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Noisy and Dynamic-Index Partitioned Modulation
for Physical Layer Security

Lina Mroueh and Idowu Ajayi
Institut Supérieur d’Electronique de Paris, 75006 Paris, France

Abstract—In this paper, we propose a noisy and dynamic-
Index Partitioned Modulation (IPM) to secure a Quadrature
Amplitude Modulation (QAM) constellation transmission over
a non-degraded wiretap channel. The QAM is partitioned into
multiple disjoint subsets that are separately indexed by a dynamic
key, known at the transmitter (Alice) and the legitimate receiver
(Bob), but not at the eavesdropper (Eve). The proposed IPM
maps the information bits into multiple coded sequences, each
one lying in a different partition of the QAM constellation space.
This mapping is performed through a cross-bit labeling, that
we define to increase the confusion at the eavesdropper, while
minimizing the Bit Error Rate (BER) at the legitimate receiver.
As the eavesdropper is not aware of the dynamic index pointing to
the different partitions, the IPM creates larger Voronoi detection
zones around Bob’s symbol compared to Eve. To induce further
confusion at Eve, we inject random uniform noise into IPM
symbols. The noise varies in a domain that is fully included in
Bob’s larger detection zone, but it exceeds Eve’s detection zone.
The performances of the noisy IPM scheme in terms of error rate
and secrecy rate are analytically and numerically evaluated. Our
results show that the IPM scheme creates on the Eavesdropper’s
link an error floor, independently of its Signal-to-Noise Ratio
(SNR). However, the IPM scheme preserves the legitimate link,
for which the BER decreases as the SNR increases. Indeed, the
secrecy rate remains positive for all SNR values and achieves an
asymptotical constant plateau value.

Index Terms—Physical layer security, set partitioning, secrecy
rate, symbol error rate rate, non degraded-wiretap channel.

I. INTRODUCTION AND MOTIVATIONS

ESPITE the inherent vulnerabilities of wireless transmis-
sion, the last decades have witnessed a significant in-
crease in the amount of sensitive and confidential information
exchanged over the wireless interface. This high connectivity
has major implications for critical sectors such as healthcare,
industry, transportation, and urban infrastructure. However,
with this growth in wireless connectivity comes vulnerabilities
such as eavesdropping and the extraction of metadata (e.g.
location, movement). Traditionally, cryptographic techniques
at higher protocol layers, have been mainly deployed to protect
information against unauthorized access. More recently, a
new approach, referred as Physical Layer Security (PLS), has
emerged to provide additional resilience against attacks that
target the wireless channels. PLS leverages intrinsic wireless
channel properties such as noise, fading, and interference to
favor a legitimate receiver (Bob) while degrading an eaves-
dropper (Eve) that attempts to eavesdrop on the communica-
tion between a sender (Alice) and Bob [2} |3].
Part of this work is submitted to IEEE Military Communications Conference

2024 [1]l. The conference paper presents the concept of Indexed-Partitioned
Modulation and provides numerical performances in a coded system.

Several approaches have been adopted in PLS and are
broadly categorized as: channel coding [4]|—[7]], channel adap-
tation [8]-[10]], Artificial Noise (AN) injection [11]]—-[13]], and
Physical Layer Encryption [14]. PLS techniques based on
channel coding such as lattice codes [4] or Fountain codes
[6l [7] are designed for degraded wiretap channel and ensure
security by adjusting the coding based on the presumed
advantageous legitimate link compared to the eavesdropping
link. Considering rateless codes such as Fountain codes in
[6L [7]], the legitimate SNR link dictates the choice of the
number of parity bits. While this number of parity bits is
sufficient to decode the signal at Bob, this will not be the
case at the eavesdropper with lower SNR than bob. In [4], the
difference in the SNR levels is used to design nested lattice
pairs with asymmetrical Euclidean distances and densities.
The cosets of a high dimensional space are used to label the
information, and the transmitted symbol is randomly chosen
in the labelled coset space. While the legitimate receiver will
be able to decode the noisy symbol within a dense lattice, this
will not be the case of the eavesdropper that will experience
higher noise level. The degraded wiretap assumption is not
suitable when considering eavesdroppers receivers located near
legitimate entities with comparable and even better SNR ratios.
Channel adaptation techniques exploit the frequency diversity
of OFDM systems [11]] or the incomplete dimensions of the
space generated by multi-antenna systems (12} [13]]. For these
systems, the security gain depends on perfect knowledge of
the radio link and increases significantly with the number
of antennas. Most of the AN-based PLS schemes rely on
multiple antennas systems in which the AN is injected into the
null space of the legitimate user’s channel matrix. In highly
dynamic environment, the channel estimation requires large
amount of feedback, and limits the use of this scheme.

