the
executable file format to obtain binaries that are executed correctly
on the target device but are discarded as malformed by the vast
majority of the analysis tools (including disassemblers, debuggers,
and common utilities to inspect the file headers). Along the same
line, in 2017, Kim et al. [20] discovered a set of problems in the
way AV products parse and validate signed PE files. Specifically,
the authors noticed that if malicious files contain the Authenticode
signature copied from a benign application, they are not analyzed.
Even worse, many AV engines saved time by not even scanning
signed binaries at all.

While these studies point out interesting discrepancies, we be-
lieve these findings are just the tip of the iceberg of a much deeper
problem: while the inner structure of executable file formats is de-
fined and generally well understood, the way these files are parsed
and validated differs significantly among tools and operating sys-
tems and, surprisingly, also among different components of the
same operating system [18].

Today, the security industry employs a completely automated
malware collection, analysis, and classification process to handle the
massive number of new samples discovered every day. This relies
on a complex toolchain that combines many components to extract
static features, collect the runtime behavior from malware analysis
sandboxes, and compare each sample with information extracted
from similar programs. Sadly, all the existing infrastructures rely on
a subtle and often overlooked assumption, i.e., that every single com-
ponent should parse, understand, and validate the sample in the same
way. Ideally, the task of parsing the executable file format should
be delegated to a common standard library used by all components.
In practice, instead, every program implements its own parsing and

https://doi.org/10.1145/3471621.3471848
https://doi.org/10.1145/3471621.3471848

RAID ’21, October 6–8, 2021, San Sebastian, Spain Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti

PE Software
(Section 3)

Models
(Section 4)

SMT models
(Section 5)

Procedural
Interpretation

(Section 5)

Test Case Generation (Section 5.2)
Corner Case Generation (Section 5.3)
Differential Analysis (Sections 5.4, 7)
Differences Enumeration (Section 5.5)

Sample Validation (Section 5.1)

Reverse
Engineering

Live Detection
(Section 8)

Figure 1: An overview of our analysis process.

validation routines, resulting in a multitude of strategies that often
differ in many relevant details. Even worse, these techniques are
not the same as those adopted by the operating system to decide
whether a binary can be correctly loaded in memory and executed.
On the one hand, these differences may result in samples that are
erroneously discarded (because they are considered malformed by
some static tools) or only partially analyzed. On the other hand,
as measured by Ugarte-Pedrero et al. [36], it can result in the fact
that a large number of damaged files are still assigned to dynamic
analysis sandboxes — thus wasting a considerable amount of time
and precious resources for security companies.

In the past, researchers have tried to look at this problem by
partially documenting to what extent the structure of a PE file can
be manipulated without compromising its functionality [3] or by
collecting notes on some parts of the Windows loading process [35].
However, these studies followed a simple trial-and-error approach
that failed to capture the scale and complexity of the problem.
In fact, previous attempts often resorted to fuzz the file header
fields to test whether the resulting file could still be executed in
the system. However, this approach does not account for possible
inter-relationships between fields (in which different parts of the
file need consistent information) and therefore provided limited
results.

The goal of this paper is to shed light on this complex problem
by performing a comprehensive analysis of the factors that affect
the parsing of the PE executable file format and on the fields that
are read and used by different software and operating systems. An
overview of our contributions is depicted in Figure 1. In particular,
to perform our systematic exploration, we developed a new frame-
work to precisely describe the steps commonly performed by OS
loaders and file parsers. While this paper focuses on the PE file
format, the framework is generic enough to support the description
for other formats. We started our analysis by focusing on the OS
loaders used in different versions of Microsoft Windows: Windows
XP, Windows 7, and Windows 10. For each version we wrote a
model that lists the checks and operations that are performed to
determine 1) if the file is a valid PE and thus should be “loaded” in
memory and 2) how the loading process extracts and parses infor-
mation from the file. We also focused our attention on different
categories of security-related software that deal with PE files, such
as reverse-engineering tools and antivirus programs.

An analyst can use our models to perform several different tasks,
such as sample validation, sample generation, corner case gener-
ation, differential analysis, and differences enumeration. Thanks
to these fully automated techniques, our framework was able to
systematically enumerate the discrepancies that exist between the
Windows loaders and popular reverse engineering tools. Our find-
ings have significant repercussions.

First, we show how popular analysis tools can be completely
bypassed and how the information they extract can be easily ma-
nipulated “at will.” We also ran a VirusTotal LiveHunt session and
discovered that real-world malware is currently abusing some of
these (previously unknown) discrepancies in-the-wild. These find-
ings highlight how the research community lags behind malicious
actors, thus making our systematic exploration of these aspects
even more timely and important.

Second, we show that the differences in which the three versions
of Windows parse PE files allow attackers to create targeted exe-
cutables that would run on a specific version but would be discarded
as malformed by others. This could be used, for example, to evade
common malware analysis sandboxes, which often run Windows 7.
However, by far, the most important consequence of the differences
among OS loaders is that not only the PE standard fails to describe
how an executable should be parsed and validated, but also that a
de-facto reference implementation does not even exist. Instead, our
experiments show that there are as many ways to interpret a PE
file as there are versions of Windows, and therefore security tools
should decide which model to use on a case-by-case basis. In other
words, we show that since there is not a single correct way to parse
PE files, fixing security tools is significantly more complex than just
“fixing bugs.” Instead, we believe that the only way to tackle this
problem at its root is to offer the possibility to select which of the
several loaders a tool should mimic, in order to adapt the validation
and the extracted information to the system under analysis.

In the spirit of open science, we release the entire source code
and datasets produced for this work at https://github.com/eurecom-
s3/loaders_modeling, and we hope this will inspire a community-
driven effort to refine our models and to extend them to different
file formats.

https://github.com/eurecom-s3/loaders_modeling
https://github.com/eurecom-s3/loaders_modeling

Lost in the Loader:
The Many Faces of the Windows PE File Format RAID ’21, October 6–8, 2021, San Sebastian, Spain

Si
ze

O
fO

pt
io

na
lH

ea
de

r
by

te
s

MZ Header

COFF Header

e_lfanew

...
PE Signature

Optional Header

Data Directories

Section Table
Section Header 1

...
Section Header n

...
Section 1

...
Section n

...

Figure 2: Structure of a PE Executable

2 THE PORTABLE EXECUTABLE FORMAT
Before diving into the PE Format anatomy, it is useful to introduce
some terminology that we will use in the rest of the paper. We
define the term “PE executable” (or simply “executable”) to mean a
file that follows the specifications of the PE Format, while we call
“Process Image” (or simply “image”) the representation in memory
of the executable after it is loaded. In the paper, we also use the
term “parser” in an informal way to refer to the general activity
required to load the data contained in a PE file and map it to a
set of predefined data structures. Finally, we call “validation” the
process required to verify whether the information in a PE file
satisfies a set of structural and logical constraints. As explained in
Section 3, different classes of applications may parse and validate
PE files in different ways and may take different actions when such
constraints are not satisfied.

The PE format is the standard executable file format supported by
the Windows operating system family [26]. Adopted by Microsoft
since the release of Windows 3.1, this format underwent a series of
revisions throughout the years that added support for new features.
However, its core design remained unchanged and consists of a
number of structured data types, commonly called “headers.”

Figure 2 shows the structure of a PE executable. The first header
at the beginning of the file is the MZ Header, originally used in
the MS-DOS operating system and still in use today for backward
compatibility. For Windows-specific executables, the MZ Header
is only used for determining the offset at which the COFF Header
starts. This second structure contains important information about
the executable, including the architecture on which it is meant to
run, whether it is a dynamic library or a standalone executable, and
whether its image supports a randomized base address.

The Optional Header, which starts right after the COFF Header,
provides more detailed information, including the preferred Im-
ageBase (i.e., the virtual address of the first byte of the image in
case no relocation is applied), the SizeOfImage, and the amount
of memory to reserve for the stack and heap. The peculiarity of
this header is that its size is not fixed but rather determined by
the SizeOfOptionaHeader in the COFF Header. This design choice
makes the OptionalHeader easy to extend in future revisions of the
format specifications. Other fields of the Optional Header worth
mentioning are the Subsystem, MajorSubsystemVersion, and Minor-
SubsystemVersion. The former indicates the Windows Subsystem
required to run the executable (e.g., a program using the graphic
user interface requires the Windows GUI Subsystem). The other
two specify the minimum version of the Subsystem required.

The last portion of the Optional Header contains the DataDirec-
tory table. A DataDirectory contains the relative virtual address (i.e.,
the offset from the base address the memory image; from now on
RVA)) and the size of an additional data structure used for multiple
purposes. Examples of DataDirectories are the Import Table, which
declares the dynamic libraries and the functions that need to be
loaded alongside the executable; the Export Table, containing the
functions that the executable makes available for other programs
to use; the Relocation Table, which provides a set of instructions on
how to patch the executable in memory when it is not loaded at its
preferred base address; and the Certificate Table that contains the
digital signatures of the developer of the executable. The number
of DataDirectories is not fixed and it is determined by a field in the
Optional Header.

The Section Table starts at the end of the Optional Header. Each
entry in this table defines a section, i.e., a contiguous memory re-
gion of the image, either uninitialized or populated with portions of
the executable. Each section has its name and characteristics, such
as the memory access permission level or whether the operating
system can swap out its pages in case of a memory shortage. Sec-
tions logically organize the executable in homogeneous portions.
For example, by convention, the .text section contains the code of
the program, while the .bss contains the uninitialized data.

Constraints and Ambiguities. In addition to defining the struc-
tures of the headers, the PE Format specifications introduce “con-
straints” on their fields. With this term, we indicate a set of con-
ditions that the fields must respect to be considered “acceptable.”
Trivial examples of constraints are that the first fields of the MZ
and COFF Headers must contain their respectivemagic numbers: mz
and pe.

Other constraints are insteadmore subtle and complex. For exam-
ple, each entry in the Section Table is expected to start at a multiple
of SectionAlignment and populated with portions of the executable
starting at an offset multiple of FileAlignment (both these are fields
of the Optional Header). Moreover, they are expected to be sorted
in ascending order by their starting virtual address, and adjacent
entries in the table must be contiguous.