Many of the PLS schemes in the literature have assumed
that the channel inputs are Gaussian distributed. The detection
complexity of Gaussian signals is high as it takes a continuum
of values. In addition to this, the amplitude of Gaussian signals
are unbounded, so Gaussian signaling is typically not used
in practice [15]. Typically, the channel inputs in practice are
usually drawn from a discrete signal constellation such as
QAM. These discrete channel inputs help to maintain moderate
peak transmission power and receiver complexity. However,
finite-alphabet input constraints have a significant impact on
the achievable PLS performance and this impact should be
taken into account in designing practical PLS schemes.

In this work, we propose a new approach referred as Index
Partitioned Modulation (IPM) for communication over a single



input single output non-degraded wiretap channel. Our IPM
scheme relies on a secret pseudo-random selection of the
partition in which lies an information symbol masked by an
artificial noise. The common secret dynamic index of sequence
is generated at the legitimate entities using a chaotic sequence
that is initialized using a common secret seed. The agreement
on this common seed is reached at the legitimate entities by
quantizing the reciprocal legitimate wireless link in a Time
Division Duplex (TDD) system. The spatial decorrelation
between the main and wiretap channels ensures independent
channel responses, and prevents Eve from accessing the shared
secret seed. At each slot, the decoding of noisy symbols is
performed in the partitioned subset. However, in the absence
of index knowledge at the eavesdropper, decoding is performed
using all the constellation space, leading to a smaller detection
zone at the eavesdropper than at the legitimate receiver. Inside
this partitioned constellation, we propose an optimized label-
ing, referred as cross-labeling to map the information bits into
symbols. This cross-labeling aims to increase the confusion at
the eavesdropper and to minimize the BER at the legitimate
receiver. To induce more confusion at the eavesdropper, a
random uniform AN belonging to a domain space, that is
fully included in the large Bob detection zone, is injected. Due
to the partitioning, the domain space of the random uniform
AN exceeds the eavesdropper detection zone, and this excess
leads to a significant degraded decoding at the eavesdropper.
The secrecy rate, Symbol Error Rate (SER), and BER at
the legitimate receiver and the eavesdropper are analytically
derived. Numerical results are finally provided to validate the
theoretical results and to demonstrate the secrecy performance
and robustness of our scheme.

The rest of this paper is organized as follows. In Section [[I}
we describe the wireless wiretap channel, we introduce our
proposed noisy IPM, and we provide a toy example to illustrate
our scheme. A mathematical representation is then provided
to describe the noiseless IPM, noisy IPM, and the associated
proposed cross-labeling in Section We evaluate, in Sec-
tion [V] the secrecy rate gap of this scheme, the BER at the
eavesdropper and at the legitimate receiver and the robustness
of this scheme. Simulation results are presented and discussed
in Section Section [VII] concludes the paper.

Notation: Vectors are denoted by boldface lowercase letters
(e.g. ) and individual vector elements are denoted by normal
letters (e.g. ). R{.} and {.} denote the real and imaginary
components of a complex vector/vector element. N and "U’
are used for intersection and union operators on a set while
>’ and *()” show the subsets and nulls in a set. The cardinality
of a set is represented by |.| while E{.} and *@’ represents the
expectation and exclusive-OR operators respectively. Finally,
the functions ®(.) and Q(.) refer respectively to the cumulative
distribution function and the tail distribution of a normal
Gaussian variable.

II. INDEX PARTITIONED MODULATION (IPM): GENERAL
CONCEPT

In this section, we present the general concept of our
proposed IPM scheme. The wireless wiretap system model

is first presented in Subsection Next, we describe in
Subsection and the main concepts of noiseless IPM
and noisy IPM. Finally, toy examples illustrating noiseless and
noisy IPM concepts are provided in Subsection |lI-D

A. Wireless wiretap channel

We consider a Single Input Single Ouptut (SISO) wireless
channel in which Alice sends a symbol x to Bob, that is subject
to a power constraint E[|z|?] = P with P being the total power
at the transmitter. The transmitted signal is intercepted by an
eavesdropper having a single antenna, situated in the proximity
of the legitimate receiver. We assume that Bob’s channel is
independent of Eve’s one, which can be satisfied when the
two receivers are separated by at least half a wavelength [16]
17]. Each receiver estimates its channel coefficient, and the
modulus of each channel is assumed as i.i.d. random Rayleigh
distributed variable. The received signals at Bob and Eve are,

y® = p®g 4 O (1)
Yy = h@g 4 ) )

The transmitted signal at Alice is denoted by z, the received
signals at Bob and Eve are respectively y(®) and y(¢). The ran-
dom noise z(*) and 2(®) are i.i.d. Gaussian complex variables
with zero mean and respective variances of o, and o.. The
average SNR® and SNR(® at Bob and Eve are defined as,
o P o P

SNRY £ 202" SNR'® = ok 3)

€

B. General IPM concept

Our proposed IPM scheme is illustrated in Figure [I] and
consists of partitioning the 29-QAM modulation (denoted by
Q. with [Q.| = 29 ) into 2 multiple disjoint spaces (denoted
by Ay, C Q, with 1 < m < 29, such that: A,, N A, =
0 vm,n; U,, Am = Q. and |A,,| = 297, Each sub-space

Partitions of Q. = 29-QAM
Estimated i
D Ind
o y({]amu': [ndex Jop
0 seneration
lkuxﬂ N ﬁ Omai
Information bits u
[1x(q-6)]
b Crosstabel an)
Noiseless IPM Noisy IPM

Fig. 1: The dynamic index and the cross-labeling respectively
indicate the partition (in gray) and the QAM symbol inside
this partition. The signal-output is the noisy IPM zx in @)

A,, is indexed at Alice side, by a dynamically chosen index
k with length ¢. A given (¢ — ¢) information bits sequence
b will have different images in ). depending on the value
of the index k. At Alice side, the index k will dictate the
reduced sub-space A,,. To map the bits into non-normalized
QAM symbols 9 (blk), a cross-labeling is proposed to induce
confusion at Eve side while minimizing the Hamming distance



between neighboring symbol at the legitimate receiver. We let
so be the corresponding normalized QAM symbol such that

1
s0 = \/7—81#(5\’@) “4)

where 1 (b|k) is the cross-labeling mapping function and E; =

@ is the QAM symbol energy.

C. Noisy IPM

In the high SNR regime, the Euclidean distances between
neighboring points are relatively large in both lattices A,, or
Q.. In this case, the secrecy gain becomes non-significant as
the noisy symbols become distinguishable at Bob as well as
at Eve. To induce more confusion at the eavesdropper, we
propose to inject a random noise, denoted as w, into the
QAM symbol generated by the IPM. To satisfy the power
constraint, a scaling factor 0 < 6 < 1 is used to split the
power between the useful information and the artificial noise
such that E[|u|?] = (1 —6)P. The noisy IPM signal generated
at Alice side is then,

T = \/07350 + u. ®))

The pdf of this random uniform AN and the value of 6 will
be further detailed in Subsection

D. Toy example illustrating the IPM concept

To illustrate our proposed scheme, we provide the following
examples of one-bit and two-bits partitioning with noiseless
IPM and noisy IPM.

1) Noiseless IPM: We consider a 16-QAM constellation
with 2 partitions in Figure 2a] and 4 partitions in Figure
The last three (resp. the two) bits in Figure 2a) (resp. Figure 2b)
are the information bits and the first (resp. the first two) bits
corresponds to the shared dynamic index between Alice and
Bob. As an example in Figure [2a] the image of the information
sequence 101 is ¢(101]|0) = —3 — 3i if the index is 0, and is
equal to 1(101]|1) = 1 + 3q if the index is 1. This means that
the sequence 101 has two distinct images in the constellation
of Eve (.. For the 2-bit partitioning example in Figure 2b]
1(00]00) = —3 + 14, 9(00|01) = 1+ 34, ¥(00]10) = -1 — 34
and v (00]11) = 3 — 13.