However, what the PE Format specifications fail to convey is
what happens in case an executable does not meet such constraints.
In other words, the specifications do not address the following
questions “What happens if a section does not start at a multiple

RAID ’21, October 6–8, 2021, San Sebastian, Spain Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti

of Section Alignment?” or “Can a PE executable whose sections are
not sorted be considered valid nonetheless?”

Other ambiguities in the specifications concern the concepts of
“default values” and “architecture-specific” features. The Section-
Alignment field itself is an example of the first category. According
to the specifications, the “default value” of this field is the page size
in bytes of the architecture (e.g., 4K for Intel x86). Considering that
sections are also used for specifying the memory access protection
level of the corresponding memory regions, it is reasonable to as-
sume that the value of the Section Alignment should be at least as
big as the page size. In fact, a value of SectionAlignment smaller
than the page size of the architecture could prevent the operat-
ing system from correctly enforce memory access permissions in
adjacent sections.

OS loaders could handle this corner case in different ways. A
strict loader could discard any executable with a value of Section
Alignment smaller than the page size, while a more permissive one
could still load the executable but without enforcing the access
permissions of the sections. The important aspect is that the PE
specifications do not provide any guidance about this implementa-
tion choice and provide no insights into handling this and similar
other cases.

Finally, some relocation types described in the specifications fall
within the “architecture-specific” features. For instance, the possible
values of the Base Relocation Type enumerator are “meaningful” only
in certain architectures. The concept of “meaningfulness,” however,
is not better elaborated in the specifications leaving, again, plenty of
room for different implementation strategies. Should a programmer
developing software that parses the PE Format consider relocation
types that are “non-meaningful” for the targeted architecture as a
violation of the specification (and interrupt the parsing of the file)
or simply ignore them?

To summarize, the PE Format specifications do not clearly specify
all the circumstances under which a file should or should not be
considered a valid PE executable, nor do they provide unequivo-
cal guidelines on how to handle corner cases. This, alongside the
large amount of software that needs to deal with PE files, leads
unavoidably to discrepancies in how PE executables are handled.

3 SOFTWARE HANDLING PE FILES
There are many classes of software that need to operate on PE files,
for different reasons and with different objectives. In this section,
we explore some of these classes, by grouping them according to
their purposes and by discussing what are the basic operations that
each group must perform to carry out its tasks.

3.1 Basic Operations on PE Executables
We identify three main operations that are performed by software
that deals with the PE Format. Note that we call these “operations”
and not “phases” because, as we found out in our work, they are usu-
ally interleaved and not implemented as self-contained, sequential
stages in the software workflow.

Structural Checks. Operations of this type ensure that the file
respects the basic structure of the PE Format. For instance, tests
to verify the magic numbers or that the offset of a data structure
points within the file boundaries are examples of structural checks.

Parent
Process

Structural/Compliance
Check of PE Headers

Parse Memory
Layout Info

Memory Mapping

Load ntdll.dll
(User-Space Loader)

Kernel-Space

User-Space Loader
Entry Point

Parse and Apply
Relocations

Parse Import Table
Load dlls

Jump to Program Entry
Point

User-Space
(Child Process)

CreateProcess
syscall

Re
su

m
eT

hr
ea

d

Figure 3: Windows Loading Process

Depending on the purpose of the software, these checks can be
either strictly or loosely enforced. For example, some programs
adopt a best effort approach and focus on gathering as much in-
formation as possible from the PE headers. For this reason, they
might not abort the entire process if a structural requirement is not
met, instead preferring to continue the process by focusing only
on those parts of the headers that respect the PE structure. Other
software may implement instead a more rigid structural validation,
thus rejecting the files in which a structural check fails. Even within
the same piece of software some structural checks can be enforced
more strictly than others. This is because not all PE headers play
the same role in all the software implementations of the format:
Some may be essential, while others may be used only for optional
features.

Compliance Checks. This type of operation ensures that the PE
executables conform to both software- and architecture-specific
constraints. For instance, the Machine field of the COFF Header
specifies the CPU type on which the executable is meant to run.
Operating systems may use this field to determine whether a pro-
gram can be executed on the current CPU architecture. Compliance
Checks are usually strictly enforced, and a violation of their con-
straints often results in rejecting the file.

As a rule of thumb, structural checks verify if a file is well formed,
while compliance checks test whether the extracted information
is valid and can be used to perform the task of the software. How-
ever, the boundary between structural and compliance checks is
not always clear because of the ambiguities in the specifications of
the PE Format that fails to declare the structure of a PE executable
in a formal way. Despite this difficulty, we believe the distinction
among the two types of checks can ease the discussions of the
various aspects of our work.

Memory Mapping. These operations use the gathered informa-
tion to prepare the process address space by creating a memory
representation of the PE file suitable for execution. This image in-
cludes memory areas initialized with data extracted from different
portions of the executable, memory areas mapped in the process
address space but left uninitialized, as well as a description of the
memory access permissions for each memory areas.

3.2 PE Software Landscape
Many classes of software need to parse PE files, and for this paper
we focus on three main categories, which we selected because

Lost in the Loader:
The Many Faces of the Windows PE File Format RAID ’21, October 6–8, 2021, San Sebastian, Spain

they play a particularly important role in the security domain and
because we believe they exemplify the different types of operations
described above.

OS Loaders. Their objective, as their name suggests, is to load the
image of the program in memory. In the case of the Windows oper-
ating system, the “PE loader” is not a well defined, self-contained
component. As Figure 3 shows, there are two distinct parts that
contribute to the process of loading PE executables in memory. The
first one is embedded in the Windows Kernel and allocates the
memory for the new process, as well as the kernel structures that
identify it. This stage of the loading process also loads the ntdll.dll
library in the new process. Once this first component finishes its
tasks, the execution of the new process starts from a function in
ntdll.dll, which initiates the second part of the loading process.

Both stages enforce structural and compliance checks on the PE
headers and the structural checks are usually enforced strictly on all
the headers. Once the loader has gathered the information it needs,
it proceeds to allocate and populate the memory needed by the
program. In other words, operating system loaders need to perform
all the three basic operations described above. This, alongside the
fact that they are implemented in two different components, makes
this class of software the most complex and challenging to analyze.

Reverse-Engineering Tools. Programs in this class are used for
software binary analysis. For this purpose, they need to gather
information from the PE headers to recreate a memory represen-
tation similar to what an operating system loader may produce.
This means that they are mostly interested in memory mapping
and often perform structural checks with a best-effort approach. For
example, they might rely on the debug information stored in the
Debug Header if it is available, but fallback on other heuristics if
such header is not present or is malformed. On the other hand, to
be able to analyze as many executables as possible, this class of
software performs very few compliance checks.

Antiviruses. Software in this class performs both structural and
compliance checks on the information gathered from the PE headers
of the executable. These constraints are meant to ensure that the
executable provides the data needed for their format-specific sig-
natures. However, they may perform very little memory mapping
operations, usually only to enable signatures to convert RVAs to off-
sets into the original executable file (e.g., the rva_to_offset function
in yara [43]).

4 CONSTRAINTS MODELING
As we discussed at the beginning of the paper, researchers have al-
ready documented several inconsistencies[2, 6] in the way different
programs parse PE files over the past years. These previous attempts
have focused on black-box approaches that try to construct anoma-
lous files and observe whether a given OS (or analysis tool) would
process them correctly. Altough automated black-box approaches,
e.g., fuzzing, can find interesting differences, they either could only
do that in simple cases or without the ability to list all possible
differences exhaustively. Moreover, as it is the case for software
testing, whenever such approaches are unable to find differences,
it is not possible to conclude that two applications process PE files
in an equivalent way.

For this paper, we are interested in finding the same flavor of
behavioral differences, but we take a completely different approach:
we opted for translating the parsing procedure of the various ap-
plications into formal models, which we can then query to explore
the space of “acceptable inputs” systematically. Our observation
is that both structural and compliance checks, as well as memory
mapping operations, can be ultimately deconstructed into a set of
formulas and constraints over the fields of the PE structures.

Our main goal is thus to develop models to describe those for-
mulas and constraints in a way that can be used in an automated
fashion to 1) compare different models, 2) verify whether a file is
compliant with a given model, and 3) generate new PE files that
satisfy the union or intersection of a set of models. The advantage
of our approach with respect to previous efforts is that it can cap-
ture aspects of PE parsers in a comprehensive way, thus allowing
us to exhaustively explore the search space in a structured way —
something that other automated approaches (such as fuzzing) could
not do.

4.1 Constraints Extraction
In our study, we model the checks performed on all the PE headers
that are relevant to the loading process. These include the MZ
header, the COFF header, the OptionalHeader, and the Section Table.
We also modeled the entries in the Data Directory that play a role
during loading, namely the Import Directory, the Import Address
Table, the Loader Configuration Directory, and the Base Relocation
Directory.

Our first objective is to extract the list of checks that a program
performs when it loads a PE file. Several static analysis techniques
exist that may help to automate this process. For instance, both
symbolic execution and taint analysis can keep track of all the
operations a program makes on its inputs and translate them into
formulas. However, these approaches have severe limitations when
applied to complex software. For instance, the Windows loader
often stores and manipulates information in linked lists. This makes
the relationship between a byte in the original PE file and a byte
“tested in memory” very complex to describe and it often results in
over-tainting large parts of unrelated memory. Moreover, existing
tools (even after a considerable manual effort) could not scale to
a typical OS loader’s complexity. In fact, OS loaders are tightly
connected to other low-level components of the operating system
(such as the memory management and the code responsible for
populating all process data structures in the kernel), and, as a result,
the inability to isolate the loader itself from the rest of the OS code
often results in a constant path explosion and constitutes a major
problem for symbolic execution and taint analysis engines.

While it might be possible to prepare the target code manually
in a way that could be analyzed by automated techniques, the effort
would need to be repeated for each application. We attempted to
perform such a task during our research, but we realized that it
was faster and more advantageous to manually extract the con-
straints than to reverse the code to understand which paths were
safe to prune for the symbolic execution engine. Moreover, in the
context of analyzing a small number of very complex real-world
software, this manual process, when assisted with an automated
regression testing environment, is significantly less error-prone

RAID ’21, October 6–8, 2021, San Sebastian, Spain Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti

than complex automatic approaches (e.g., symbolic execution) due
to various shortcuts these approaches need to use when dealing
with complexity.

We now provide more details about how this manual effort was
conducted on the Windows loader, by far the most challenging
software we modeled. This approach can be used to model other
proprietary products with slight adjustments, while open-source
software products — such as the other pieces of software we mod-
eled — present fewer reverse-engineering challenges. We began
by identifying the functions MiCreateImageFileMap in ntoskrnl.exe
and LdrpInitializeProcess in ntdll.dll, which can be considered as
the entry points for the kernel- and the user-space phase of the
loading process, respectively. Using IDA Pro, and assisted by the
debug symbols provided by Microsoft, we decompiled these two
functions as well as the other routines that they invoke. Most of
these routines return either a success or an error code. Our manual
analysis consisted of finding all these exit conditions, tracing back
their dependency to the input file, and encoding them using our
modeling language.

Once all the functions of interest have been modeled, we tested
the model to find bugs or missing constraints. To do this, we gen-
erated a number of test cases and ran them while monitoring the
operating system with a kernel-debugger (we will explain the tech-
nique for generating test cases in the next section). This allowed us
to gain confidence in the accuracy of our models.

4.2 Modeling Language
We designed a custom language tailored for describing and encod-
ing the knowledge acquired with our manual analysis effort. The
rationale for this choice is that very few tools have been developed
over the years for systematizing logic constraints like the ones we
want to model. The few available options are not tailored for our
purposes and relying on such tools would introduce a significant
overhead for the analyst, making the modeling process more time-
consuming. For example, the SMT-LIB language [5] lacks support for
modeling loops, while Dijkstra’s Guarded Command Language [14]
does not support structured types, which proved to be extremely
useful for modeling the Windows loaders.

Instead, our language is designed for the purpose of modeling
compliance checks on the PE Format (or any other similar format,
like ELF). Moreover, models written in our language can be auto-
matically translated in SMT queries to ensure that the constraints
of the model are coherent and to generate test cases that “satisfy”
the constraints of the model. We discuss several possible use cases
in the next section.

From a high-level perspective, each model is a list of statements.
Our language supports various types of statements, each of which
aims at capturing (and making it easy to capture) specific traits of
the file format we want to describe. We now document the various
statement types and features of our language. The reader can find
a toy example of a model written in our language and an excerpt of
one of the models of the Windows loader in Appendices A and C,
respectively. Moreover, the interested reader can review the full
models at https://github.com/eurecom-s3/loaders_modeling.

Input Definition. The first type of statements allows us to create
an input symbol of a given size in bytes that other statements

can predicate on. Although our language supports multiple input
definition statements, in ourmodels we introduce only one symbolic
input representing the entire PE executable. By doing so, we can treat
the different components of the PE format as interconnected and
interdependent entities, allowing our models to capture complex
constraints involving fields of different headers.

Symbol Definition. The second type of statements allows us to
introduce additional symbols (e.g., labels) and associate them with
the result of operations on input or other symbols. The current
version of our language supports arithmetic and bit-wise operations,
as well as more complex operations commonly used to deal with
the PE Format, e.g., ALIGNUP and ALIGNDOWN for respectively
rounding up or down to a certain power of two.

Predicates.The third type of statements allows us to specify boolean
comparisons between expressions of existing symbols, which eval-
uates to either true or false. In these statements, comparison and
logic operators can be used, as well as more complex operators, e.g.,
ISPOW2 to check if the operand is a power of two.

Terminal Predicates. Predicates in our language can be either
terminal or non-terminal. A terminal predicate must be satisfied
for an input file to be considered compliant with the model. Non-
terminal predicates, instead, do not have such a requirement and
can therefore be helpful when dealing with conditional predicates,
which we discuss next.

Conditional Predicates. These allow encoding predicates of the
form 𝑃 : 𝐴 ⇒ 𝐵, where 𝐴 is a non-terminal predicate. In other
words, if the predicate 𝐴 is true, then the boolean predicate 𝐵 must
also be true for the overall predicate 𝑃 to be satisfied.

Structured Types. As we mentioned in Section 2, the PE Format
consists ofmany structures containing different fields. Our language
implements a type system that makes models more readable by
enabling to cast structured types on the original file and allowing
the use of mnemonic names for each of the header fields. Types can
be defined as C-like structures and can be used in all the statements
discussed above.

Loops. The last construct supported by our language allows the
encoding of loops. Loops are frequently used when parsing PE files,
for instance to enforce that all entries in a list or array satisfy the
same constraint. Once again, all the statements discussed above are
supported within a loop.

5 USING MODELS
Once a human analyst has modeled the software constraints in
our language, the models can then be automatically translated into
a formal representation that can be used for various use cases.
Moreover, we note that while the (manual) model extraction may
theoretically contain imprecisions (we discuss in Section 6 how we
experimentally validated them), all subsequent analysis steps have
soundness guarantees.

5.1 Sample Validation
The first use case of our models is to determine whether a given
PE executable meets the requirements of a specific loader. For this
purpose, we rely on the procedural interpretation of the model. This

https://github.com/eurecom-s3/loaders_modeling

Lost in the Loader:
The Many Faces of the Windows PE File Format RAID ’21, October 6–8, 2021, San Sebastian, Spain

technique consists of interpreting the statements in the model se-
quentially, applying each of them to the executable under analysis.

Symbols defined via symbol definition statements are assigned
concrete values according to the input file and predicates are evalu-
ated to their boolean values. In case any of the terminal predicates
is false, the validation process stops, and the executable is marked
as non-conforming to the model. Conditional predicates are also
evaluated to concrete values, but in their case the sample is rejected
only if their precondition is true as well. If all terminal predicates
evaluate to true, and thus no constraint is violated in the process,
the executable is marked as conforming to the model.

This use of our models can be relevant as part of the dynamic
malware analysis pipelines that are employed by all major security
companies that offer malware detection and analysis products. In
particular, it could be useful as a reliable pre-filtering stage that
either selects the appropriate sandbox (based on the OS that can
run the sample) or quickly discards malformed binaries that would
not run successfully anyway.

5.2 Sample Generation
In this second use case, we describe how we can automatically
generate concrete samples compliant with a given model. This is
possible becausemodels written in our language can be transformed
into SMT decision problems over the BitVector theory. The input of
the problem is a symbolic BitVector (of fixed size) representing the
executable file. Each type of statement in our language can then be
translated in an appropriate SMT problem, as follows.

Symbol Definition and Structured Types. Each symbol defined
in a model is transformed into a symbolic value that can be pro-
cessed by an SMT solver. Moreover, for each operation that puts a
new symbol in relation to existing symbols, our tool generates ap-
propriate predicates that encode their relationship. Structured types
are handled in a similar fashion, by using the appropriate offsets in
the symbolic input to convert aliases into concrete predicates.

Predicates. Each predicate in our language is transformed to a
boolean formula usable by an SMT solver. These SMT predicates are
then used to create appropriate constraints, depending on whether
they are terminal or non-terminal.

Terminal Predicates. Terminal predicatesmust be satisfied for an
input file to be compliant with a given model. Our tool performs
the logic conjunction of all the terminal predicates to create the
SMT problem’s predicate that it then feeds to the solver.

Conditional Predicates. Conditional predicates must be satisfied
if their precondition evaluates to true. To model them compatibly
with an SMT solver, for a conditional predicate of the form 𝐶 ⇒ 𝐷 ,
we create the following SMT constraint: ¬𝐶 ∨ 𝐷 .

Handling Loops. SMT theories do not have an equivalent con-
struct to our loop blocks. To address this problem, we handle loops
in our models by using loop unrolling. In other words, each state-
ment in the loop block is executed up to a fixed amount of times
(defined in the loop statement).

Finally, we create a single constraint that encodes the logical
conjunction of all the constraints mentioned above (i.e., if 𝑃𝑛 is
the n-th constraint in the model, we consider the constraint

∧
𝑖 𝑃𝑖).

We then feed this single constraint to the SMT solver and ask it to
produce a concrete input that satisfies all the predicates captured
by our model. In the case of models that describe the compliance
checks performed by a program on a PE executable, the SMT so-
lutions are effectively PE headers that pass these checks. We use
this observation to generate valid executables for the software we
modeled.

Generating PE Files with Valid Code. A PE file generated by
the SMT solver would pass all the checks but it would not execute
any meaningful user-space code (because the loader does not check
this part). However, this makes it harder to test whether a gener-
ated sample is valid and executes correctly. Therefore, we added
a component to specify which code the generated PE file should
execute and “plug” it into the generated files. We (successfully)
tested our system with two examples, the first executing a single
“exit(0)” syscall and the second printing “Hello World!”. For more
details, Appendix B shows a concrete example of the translation of
a model into an SMT problem.

5.3 Corner Cases Generation
Our next use case focuses on generating a multitude of different
test cases that explore the corner cases imposed by the PE loaders.
To do so, we leverage non-terminal predicates, i.e., predicates that
acts as preconditions for conditional statements. Since they do not
need to be satisfied, we can consider them as free variables of the
SMT problem.

Based on this observation, we automatically derive a number
of SMT problems in the following way. Let 𝑆 be the predicate of
the SMT problem, and 𝑄 a non-terminal predicate of the model.
Now consider the two following SMT problems: 𝑆 ′ ← 𝑆 ∧𝑄 and
𝑆 ′′ ← 𝑆 ∧ ¬𝑄 . By construction, even if 𝑆 ′ and 𝑆 ′′ are different
from 𝑆 , their solutions (if they exist) necessarily satisfy the original
problem 𝑆 too (because, by design, 𝑆 is less restrictive). However,
these solutions may differ substantially. In fact, in the first, the free
constraint is asserted, which means that the conditional statements
that have 𝑄 as precondition must be satisfied. The same is not true
for the solutions to the second problem.