2) Noisy IPM: Figure2aillustrates Bob detection zones (or
the Voronoi regions around each symbol) of a 16-QAM with
two partitions: the blue lines delimit the detection zones in
the partition with index 0 and the red ones for the case of an
index 1. The symbol detection is performed without error as far
as the received symbol remains in the detection zone around
the transmitted QAM symbol, to say ¢ (001]0) = —1 — 1i.
To induce more confusion at Eve, we propose to transmit,
instead of the IPM QAM symbol, a random complex number
uniformly chosen in the gray square S (that is included in the
Voronoi region) centered around this transmitted symbol. We
can intuitively observe that, at Eve, depending on the position
of the received symbol, there is an equal probability that this
noisy IPM symbol stems from the transmitted symbol and its
neighboring symbols (e.g. —1 — 17 or —1 4 17 for the noisy
IPM signal in Figure[2a). In a similar way, Figure [2b|illustrates

Bob’s detection zones with 4 partitions. Here again, instead of
transmitting a QAM symbol (to say 1 (01|10) = —1 + 14), we
add random uniform AN € § around this point (in gray).

0110 111

111 0100 1101 0010 01000 101
8 ° 1f

0110 N, 1001 H 0000 o0
- 13 I3

4 R
100” o111 4 vmuu 1110 mﬂm ﬂoaa
4 o

0011 v 1000 0001 00 oon
3k g s o 3

B 1
In-phase amplitude

(b) Noisy IPM: two-bit partitioning

1 1
In-phase ampiitude

(a) Noisy IPM: one-bit partitioning

Fig. 2: 16QAM IPM. Fig. : In Agp, the Voronoi region
around 1 + 14 is in blue; In ., it is in yellow. Fig. (2b): In
Q., the Voronoi region around 1+ 17 is in yellow. In A, the
Voronoi region centered around —1 — 1¢ is in red.

III. DESIGN OF No1sY IPM ENCODER

In this section, we detail the different transmitter blocks
of Figure [I] Subsection and describes the TPM
partitioning and bit mapping referred as cross-labeling. The
AN is then characterized in Subsection Finally, we
provide in Subsection the channel dependent index
generation algorithm.

A. 29-QAM partitioning

The partition concept is known since the seminal work
on mapping by set partitioning of Ungerboéck in [18] that
combines coding and modulation in a single unit to mitigate
the noise impact on the digital received signal. Unlike the
original Ungerboéck partitioning scheme, we assume here
that the legitimate receiver has full knowledge of the index-
partition. Moreover, the objective of the bit labeling in IPM
scheme is different from the mapping by set partitioning.
It aims to induce more error at the eavesdropper, and to
minimize the error at the legitimate receiver. The main idea
of the partitioning is to recursively divide the symbols in the
29-QAM constellation into two groups of disjoint symbols.
In each group of symbols, the Euclidean distance between
the neighboring points is increased. For an IPM with 2
(resp. 4) partitions corresponding to an index-length of / =1
(resp. ¢ = 2), the minimal Euclidian distance in Figure
(resp. Figure E]) is dpinV2 (resp. 2dpin) where dpi, is the
minimal distance in the normalized QAM constellation with
Admin = \/% In the general case, the power scaled minimal
distance in a given partition with ¢ bits is

dg(Ar) = 22V Pd . (6)

To easily generate the partitions for £ = 1 and ¢ = 2, one
can consider the 29-QAM constellation as the set of points
generated by 47Z[i] — (2 + 2¢) + (£1 £ 1¢) (inside the constel-
lation bounds). Note that in each case, (+1 & 1i) generates
shifts with 4 orientations ,/ "N\\, around 47Z[i] — (2 + 2i)



points. For the two partitions case, Ay (resp. A1) are generated
considering 7 (resp.\\, ) orientations shifts. For the 4
partitions case, the partitions Agg, Agi, A1gp and Ay are
generated considering /, ', N\, "\, orientations respectively.
For 29-QAM constellation, the average number of neighboring
symbols at Bob side for / = 1 and ¢ = 2 is respectively,

N = 4 —2rp, )
NP = 41— 2 @2/2), (8)

At the eavesdropper, the average number of neighboring
symbols N(¢) computed in €, is,

N©) = 4(1 —2792), )

B. Cross-labeling: bit mapping in the partitioned 29-QAM

Let b be the information bit vector carrying (g — ¢) bits and
k be the index partition of 1 < ¢ < 2 bits. Each symbol in
the 29-QAM constellation is labeled by the binary sequence
[k, b]. Knowing k, the bit mapping is a bijection, and b has a
unique image denoted ¢ (b|k). However, when k is not known,
b has 2¢ images in Q. with ¢ (b) = (¥ (blk1), ..., ¥ (blkye)).
For the ¢-bit length index k, the bit labeling is performed
to guarantee that: (1) the Euclidean distance between all the
images of v (b) is maximized; (2) the Hamming distance be-
tween the information sequence (the ¢—¢ last bits) considering
two neighboring symbols in 2. is at least equal to 1; (3) the
Hamming distance between the information sequence in Ay, is
minimized. The first two conditions will increase the confusion
at the eavesdropper when attempting to decode the sequence b
in Q.. The last condition will minimize Bob’s BER.

0100 0010 11 1001
3 Top Left ’Y o 3 o, oy
0o 7! 1,0/0 " o1
. o . N o
2 | o000 0110 H 1011 1101
[ < ° £ a a
3 a § JAR
s 001 T~ 0111 s | 1010 NP
E ) L FRIE o
2 oy U g & " gotiom right
0101 0011 1110 1000
-3 < ° -3 o o

3 3 3

-1 1
In-phase amplitude

(b) IPM: Ay — [

K] 1
In-phase amplitude

(a) IPM: Ag — ¢
Fig. 3: Binary mapping with respect to M (k) in

1) Cross-labeling with one-bit index: In this case, we need
to label the points generated by the shifted 4Z[i] — (24-2¢) with
a shift orientation of 7 for k = 0, and \\, for k£ = 1. The
information sequence consists of (¢ — 1) bits. Our proposed
cross-labeling is performed in 4 steps: (S1) Identify inside each
partition Ay, the virtual points generated by 47Z[i] — (2 + 2i)
and situated inside the constellation. These virtual points are
the same in both partitions but the bit-labeling is different.
(S2) To label these virtual points, a Gray mapping M (k) is
used with a sense defined with respect to k£ and the all-zero
sequence of (¢ — 2) bits as,

M | top-left 0 ; anti-clockwise Gray map, k=0,

1(k)= bottom-right 0 ; anti-clockwise Gray map, k= 1.

(10)

(S3) In each partition, the shift orientation , in Aq (resp. '\

in Aq) is alternatively labeled by 1 and 0. (S4) The QAM

symbol is labeled from left to right by: the partition index, the
shift direction binary label, and the virtual point label.

Our proposed bit labeling is illustrated in Figure[3]: Virtual
points are indicated in Figure [3a] and [3b] and are labeled
according to (T0).

2) Cross-labeling for two-bits index partitioning: In this
case, the partition is determined based on the shift orientation
00 =/, 01 =7, 11 =N, 10 ="\,. Similarly, the virtual points
are identified and are labeled with respect to the position of
the (¢ — 2)-length zero sequence and the sense of the gray
mapping Mo (k) is,

top-left 0; anti-clockwise Gray map, k =00,
Mo (k)= top-right 0; Slockwise Gray map, k=01,
bottom-left 0; clockwise Gray map, k =10,
bottom-right 0; anti-clockwise Gray map, k= 11.

(1)

Figure [] illustrates the 16-QAM bit labeling with a bit index
of length 2. The virtual points in Figures@a]to [dd| are identified
and labeled according to (TT).

The average Hamming distance and the average number of
neighboring symbols are summarized in Table [I]

C. Artificial noise characteristics

To simplify the notation, we drop all Bob and Eve super-
scripts (®) and (¢) from the output, the input and channels. The

0110 0100 1111 1101
Top left o o Top right iy py
00 10 ‘Qf) '\1’0 01 1 17 o1 7
+ + e ¥
g 000( 001 k| E| |
s o < g’ g1 g1
g % o111 0101 S S 1110 1100
8 B4 ) o B4 Ea ° °
i § § g
3 o1 1 S ‘Vj \{1 °© o 10 & 07 00 7
- - + +
000 / oo / Botiom left Bottom right
I3 o 3
B T B s 1 | s s P i s 3 T
In-phase amplitude n-phase ampitude In-phase amplitude In-phase ampliuce
(@) Aoo (®) Ao1 (©) Ao (d) A11

Fig. 4: Binary mapping with respect to My (k) in
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Fig. 5: 1D illustration of the equivalent noise: 1 and 3 are neighboring points in 2. with Voronoi region | —2; 4+-2[ and | —4; +4];
1 and 5 are neighboring in a given partition with larger Voronoi regions | — 3; +3[ and | + 3; +7].