We can generalize this process to an arbitrary number 𝑛 of predi-
cates used as conditions by building new problems that either assert
or negate each combination of them—thus resulting in at most 2𝑛
different generated samples. In practice, the actual number of gener-
ated test cases can be lower because there is no guarantee that some
combinations of the free constraints are not incompatible with each
other, thus making the corresponding SMT problem unsolvable.

5.4 Differential Analysis
Another use case of our work is to combine the models of two
different software and generate samples that either satisfy both or
only one of the two.

For example, we can select two SMT problems built from distinct
models (for instance, two versions of Windows or a version of Win-
dows and an antivirus), whose predicates are 𝑆1 and 𝑆2, respectively.
Our system can then generate a third SMTmodel with the following
predicate: 𝑆𝑑𝑖 𝑓 𝑓 : 𝑆1 ∧ ¬𝑆2. If this SMT problem is satisfiable,
its solutions are samples that pass all the compliance checks of the
first software but do not satisfy at least one of the constraints in the

RAID ’21, October 6–8, 2021, San Sebastian, Spain Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti

second model. On the other hand, under the assumption that the
models correctly reflect the behavior of the software, if the problem
is not satisfiable, it guarantees that no such samples exist.

We can also use this technique to prove that the two models are
equivalent. In fact, if we cannot generate any sample that satisfies 𝑆1
but not 𝑆2 and neither any input that satisfies 𝑆2 but not 𝑆1, we can
conclude that the two models are enforcing the same constraints.

5.5 Differences Enumeration
In our final use case, we can take the Differential Analysis technique
one step further to find the exact constraints in the two models that
make them behave differently.

The idea is to use an iterative process that starts with the differen-
tial analysis between the two models to compare. If the differential
analysis problem has no solution, the process terminates. If, instead,
a solution is found, we identify the predicates in the negated model
that were false in the produced test case. We then add these predi-
cates to the set of constraints negated at least once (from now on,
𝑁).

The process then continues with solving SMT problems of this
form:

𝑆𝑛
𝑑𝑖 𝑓 𝑓

← 𝑆1 ∧ ¬𝑆2 ∧ 𝑆𝑠𝑢𝑝𝑝𝑜𝑟𝑡
in which 𝑆𝑠𝑢𝑝𝑝𝑜𝑟𝑡 represents the logic conjunction between a subset
of the predicates in 𝑁 . By construction, the solutions of this SMT
problem (if any) meet the constraints in 𝑆𝑠𝑢𝑝𝑝𝑜𝑟𝑡 but violate at least
one constraint in 𝑆2. We then add the new violated constraints to
𝑁 before repeating the process until we have used all the subsets
of 𝑁 (including 𝑁 itself) in one iteration.

Note that this approach does not guarantee that all the differ-
ences between the two models are found when the process ends. To
have this guarantee, one should build the 𝑆𝑠𝑢𝑝𝑝𝑜𝑟𝑡 terms as the logic
conjunctions of all the subsets of the predicates in 𝑆2. However,
this requires a number of iterations that grows exponentially in the
number of predicates in 𝑆2, limiting its applications in practice.

On the other hand, we believe that our approach represents a
good trade-off between scalability and precision. In fact, the number
of iterations required is lower since it is exponential only in the
number of the negated predicates. Moreover, the models that we
compare are substantially similar, meaning that only a few of the
constraints are not coherent between the models.

5.6 Implementation
We implemented a model analysis framework (available at https:
//github.com/eurecom-s3/loaders_modeling) that can perform all
the operations described above. The tool consists of three different
components. The first is the Language Front End responsible for
parsing the input models and lifting them into an intermediate rep-
resentation in the form of an abstract syntax tree. This component
also handles the typing system by resolving the mnemonic fields
of the structured types into offsets in the symbolic input.

The second part is a Python Backend, which performs the sample
validation task by sequentially validating each statement in the
intermediate representation on a sample provided as input.

Finally, the core of the framework is the Z3 Backend that imple-
ments the logic to translate models into SMT problems and solve
these problems by using the z3 SMT solver [13] to generate samples.

It also provides an interface to combine an arbitrary number of mod-
els together and to perform Corner Cases Generation, Differential
Analysis, and Differences Enumeration.

6 MODELS EVALUATION
For our study, we modeled the loading process of three versions of
Windows: Windows XP SP 3, Windows 7 SP 1, and Windows 10 (v.
1909). On average, each model contains 269 statements, of which
78 are terminal predicates.

Since all constraints were extracted by manual analysis, which
may be affected by imprecisions, we evaluated how tightly these
models capture the behavior of the target software components. To
this end, we conducted two sets of experiments to assess whether
the models are under-constrained (i.e., “too loose” in accepting
invalid files) or over-constrained (i.e., “too strict” in rejecting valid
files).

6.1 Assessing Under-Constrainedness
The objective of the first experiment is to verify that our models
are not under-constrained with respect to the real OS. That is, if
our model says “this file is a valid executable for a given OS,” then
the OS should be able to load and execute that file. Our approach
consists of generating samples “at the boundary” of our models and
attempting to execute them in the real OS: if a valid file according
to our model does not run in the OS, our manual analysis missed
important constraints (i.e., the model is under-constrained).

To generate these “extreme” samples, we used the Corner Cases
Generation technique introduced in Section 5.3. By construction,
all these samples are guaranteed to be valid according to the model.
Moreover, since this technique recursively explores all the relevant
free variables in the model, the generated samples can be seen as
representatives of all models’ corner cases. In details we generated
80 test cases from the model of Windows XP, 72 for Windows 7, and
20 for Windows 10. Each sample has been generated by combining
the operating system model with the model responsible for adding
the code of an “exit(0)” syscall at the entry point. This allowed us
to infer whether the sample ran correctly by observing its return
code (%ERRORLEVEL% according to the Windows terminology).

All the test cases generated by each model ran successfully under
the respective operating system.

6.2 Assessing Over-Constrainedness
The goal of the second experiment is to verify that our models are
not over-constrained compared to the real OS, i.e., that our models
do not include erroneous constraints that were not present in the
loader code. In other words, if the OS can load a given file, then
the corresponding model should output that “this file is valid.” To
this end, we first built a dataset of 2543 real-world PE executables
that we collected from the community-driven repository of the
Chocolatey [8] Windows package manager. Note that, although
these samples are very likely valid PE executables, they would not
necessarily run under all the three Windows versions under analy-
sis. We processed each file with the Sample Validation technique
(discussed in Section 5.1) and we identified the samples that our
models flagged as invalid: given the nature of the dataset we start
with, these samples represent potential imprecision of the models.

https://github.com/eurecom-s3/loaders_modeling
https://github.com/eurecom-s3/loaders_modeling

Lost in the Loader:
The Many Faces of the Windows PE File Format RAID ’21, October 6–8, 2021, San Sebastian, Spain

Lastly, we verified whether these invalid files would actually run
under the corresponding OS.

Out of the 2543 samples, our models predicted that 632, 261,
and 86 were invalid according to our models of Windows XP, Win-
dows 7, and Windows 10, respectively. To verify the accuracy of
the prediction, we then executed each of these samples in a VM
running the respective version of Windows OS: all samples failed
to run, precisely as predicted by our models. We believe this is strong
evidence that our models are not over-constrained. We also investi-
gated the reasons behind this high rate of invalid PE samples. The
most frequent problem is that these are PE files targeting more
recent Windows versions using the SubsystemVersion fields. Other
samples are invalid because they target other architectures than
Intel x86, or because they are kernel modules that cannot run as
standalone executables.

As an additional experiment to check that the robustness of our
execution setup, we also ran all the “valid” samples and verified that
they were all loaded properly in the respective OS. Note, however,
that some of them could not be properly executed due to missing
DLL dependencies, which is a problem that is not related to whether
a given sample is compliant with the PE format.

7 DIFFERENTIAL ANALYSIS
In this section we present the results of the differential analyses
we performed on our models. In particular, we present the discrep-
ancies we found between the versions of the Windows loader we
analyzed, as well as those between each Windows loader and three
open-source tools commonly used in malware analysis, namely
the ClamAV antivirus [9], the yara signature engine [42], and the
reverse-engineering framework radare2 [28].

For the three versions of the Windows loaders and ClamAV, we
compare the models of their compliance checks and their memory
mappings. On the other hand, we compare only the models of the
memory mapping operations performed by yara and radare2. This
asymmetry is due to the latter two not performing any compliance
checks when analyzing PE executables.

The analyses were performed by using the Differences Enumera-
tion technique presented in Section 5.5. For the sake of completeness,
each discrepancy we report has been manually validated by feeding
the corresponding software with the test cases that the differential
analysis generated.

7.1 Discrepancies among Versions of the
Windows Loader

Interestingly, we found differences among all these three versions
of the Windows loaders. For what concerns compliance checks, we
found a number of discrepancies, discussed next. We note these
represent the exhaustive list of discrepancies between the models we
created for this paper and that all these were found automatically.

[W1] ImageBase = 0. Windows 7 considers as invalid any exe-
cutable with a value of ImageBase equal to 0. We did not find the
same behavior in either Windows XP or Windows 10.

[W2] SizeOfHeaders ≥ offset(COFFHeader) + 0x5d. For exe-
cutables with SectionAlignment greater than the page size, both
Windows 7 and Windows 10 expect the SizeOfHeaders to be greater

Table 1: Source of discrepancies and in which differential
analysis they were found

Discrepancies
W1 W2 W3 W4 W5

XP vs 7 ✓ ✓ ✓

XP vs 10 ✓ ✓ ✓

7 vs XP
7 vs 10 ✓ ✓

10 vs XP
10 vs 7 ✓ ✓

than the offset in the file of the COFFHeader plus a constant. Win-
dows XP, on the other hand, does not enforce this constraint.

[W3] Relocations for other architectures. Both Windows XP
andWindows 7 handle architecture-specific relocation entries, even
if they are not “meaningful” for the running system. On the other
hand, Windows 10 only allows generic and Intel x86-specific relo-
cations.