TABLE I: Cross-labeling: average Hamming distance

64-QAM 16QAM  QPSK
¢ 1 2 1 2 1
Bob dy 137 1 123 1 1
N 306 3 225 2 1
Eve dy 265 143 217 134 05
N 35 35 3 3 2

model in (1), @) and (B) becomes,

y=\/97Ph30+(hu+z). (12)

1) Characterization of the AN distribution: The equivalent
noise v, = u + h~'z in (12) is the sum of the AN u
and a Gaussian random variable h= 'z ~ CN(0,0},) with
oy, = o /|h|. The pdf of the sum is nothing but the convolution
of the pdf of w with the Gaussian distribution. In the high
SNR regime, the pdf of u should preserve the quality on
the legitimate link, and induce confusion at the eavesdropper.
To perform this, the pdf of u needs to convert the Gaussian
distributed noise illustrated in Figure [5a] into a flat-topped
distributed variable on the edges of €).-Voronoi region, but
with a thin-tail at the edge of A,,,-Voronofi region as illustrated
in Figure [5b] The flat-topped behavior of the distribution
ensures confusion between neighboring points of {2., however,
the thin-tail behavior of the equivalent noise makes the two
neighboring points of A,, distinguishable as illustrated in
Figure[5b] When o = 0, the Gaussian distribution converges to
a dirac and the required behavior in Figure [5b| converges to a
window with width R that should be set in a judicious manner.
To regularize the thickness of the tail in the A,,-Voronoi region
and the flat-topped behavior in {2.-Voronoi region, the uniform
noise bounds are set to =R where,

R 2 Bdg(Ar)/2 = VOP2Y*> 7 Bdin (13)

with dg(A) is defined in (6) and 0 < 8 < 1 is a regularization
parameter that ensures that the AN does not exceed A,, -
Voronoi region. The 2D-pdf of the AN is then,

1
J) {0 otherwise (14
S={ueC:—-R<R(u),S(u) <R}, (15)

is defined in the 7/4-rotated coordinate system for { = 1,
and in the Cartesian coordinate system for / = 2, and its

area is |S| = 4R2.

2) Power control of AN: The AN power computed in the
Cartesian coordinate system for ¢ = 2 and the 7/4-rotated
coordinate system for £ = 1 is E[jul?] = %. The power
constraint, satisfied for E[|u|?] = (1 — 6)P, requires that,

3E;

0 — Tt (16)

D. Dynamic shared index generation

IPM relies essentially on a dynamic index that indicates, for
Alice and Bob, in which partition the QAM symbol lies. This
index should change dynamically in each transmission slot to
guarantee that it is not intercepted at the eavesdropper.

1) Common seed generation: To perform this, a common
seed 0 < a9 < 1 is generated at the beginning of the
transmission based on the impulse response of the TDD
channel between Alice and Bob. The key establishment tech-
nique based on channel reciprocity-based has been widely
investigated in literature aiming to generate a key [14} [20].
Our goal is to use this partial quantized knowledge to generate
a shared common seed at Alice and Bob. A quantization of
the channel between Alice and Bob is required to generate
this common seed over a large number of bits, to say 128
bits or 256 bits as in [[I19]. The agreement generation of the
binary sequence extracted from the quantized channel include
four steps: channel probing, channel quantization, information
reconciliation and privacy amplification. We assume that this
common seed is not available at Eve, and that 2128 or 2256
trials are required to know the exact initial seed.

2) Dynamic index generation: To generate the dynamic
index at each slot, we use the chaotic sequence [21] that
critically depends on its initial value and the p-value with
i € [0,4]. Note that the chaotic behavior of the sequence
occurs when initiating p to a value p > 3.57 (except for some
values around 3.82 where there is an oscillation around 5 dis-
tinct values). The main steps of the dynamic index generation
are illustrated in Algorithrrﬁ} Moreover, this common seed is
not sent on the wireless interface, and a congruential Pseudo-
Random Number Generator (PRNG) is used to generate bits
associated to the chaotic sequence output (line 7 in Algorithm
[I). This operation is not reversible and it will not be possible
to find the values of «; in the algorithm from the index k;.
Using a numerical simulation, we have shown that this chaotic-
sequence algorithm provides an equal probability to generate
a bit equal to 1 or 0.