[W4] AddressOfEntryPoint < SizeOfHeaders. If the Addres-
sOfEntryPoint of an executable lies within the first SizeOfHeaders
bytes of the image, Windows 7 and Windows 10 discard the exe-
cutable as invalid. The same does not happen under Windows XP.

[W5] SizeOfImage > endof(SectionTable). Windows 7 is the
only version that does not load executables in which the offset of
the last byte of the SectionTable in the file is greater than the value
of SizeOfImage.

Table 1 provides a summary of the discrepancies found during
the differential analyses. In particular, the ✓symbols in the table
indicate whether a discrepancy was found during a differential
analysis of two versions of the loader. For example, the ✓in first
row (XP vs. 7), first column (W1) indicates that the first discrepancy
(ImageBase = 0) was found while generating samples that comply
with the model of Windows XP, that did not satisfy the model of
Windows 7.

It is interesting to note how our analysis did not find any discrep-
ancy based on the OperatingSystemVersion fields. In fact, according
to the specifications, these fields should indicate the “version of
the operating system” required to run the executable. However, in
our investigation, we did not find evidence of any check performed
on these fields, which can, therefore, assume any value. This is an
example of the significant differences between the specifications of
the PE Format and its software implementations (which are both
maintained by Microsoft). On the other hand, the Windows loader
checks that the (Major|Minor)SubsytemVersion fields are within a
range that varies across the three versions of the loader we analyzed.
Certain values of these fields also enable some version-specific fea-
tures, such as the Control Flow Guard[24] extensions of the Load
Config Directory, which the Windows 10 loader validates if the
SubsystemVersion is greater than “6.3.” Version-specific features
represent one more cause of discrepancies in the behavior of the
Windows loaders.

Our differential analysis on the memory mapping operations
also highlighted a difference in how Windows 7 and Windows 10
map PE executables compared to Windows XP. The difference

RAID ’21, October 6–8, 2021, San Sebastian, Spain Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti

affects the first region of the memory map, the one that contains
the PE headers. Each version of Windows maps the PE headers
in the process address space. However, if the Section Alignment
of the executable is greater than the page size, Windows 7 and
Windows 10 copy in this region only up to SizeOfHeaders bytes,
while Windows XP copies up to 4KB from the executable file.

7.2 Compliance Checks Analysis of ClamAV
We now document the results of a differential analysis to produce
test cases that comply with the constraints enforced by the oper-
ating system loaders, but violate those of the antivirus. For this
experiment, we focus on ClamAV. The net result of each of our find-
ings is that while these executables would run under the different
Windows operating systems without problems, ClamAV would not
be able to consider them as “fully valid PE files,” and it would not be
able to use signatures that rely on specifics of the PE format [10, 11].

It is also interesting to note how the differences reported by
these differential analyses are completely different from those re-
ported between the different versions of the OS loaders—showing
once more how each developer interpreted in her own way the file
specification. We now discuss the discrepancies we identified.

[C1] SizeOfOptionaHeader. As we explained in Section 2, this
field is used to determine the length in bytes of the OptionalHeader.
ClamAV expects its value to be greater or equal to the size of the
structure defined by the PE Format. None of the Windows loaders
we analyzed in our experiments enforce this constraint.

[C2] NumberOfSections. ClamAV expects at most 96 entries in
the SectionTable. To the best of our knowledge this was the max-
imum number of sections in an executable supported by older
versions of the Windows loader, while none of the versions of
Windows we analyzed still enforces this constraint.

[C3] Section Virtual Address. For executables with SectionAlign-
ment less than the page size of the architecture, the Windows
loaders do not check that the starting addresses of the sections are
multiple of this value. ClamAV, on the other hand, performs this
check regardless of the value of the SectionAlignment.

7.3 Memory Mapping Analysis of ClamAV,
radare2, and yara

We modeled the memory mapping operations of three popular
software that deal with the PE format, namely ClamAV, radare2 [28],
and yara [42]. Each of these software needs to provide some sort
of memory mapping of PE executables. For ClamAV and yara, this
memory mapping can be used to write malware signatures that
rely on the content of the memory image. Radare2, on the other
hand, provides the user a full-fledged memory representation of
the PE executable to support her analysis and reverse engineering.

Under the hood, memory mapping operations are usually im-
plemented by means of a primitive that maps RVAs in the memory
image to offsets in the original file. We therefore extracted and
modeled the implementation of this primitive in all the three soft-
ware and performed a differential analysis between them and the
three versions of Windows. Our system found discrepancies in the
memory mapping operations of all the three software. In particular,
we discovered that the nature of these differences was the same

and it was due to incorrectly mapping PE executables that have a
SectionAlignment lower than the page size. For these executables,
all three versions of the Windows loader we examined copy the
entire file as is in memory, starting at ImageBase, regardless of the
entries in the section table (thus resulting in RVAs to be equivalent
to file offsets). On the other hand, the three tools always rely on
the section table to convert RVAs into file offsets.

Our differential analysis automatically produced test cases that
leverage this key difference, by exploiting the fact that PE executa-
bles with a low value of SectionAlignment do not need a section
table at all. Once again, the fact that all these three software make
the same mistake shows that the PE specifications do not provide a
clear and comprehensive set of guidelines for handling PE executa-
bles, nor they describe accurately the actual implementation of the
Windows loader.

8 BYPASSING POPULAR ANALYSIS TOOLS
The discrepancies we discussed in the previous section have signif-
icant repercussions in the field of malware detection and analysis,
as they undermine the trust we have in popular tools. This section
discusses several examples of real executables that are not correctly
supported by popular tools. It then presents the results of our in-
vestigations to determine 1) whether these discrepancies can be
found among benign samples, and 2) whether there is evidence of
malware samples that already exploit them as part of their attacks
in-the-wild.

ClamAV.We modified the headers of real PE files to deceive Cla-
mAV into not considering them as fully valid PE executables and
bypassing signatures relying on specifics of the PE format. For
instance, by simply adding empty sections at the end of the sec-
tion table and updating the NumberOfSections field accordingly, the
malware would still be valid for the Windows loader, but ClamAV
would have issues using some PE-specific signatures. With minor
adjustments, malware authors could also easily abuse the other
discrepancies by, for example, lowering the value of SectionAlign-
ment below the value of the page size, or by modifying the virtual
address of one of the entries in the section table, so that the new
value is not a multiple of the value of SectionAlignment. We created
several proofs-of-concept that showcase these problems, and none
of these attacks altered in any way the malware behavior.

Yara. We crafted a PE file that evades two key features commonly
used in malware signatures: The resolution of imports and the
pattern-matching applied at specific virtual addresses (implemented
with the keyword at). The technique we used leverages the discrep-
ancy in the memory mapping operation described in the previous
section, and mainly revolves around creating a PE executable with
a low value of SectionAlignment. To deceive the imports resolu-
tion, we placed the name of the imported DLL outside the memory
ranges covered by the section table. The same can be done to mis-
lead actual signatures that use the at keyword. For our example, we
placed the entry point at an RVA that is not covered by the section
table, but one could hide any portion of the code with the same
technique.

Radare2. Reverse-engineering tools are not immune to mishan-
dling the PE format either, and our experiments show that they

Lost in the Loader:
The Many Faces of the Windows PE File Format RAID ’21, October 6–8, 2021, San Sebastian, Spain

can be easily exploited to confuse both manual and automatic anal-
ysis based on these tools. As a proof-of-concept, we developed a
technique to selectively hide portions of code from the radare2
framework. This was achieved by lowering the value of Section-
Alignment and then adjusting the entries of the section table to
minimize the number of bytes that radare2 maps in memory (by
reducing the value of SizeOfRawData field in each entry of the
section table).

Dynamic analysis pipelines. The showcased examples aim to
evade static malware analysis, but dynamic malware analysis tech-
niques can be evaded too. In fact, dynamic analysis pipelines rely
on an instrumented version of an operating system to carry out
their job. As we saw in the previous section, discrepancies among
versions of the Windows loader exist, and no version can load all
the programs that the others can. Most dynamic malware analysis
pipelines run each sample only with oneWindows version, which is
often outdated and different than what end-users choose[44]. With-
out a way to statically identify the OS version to use, it is difficult
to ensure that every file is correctly analyzed in the sandbox.

Measuring prevalence among goodware. Intuitively, one would
not expect to find header “malformations” in benign software. In the
vast majority of the cases, in fact, goodware is compiled by using
mature and well-tested toolchains that are unlikely to produce
headers that trigger different behaviors in different parsers. To test
the validity of this assumption, we analyzed the dataset of goodware
we used in Section 6.2, searching for samples that exhibit any of
the causes discrepancies highlighted in Section 7. Out of the 2543
samples in the dataset, we found only three samples whose headers
showcase any of the malformations. All three of them are resource-
only images (i.e., PE files that do not contain any code, but only
data) and had their AddressOfEntryPoint fields set to 0, matching
the conditions of theW4 discrepancy. According to the Windows
APIs documentation [25], resource-only images undergo a different
loading process, which does not perform many of the operations
that the regular process does, ultimately enforcing fewer constraints
on the PE headers. Thus, there is no evidence of prevalence among
goodware of conditions that can lead to discrepancies in the PE
loading process. In other words, in none of the samples in our
dataset, could we find PE headers that would trigger any of the
discrepancies reported in this paper. This suggests that, if such
peculiar headers were to be found, they most likely would have not
been produced accidentally.

Evidence of usage in-the-wild. At last, we wanted to investigate
whether real-world malware is already exploiting the discrepancies
we found. To this end, we run a LiveHunt campaign on VirusTo-
tal [38] from Oct. 7, 2020, to Oct. 19, 2020. The LiveHunt service
allows researchers to scan all the samples received by the VT plat-
form with custom signatures, written in yara, in real-time. For our
campaign, we wrote yara rules that match the discrepancies we
found in the compliance checks reported in the last section, with
the only exception of the one concerning architecture-specific relo-
cations.1 We also wrote one additional rule that matches samples
1The PEmodule of yara does not provide APIs to access the relocation table, and parsing
it using the yara language is not possible as it lacks support for a loop construct in
which the number of iterations is not determined before the loop starts, which is
necessary to parse the table.

Table 2: #Samples reported for each discrepancy

Windows
Loaders

Windows vs.
ClamAV

Align W1 W2 W4 W5 C1 C2 C3
Samples 301 37 43 27 1 15 77 1
[0, 5) Detect. 59 14 3 15 0 0 1 0
[5, 10) Detect. 36 1 3 0 0 0 1 0
[10, 20) Detect. 5 4 2 1 0 1 0 0
≥ 20 Detect. 201 18 35 11 1 14 75 1

that exhibit a value of SectionAlignment lower than the page size.
As we saw throughout the paper, this is the precondition for all the
discrepancies in the memory mapping operations.

Our LiveHunt identified a total of 467 samples. Table 2 presents a
breakdown of the samples grouped by which yara rule matched and
by the number of AV detections. 73% of the samples were marked as
malicious by 20 AVs or more, with an average of 36.6 AV detections
(out of 74) per sample.

Despite evidence that the presence of discrepancies is rare in
benign samples (as discussed earlier), it is challenging to deter-
mine that, with certainty, these LiveHunt samples are intentionally
abusing them. Nonetheless, there are some cases for which there
is indeed relevant evidence. For example, we found 77 samples
with more than 96 sections, which would interfere with ClamAV’s
scanning process. Intrigued by the (relatively) high number of en-
counters, we manually analyzed some of these malware samples
and found that they often include exactly 97 sections: this is unlikely
a coincidence as this is the minimum number required to trigger
the constraint in ClamAV. The relatively large number of samples
using this trick suggests, in our opinion, that malware authors are
actively employing this as an evasion technique. However, we do
not know whether these tricks are used to specifically target Cla-
mAV or whether they are additionally targeting other antiviruses,
which may be affected by similar problems.

As another noteworthy example, VirusTotal reported one sample
exhibiting the discrepancy involving the end of the section table
(i.e., rule W5). It appears that this malware purposely crafted it
to escape static malware analysis. In fact, on top of its header’s
peculiar structure, the sample also showcases several anti-analysis
techniques, including anti-disassembly tricks and runtime library
loading.

Last, most of the identified samples exhibit a value of section
alignment lower than the page size. We believe it is likely that
the samples’ authors adjusted this value on purpose. In fact, the
default value of section alignment for all the Windows toolchains
we tested is precisely the page size, which is confirmed by very few
encounters in regular PE executables.

To properly understand the results presented so far, it is impor-
tant to contextualize these numbers with respect to the big picture.
In fact, on an average week, VirusTotal processes around 3 million
submissions of Windows executables [39], which suggests that the
exploitation of the discrepancies is a relatively niche phenomenon
at the moment. However, we believe that evidence of in-the-wild
use of these discrepancies is concerning. To the best of our knowl-
edge, we are the first to report these discrepancies publicly, and we

RAID ’21, October 6–8, 2021, San Sebastian, Spain Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti

hope our work will help the community deal with this problem in
a timely manner.

9 DISCUSSION
The results presented in this paper prove that different software
handle the PE format in different fashions, leading to incongruities
in both compliance checks and memory mappings. Our models show
that there are as many ways to interpret a PE file as there are ver-
sions of Windows. In Section 8 we showed how these discrepancies
allows attackers to bypass popular analysis tools and pipelines, and
to create targeted executables that would run on a certain version
but would be discarded as malformed by the loaders of other ver-
sions. We reported the bugs we identified to the developers of the
tools; ClamAV developers have already acknowledged the problem
and they are working on fixes. We believe, however, that it would
be significantly more complicate to “properly” address the various
aspects discussed in this paper.

There is not a single reference (or even a correct) implemen-
tation. We believe that security tools should allow the user to
decide which model to use on a case-by-case basis. We note that
this goes beyond the relatively well-known “the analyst should be
able to select which type of Virtual Machine / Windows version to
use for dynamic analysis ” as the problem affects all static reversing
tools as well. As we have shown in this paper, popular reversing
tools can be completely bypassed and they can be fooled to re-
turn misleading and/or inaccurate data to the analysis client (e.g., a
human analyst or a processing block in an automated pipeline)

So far, no static reversing tool (including the popular commercial
options) has even the “concept” of letting the user selecting which
loader to emulate. Over the last decade, instead, they have all tried
a best-effort approach to implement a single loading process that
attempts to be flexible and catch the various differences. This paper
wants to sound the alarm bell that this long-time effort is bound
to failure as there is not a single “correct” implementation, but there
are as many as the OS versions. Other than fixing bugs to patch the
discrepancies, we argue that the correct approach to eradicate this
problem is to continue our effort to document the parsing models
adopted by different software implementations and encode this
knowledge in formal models that can be included in other tools and
selected by the user.

On the need of formal specifications and reference imple-
mentations. Until now, developers of security tools had to im-
plement their own PE parsers as the constraints and operations
performed by the Windows loaders were not documented. At first
glance, parsing the PE Format may seem a simple task, on top of
which a large body of research and commercial tools are built. As
our experiments show, however, there are many corner cases that
are not sufficiently described in the PE specification, and different
tools and operating system handle them in very different ways.
This is a systemic issue that represents a concrete threat especially
in adversarial fields like malware analysis, in which every wrong
assumption may open up new avenues for evading detection mech-
anisms.

We argue that such problem should be tackled at its roots. One of
these is the lack of a formal specification of the format that defines
what a well-formed PE executable looks like. The ambiguities in the

current specifications have ultimately lead to incongruities in how
PE executables are handled. A possible solution to this problem
could be to systematize the PE Format by means of formal methods.
This would not only ease the development of new tools and loaders,
but it would also provide reliable ways to discover discrepancies in
their implementations.

One other way to avoid discrepancies among the large number
of software dealing with the PE format could be to have a well-
documented, publicly available reference implementation of the
Windows loader, to which the new versions of the loader comply.
This would ease the task of writing new reverse engineering tools
and antiviruses, since they would not require developers to guess
or to manually reverse engineer the Windows operating system
internals.

While we believe this to be the best solution for the future, our
work provides a solution to deal with both past and present versions
of MS Windows. All our models and the tools required to use them
for validation, test case generation, and comparison among tools
are available at https://github.com/eurecom-s3/loaders_modeling.
Thanks to our effort, PE parsing libraries and tools (such as pe-
file [15] and pev [27]) can provide different options to their users
for choosing to interpret and/or validate a file according to one
model or another.

10 RELATEDWORK
Program loaders are core components of an operating system and,
as such, have been widely studied by the research community. We
therefore organize the discussion of previous research in this field
along four categories.

Edge cases. Researchers have shown the limitations of static anal-
ysis approaches in parsing binary formats like ELF [18] and PE [29,
33], by abusing relocations to hide malicious code from static analy-
sis tools. Ge et al. [16] used relocations to alter the memory permis-
sions with severe security implications. Other researchers showed
how a single byte can break several ELF parsers and still execute on
the target machine [37], and how to use ELF metadata to backdoor
a setuid application [31]. For what concerns the PE ecosystem
in particular, Albertini [2] created PE executables that executes
different instruction on different Windows versions, by leveraging
discrepancies in the loaders implementations of these operating
systems. Albertini also developed a collection of proof-of-concept
binaries that showcase exotic features of the PE file format [1].
Previous works, like those by Vuksan et al. [40] and Huang [17],
acknowledged that PE specifications leave space for implementa-
tion choices and documented a series of “malformed” (yet valid) PE
header layouts. All these works only scratched the surface of the
problem of discrepancies in the PE ecosystem. In fact, all studies
discussed only anecdotal examples and the authors never attempted
to generalize nor to propose a comprehensive approach to eradicate
the problem.

Differential Parsing. The problem of differential parsing arises
when different implementations of parsers for the same format pro-
duce discordant results when fed with the same input. Researchers
presented several attacks based on differential parsing. For instance,
Kaminsky et al. [19] demonstrated an attack against the X.509 in-
frastructure. Other attacks allowed privilege escalation on mobile

https://github.com/eurecom-s3/loaders_modeling

Lost in the Loader:
The Many Faces of the Windows PE File Format RAID ’21, October 6–8, 2021, San Sebastian, Spain

systems, like the infamous Android “master key” attack [30] or the
more recent iOS 0day for the plist parsers [32]. Bratus et al. showed
how to create a file that the Linux kernel- and user-space loaders
parse differently [6]. These works show how researchers found in-
consistencies among implementations of parsers of the same format.
However, all these cases had been discovered manually without
any guarantee of completeness. In this paper we instead propose a
framework to automatically find all the incongruities among two
tools. While we only presented our techniques applied to the PE
ecosystem, we also created models for software parsing the ELF
format and we are confident that our approach can be expanded to
other formats as well.

Evasion. Several studies have focused on detecting malware eva-
sive behaviors [21, 23, 41] or have attempted to measure their preva-
lence, such as in the case of stalling code [4, 22]. The work presented
in this paper fits in the line of research that identified in the mis-
handling of executable file formats a major avenue for malware
analysis evasion. Previous works have presented single instances
of this problem. For instance, Petsios et al. [34] showed two cases
in which ClamAV failed to parse malicious ELF files that properly
run on the operating system. Similarly, Kim et al. [20] showed that
many AV engines do not scan signed PE files and do not accurately
validate the Authenticode signature that can be copied from benign
applications. Again, this shows how evasion attacks are possible
when AV engines handle PE files differently than the OS loader.

Automatic Modeling of Protocol Stacks. Brumley et al [7] pre-
sented a taint tracking-based automatic approach to create SMT
models of the behavior of web servers handling HTTP requests.
They used these models for differential analysis with a technique
similar to the one we presented in our work. However, due to the
intrinsic limitations of taint tracking, the models they produced
cannot be complete.

11 CONCLUSION
In this paper we presented the first systematic and comprehensive
exploration on discrepancies on how software deals with Windows

PE file format. We have designed a custom language that allows
us to build powerful and detailed models on the inner workings
of different categories of software, ranging from OS loaders to
reverse-engineering and antivirus analysis tools. We show how
these models are powerful, as they allow researches to perform
a wide range of tasks, such as sample validation, sample genera-
tion, corner case generation, differential analysis, and differences
enumeration.

The results of our experiments show that 1) popular analysis
tools can be easily evaded, 2) it is trivial for malware to fingerprint
and “target” only specific versions of Windows, and 3) there is not
one correct way to parse PE files, and that security tools should
not only fix the many inconsistencies we found, but, to tackle
the problem and its roots, should also allow an analyst to select
which of the several loaders should be emulated. Moreover, we
have found evidence that real-world malware is already abusing
some of these discrepancies. We note that the power of our models
is not limited to the results we obtained, but that it was possible
to obtain these results in an automated and systematic way. By
releasing our framework and datasets, we hope this work will
inspire a community-driven effort to refine ourmodels and to enable
analysis software to deal with this systemic problem.

ACKNOWLEDGEMENTS
This project was partially supported by the European Research
Council (ERC) under the European Unions Horizon 2020 research
and innovation programme (grant agreement No 771844 BitCrumbs),
and by CISCO Grant No 1377523. We would like to thank the anony-
mous reviewers for their constructive and insightful feedback. We
would also like to thank Andrew Williams and Micah Snyder for
their feedback and help with this project. Finally, in addition to
thank, as always, Betty Sebright, we would also like to acknowledge
Savino “amico caro” Dambra, who taught us what true friends are,
and Fabio “we should attack more” Pagani, who taught us that one
(or, at least, he) cannot win all games one plays.

RAID ’21, October 6–8, 2021, San Sebastian, Spain Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti

REFERENCES
[1] A. Albertini. [n.d.]. Corkami PE files corpus. https://github.com/corkami/pocs/

tree/master/PE.
[2] A. Albertini. 2013. Making a Multi-Windows PE. POC or GTFO 0x01 (2013).
[3] Alexander Sotirov. [n.d.]. TinyPE. http://www.phreedom.org/research/tinype/.
[4] B. Baker, A. Chiu. 2015. Threat Spotlight: Rombertik – Gazing Past the Smoke,

Mirrors, and Trapdoors. https://blogs.cisco.com/security/talos/rombertik.
[5] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib standard:

Version 2.0. In Proceedings of the 8th international workshop on satisfiabilitymodulo
theories (Edinburgh, England), Vol. 13. 14.

[6] S Bratus and J Bangert. 2013. ELFs are dorky, elves are cool. POC or GTFO 0x00
(2013).

[7] David Brumley, Juan Caballero, Zhenkai Liang, James Newsome, and Dawn Song.
2007. Towards Automatic Discovery of Deviations in Binary Implementations
with Applications to Error Detection and Fingerprint Generation.. In USENIX
Security Symposium. 15.

[8] Chocolatey. [n.d.]. Chocolatey - The Package Manager for Windows. https:
//chocolatey.org/

[9] Cisco. [n.d.]. ClamAV. https://www.clamav.net/
[10] Cisco. [n.d.]. ClamAV - Bytecode Signatures. https://www.clamav.net/

documents/bytecode-signatures
[11] Cisco. [n.d.]. ClamAV - File hash signatures. https://www.clamav.net/

documents/file-hash-signatures
[12] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.

2018. Understanding Linux Malware. In IEEE Symposium on Security & Privacy
(San Francisco, CA). IEEE Computer Society.

[13] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Proceedings of the International Conference on the Theory and Practice of Software,
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (ETAPS/TACAS).

[14] Edsger W Dijkstra. 1975. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM 18, 8 (1975), 453–457.

[15] erocarrera. [n.d.]. pefile. https://github.com/erocarrera/pefile
[16] Xinyang Ge, Mathias Payer, and Trent Jaeger. 2017. An Evil Copy: How the

Loader Betrays You.. In NDSS.
[17] Yinrong Huang. 2006. Vulnerabilities in Portable Executable (PE) File Format For

Win32 Architecture. Technical Report. TR, Exurity Inc., Canada.
[18] J. Bangert, R. Shapiro, S. Bratus. 2013. Weird Machines and revisiting Trusting

Trust for binary toolchains. http://www.cs.dartmouth.edu/~sergey/trust/30c3-
chain-of-trust.pdf.

[19] Dan Kaminsky, Meredith L Patterson, and Len Sassaman. 2010. PKI layer cake:
New collision attacks against the global X. 509 infrastructure. In International
Conference on Financial Cryptography and Data Security. Springer, 289–303.

[20] Doowon Kim, Bum Jun Kwon, and Tudor Dumitraş. 2017. Certified malware:
Measuring breaches of trust in the windows code-signing pki. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1435–1448.

[21] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2014. Barecloud: bare-
metal analysis-based evasive malware detection. In 23rd USENIX Security Sympo-
sium (USENIX Security 14). 287–301.

[22] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. 2011. The power of
procrastination: detection and mitigation of execution-stalling malicious code. In

Proceedings of the 18th ACM conference on Computer and communications security.
285–296.

[23] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. 2011. De-
tecting environment-sensitive malware. In International Workshop on Recent
Advances in Intrusion Detection. Springer, 338–357.

[24] Microsoft. 2018. Control Flow Guard. https://docs.microsoft.com/en-us/
windows/win32/secbp/control-flow-guard.

[25] Microsoft. 2018. LoadLibraryExA –WindowsAPI. https://docs.microsoft.com/en-
us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa.

[26] pe format [n.d.]. PE Format. https://docs.microsoft.com/en-gb/windows/win32/
debug/pe-format

[27] pev [n.d.]. pev - User manual. http://pev.sourceforge.net/doc/manual/en_us/
[28] radare2 [n.d.]. radare2, a portable reversing framework. http://www.radare.org/.
[29] roy g biv / defjam. [n.d.]. Virtual Code Windows 7 update. https:

//github.com/darkspik3/Valhalla-ezines/blob/master/Valhalla%20%233/
articles/VCODE2.TXT.

[30] saurik. 2013. Exploit (& Fix) Android Master Key. http://www.saurik.com/id/17.
[31] Rebecca Shapiro, Sergey Bratus, and Sean W. Smith. 2013. “Weird Machines” in

ELF: A Spotlight on the Underappreciated Metadata. In 7th USENIX Workshop on
Offensive Technologies (WOOT 13). USENIXAssociation,Washington, D.C. https://
www.usenix.org/conference/woot13/workshop-program/presentation/shapiro

[32] Siguza. 2020. Psychic Paper. https://siguza.github.io/psychicpaper/.
[33] skape. 2006. Locreate: An Anagram for Relocate. http://

www.uninformed.org/?v=6&a=3&t=txt.
[34] T. Petsios, A. Tang, S. J. Stolfo, A. D. Keromytis, S. Jana. 2017. NEZHA: Effi-

cient Domain-independent Differential Testing. In Proceedings of the 38th IEEE
Symposium on Security & Privacy. San Jose, CA.

[35] Todd Cullum. 2017. Portable Executable File Corruption Preventing Malware
From Running. https://toddcullumresearch.com/2017/07/16/portable-executable-
file-corruption/.

[36] Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. 2019. A Close
Look at a Daily Dataset of Malware Samples. ACM Transactions on Privacy and
Security (TOPS) 22, 1, Article 6 (January 2019), 30 pages. https://doi.org/10.1145/
3291061

[37] ulexec. 2019. ELF Crafting Advance Anti-Analysis techniques for the Linux Plat-
form. https://github.com/radareorg/r2con2019/blob/master/talks/elf_crafting/
ELF_Crafting_ulexec.pdf.

[38] virustotal [n.d.]. VirusTotal. https://www.virustotal.com/.
[39] VirusTotal. 2021. File statistics during last 7 days. https://www.virustotal.com/

en/statistics/.
[40] Mario Vuksan and Tomislav Pericin. 2011. Constant insecurity: Things you didn’t

know about portable executable file format. In BlackHat.
[41] Zhaoyan Xu, Jialong Zhang, Guofei Gu, and Zhiqiang Lin. 2014. Goldeneye: Effi-

ciently and effectively unveiling malware’s targeted environment. In International
Workshop on Recent Advances in Intrusion Detection. Springer, 22–45.

[42] yara [n.d.]. VirtusTotal - yara in a nutshell. https://github.com/VirusTotal/yara
[43] yara pe [n.d.]. PE module — yara 4.0.2 documentation. https://

yara.readthedocs.io/en/stable/modules/pe.html
[44] Akira Yokoyama, Kou Ishii, Rui Tanabe, Yinmin Papa, Katsunari Yoshioka, Tsu-

tomu Matsumoto, Takahiro Kasama, Daisuke Inoue, Michael Brengel, Michael
Backes, et al. 2016. SandPrint: fingerprinting malware sandboxes to provide intel-
ligence for sandbox evasion. In International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 165–187.

https://github.com/corkami/pocs/tree/master/PE
https://github.com/corkami/pocs/tree/master/PE
http://www.phreedom.org/research/tinype/
https://blogs.cisco.com/security/talos/rombertik
https://chocolatey.org/
https://chocolatey.org/
https://www.clamav.net/
https://www.clamav.net/documents/bytecode-signatures
https://www.clamav.net/documents/bytecode-signatures
https://www.clamav.net/documents/file-hash-signatures
https://www.clamav.net/documents/file-hash-signatures
https://github.com/erocarrera/pefile
http://www.cs.dartmouth.edu/~sergey/trust/30c3-chain-of-trust.pdf
http://www.cs.dartmouth.edu/~sergey/trust/30c3-chain-of-trust.pdf
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexa
https://docs.microsoft.com/en-gb/windows/win32/debug/pe-format
https://docs.microsoft.com/en-gb/windows/win32/debug/pe-format
http://pev.sourceforge.net/doc/manual/en_us/
http://www.radare.org/
https://github.com/darkspik3/Valhalla-ezines/blob/master/Valhalla%20%233/articles/VCODE2.TXT
https://github.com/darkspik3/Valhalla-ezines/blob/master/Valhalla%20%233/articles/VCODE2.TXT
https://github.com/darkspik3/Valhalla-ezines/blob/master/Valhalla%20%233/articles/VCODE2.TXT
http://www.saurik.com/id/17
https://www.usenix.org/conference/woot13/workshop-program/presentation/shapiro
https://www.usenix.org/conference/woot13/workshop-program/presentation/shapiro
https://siguza.github.io/psychicpaper/
http://www.uninformed.org/?v=6&a=3&t=txt
http://www.uninformed.org/?v=6&a=3&t=txt
https://toddcullumresearch.com/2017/07/16/portable-executable-file-corruption/
https://toddcullumresearch.com/2017/07/16/portable-executable-file-corruption/
https://doi.org/10.1145/3291061
https://doi.org/10.1145/3291061
https://github.com/radareorg/r2con2019/blob/master/talks/elf_crafting/ELF_Crafting_ulexec.pdf
https://github.com/radareorg/r2con2019/blob/master/talks/elf_crafting/ELF_Crafting_ulexec.pdf
https://www.virustotal.com/
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/
https://github.com/VirusTotal/yara
https://yara.readthedocs.io/en/stable/modules/pe.html
https://yara.readthedocs.io/en/stable/modules/pe.html

Lost in the Loader:
The Many Faces of the Windows PE File Format RAID ’21, October 6–8, 2021, San Sebastian, Spain

APPENDICES
A Example of Constraints Model

1 INPUT foo 4

2 bar <- ADD foo 1

3 V1: ULE bar 10 term

4 V2: UGE foo 4

5 V3(V2): UGE foo 7 term

Listing 1: Example of a model written in our language.

Listing 1 provides a concrete example of a model written in our
language. We now discuss the semantics of this model, and we will
use this example as reference when explaining how other parts of
our framework work.

At Line 1, the model specifies the existence of a 4-byte long
input, named foo. At Line 2, a new symbol is introduced, bar, and
the model specifies that it is defined as foo + 1. Note that multi
bytes are parsed to integers as big-endian. Thus, adding 1 to a 4-
byte field means adding 1 to its 4th byte, with carry. At Line 3, the
model defines a boolean predicate, V1. The boolean predicate V1
evaluates to true if and only if bar is less or equal than 10 (the “U”
in ULE indicates it is an unsigned comparison). Moreover, the term
keyword specifies that V1 is a terminal predicate. This implies that,
for an input file to be considered compliant, bar’s value must be
less or equal than 10. At Line 4, the model defines another boolean
predicate, V2. This predicate evaluates to true if and only if foo is
greater or equal than 4 (once again, the comparison is unsigned).
Note that, differently from V1, V2 is not a terminal predicate. This
means that, per se, whether V2 evaluates to true is not a necessary
condition for a given input file to be considered valid. The truth
value of V2, however, is relevant for the conditional predicate V3
specified at Line 5. The semantics of line 5 is the following: if V2
evaluates to false, then V3 evaluates to true, independently from the
input value; if, however, V2 evaluates to true, the specified predicate
(i.e., foo greater or equal than 7) must also evaluate to true for V3 to
be satisfied. In addition to that, note that V3 is a terminal predicate,
which indicates that it must evaluate to true for an input file to
satisfy the model. The net effect of this model is to constrain the
value of the input in the ranges [0, 3] and [7, 9].
B Example of Translation in SMT problem
For sake of clarity, we now discuss how the example model dis-
cussed in the previous section in Listing 1 is translated into an SMT
problem.

The symbol definition at line 2 introduces the following formula:

𝑏𝑎𝑟 ← 𝑓 𝑜𝑜 + 1
Line 3 introduces the following predicate:

𝑃1 : 𝑓 𝑜𝑜 + 1 ≤ 10

Line 4 is translated into the following predicate:

𝑄1 : 𝑓 𝑜𝑜 ≥ 4

The conditional predicate is instead translated as

𝑃2 : 𝑄1 ⇒ (𝑓 𝑜𝑜 ≥ 7)
The final formula of the SMT problem is then computed as the logic
conjunction of all terminal predicates, in this case 𝑃1 and 𝑃2:

𝐹 : (𝑓 𝑜𝑜 + 1 ≤ 10) ∧ (¬(𝑓 𝑜𝑜 ≥ 4) ∨ (𝑓 𝑜𝑜 ≥ 7))

Thus, the SMT solver will be tasked to find an 𝑓 𝑜𝑜 such that the
final constraint 𝐹 is satisfied. In this case, the constraint is satisfiable,
and the SMT solver would return an integer value in the ranges [0,
3] and [7, 9].

C Excerpts from the Models of the Windows
Loader

1 ### Relocations

2 P: relocDir <- optHdr.DataDirectory [40, 8] as

_IMAGE_DATA_DIRECTORY

3 P: relocVA <- relocDir.VirtualAddress

4 P: relocSize <- relocDir.Size

5
6 #### From ntdll!LdrRelocateImageWithBias :45,48

7 V6: AND (UGE optHdr.NumberOfRvaAndSizes 6) AND (NEq

relocVA 0) (NEq relocSize 0)

8
9 P: tmpSize <- relocSize

10 P(V6): loopStart <- relocVA

11 L1(V6): relocBlockAddr <- VLOOP(loopStart , nextBlockAddr ,

V99 , 10)

12 P: relocBlock <- HEADER[relocBlockAddr , 8]

13 P: blockSize <- relocBlock [4, 4]

14 P: blockPage <- relocBlock [0, 4]

15
16 P: firstEntryAddr <- ADD relocBlockAddr 8

17 P: nEntry <- SHR (SUB blockSize 8) 1

18 P: tmpSize <- SUB tmpSize blockSize

19 P: nextBlockAddr <- ADD relocBlockAddr blockSize

20
21 V99: NEq tmpSize 0

22
23 P: tmpEntry <- INT 0 4

24 V96: UGE nEntry 1

25 L2(V96): entryAddr <- VLOOP(firstEntryAddr , nextBAddr

, V98 , 10)

26 P: entry <- HEADER[entryAddr , 2]

27 P: tmpEntry <- ADD tmpEntry 1

28 P: nextBAddr <- ADD entryAddr 2

29
30 P: relocType <- SHR BITAND entry [1] 0xf0 4

31 P: relocAddr <- BITAND entry 0xfff

32
33 V11: EQ (BITAND (SHL one (SHR entry 12)) 0x3a0) 0

term

34 V12: OR EQ relocType 10 ULE relocType 4 term

35 V13: ULT ADD blockPage relocAddr imageEnd term

36
37 ## RelocType 4 uses two entries instead of 1

38 V14: Eq relocType 4

39 P(V14): tmpEntry <- ADD tmpEntry 1

40 P(V14): nextBAddr <- ADD nextBAddr 2

41
42 ## From ntdll!LdrRelocateImageWithBias :47

43 ### Checks that the RtlImageNtHeader is still

valid

44 ### Meaning that the targeted addre can 't be 0x0

or 0x1...

45 V15: OR (EQ relocType 0) AND (NEQ relocAddr 0) (

NEQ relocAddr 1) term

46 ### Can 't overlap with e_lfanew (0x3f -0x40)

47 V16: OR (EQ relocType 0) OR (ULT relocAddr 0x3f)

(UGT relocAddr 0x40) term

48 ### Cant ' overlap with PE magic (e_lfanew -

e_lfanew +4)

RAID ’21, October 6–8, 2021, San Sebastian, Spain Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti

49 V17: OR (EQ relocType 0) OR (ULT relocAddr HEADER

.e_lfanew) (UGT relocAddr ADD HEADER.

e_lfanew 4) term

50
51 V98: ULT tmpEntry nEntry

52 END L2

53 END L1

Listing 2: Excerpt of the model of the loader of Windows 10
handling relocations

Listing 2 shows the portion of the model of the loader of Win-
dows 10 that handles the Base Relocation data directory.

Lines 2 to 4 parse the RVA and size of the relocation table. Line 7
introduces the boolean predicate V6, which evaluates to true when
the relocation directory RVA and size are valid. All the following
statements have V6 as a precondition since they only make sense if
the executable has a relocation table.

The logic that models the relocation table’s content is embedded
in the loop L1 introduced at line 11 by the VLOOP operand. At each

iteration of the loop, the variable relocBlockAddr contains the off-
set of the current relocation block in the file, starting from the value
stored in loopStart. The boolean predicate V99 (defined at line 21)
is evaluated at the end of each loop cycle to determine whether
the loop must continue. If that is the case, relocBlockAddr will be
updated with the value stored in the variable nextBlockAddr. The
last parameter of the VLOOP operand is the unroll count that indi-
cates the maximum number of times the SMT solver must consider
the statements in the loop.

Each relocation block is followed by a number of relocation
entries which depends on the block’s size. The loop L2 handles
each relocation entry for the current block. For the sake of brevity,
we will not describe the parameters of the L2 loop, as they are
similar to the one of L1.

The terminal predicate at line 34 determines the types of relo-
cations that the loader supports. For Windows 10, this predicate
evaluates to true if the relocation type is either 10, or less or equal
to 4.

	Abstract
	1 Introduction
	2 The Portable Executable Format
	3 Software Handling PE Files
	3.1 Basic Operations on PE Executables
	3.2 PE Software Landscape

	4 Constraints Modeling
	4.1 Constraints Extraction
	4.2 Modeling Language

	5 Using Models
	5.1 Sample Validation
	5.2 Sample Generation
	5.3 Corner Cases Generation
	5.4 Differential Analysis
	5.5 Differences Enumeration
	5.6 Implementation

	6 Models Evaluation
	6.1 Assessing Under-Constrainedness
	6.2 Assessing Over-Constrainedness

	7 Differential Analysis
	7.1 Discrepancies among Versions of the Windows Loader
	7.2 Compliance Checks Analysis of ClamAV
	7.3 Memory Mapping Analysis of ClamAV, radare2, and yara

	8 Bypassing Popular Analysis Tools
	9 Discussion
	10 Related Work
	11 Conclusion
	References
	A Example of Constraints Model
	B Example of Translation in SMT problem
	C Excerpts from the Models of the Windows Loader