Algorithm 1 Generation of dynamic index

Require: The time slot ¢, the length of the index ¢
1: Set the precision parameter to p = 12

Set Ho = 3.7
if t = O then

oo = INITIALIZE LOGISTIC MAP(h(?)
end if

ap = ,uat—l(l - Oét—1)

Compute &; = round(ay x 107) (mod 2°)

Convert &, to binary: k; = decimal to binary(ay, £)
Save the value of oy

D A U

IV. DESIGN OF NOISY IPM DECODER
In this section, we convey the maximum likelihood decoding
criterion into an Euclidean distance minimization. For this,
we characterize first the equivalent total noise distribution and
deduce the symbol decoding rule.

A. Egquivalent total noise distribution

Given the channel model in (T2)), the conditional probability
of y given s, denoted as w(y|sg, h) is computed in Lemma 1]

Lemma 1. For the noisy IPM case, the conditional probability
W(y|80, h) is

2 ¢
1
W(y|80,h):@ H
k=1

(I)<R—ug;€) _@(_R—&-uz’;f)

Oh Oh
A7)
with (uglg,ugg) are the coordinates of
u, =h~'y—VOPsyo,  |h| #0, (18)
in the 7 /4-rotated coordinate system, and (ufi, uf%) are the

coordinates of u, in the Cartesian coordinate system, such
that, ufi = R(u.), u(Q% = S(u,) and u(lz = cos(m/4)u,,1+
1

sin(mw/4)u, 2 and ui% —sin(m/4)uy 1 + cos(m/4)u, 2.

Proof. The proof is provided in Appendix [A] O

B. Maximuml-Likelihood (ML) criterion and detection zone

Theorem 2| summarizes the IPM decoding rules obtained by
applying the ML criterion to Lemma [T}

Lemma 2 (ML detection). The ML detection maxw(y|s, h)
is equivalent to finding the constellation point that minimizes
the Euclidean distance in the appropriate Lattice L, i.e.,

§= argmig ly — VOPhs|*. (19)
s€

where L = Ay, is the partition indexed by k at the legitimate
receiver and L = Q. is the 29-QAM at the eavesdropper.

Proof. The proof is provided in Appendix O

V. SECRECY METRICS EVALUATION

In this section, we evaluate the secrecy performance of our
scheme in terms of secrecy rate in Subsection and error
rate in Subsection [V-B] as well as its robustness against attacks
in Subsection [V-C

A. Secrecy rate evaluation

In this subsection, we compute in Theorem [I] the secrecy
rate defined as the difference in mutual information between
the legitimate link and the eavesdropper’s link with discrete
and finite alphabet inputs. The main difference between both
links stems from the knowledge of the initial value of the
dynamic index at Bob side but not at Eve.

Theorem 1 (Mutual information). The mutual information
with full index knowledge,

> spen, @50, A M) |
w(y® [ (blk), (")

(20)

1((blk), y)=(q— ) - E

log,

and the mutual information without index knowledge,

P spea, Wy ls0, h)
2k Wy (blk), h()
2D
The Secrecy Rate (SR) is computed using (20) and (21). as,
SR = I(4(blk), y*) — Le(4(b),4).
Proof. The proof is provided in Appendix [C| O

1(4p(b),y') = (¢ — ) —E ll%

Corollary 1.1 (Secrecy rate asymptotic behavior). In the
high SNR regime, the asymptotic mutual information of the
legitimate link between Alice and Bob is,

lim Iy(4p(blk), y*)) = (g~ 0).

The asymptotic mutual information of the eavesdropper link
between Alice and Eve is,

lim 1e(4(b),y”)) = (g — £) — SR-(8)

with SR.(8) = 0if 0 < 8 < % Otherwise, for the 29-QAM
constellation with q # 2,

_ 2
N<e)(1—ﬁ) : (=1

2
N (1—%)—2%2(1—%) 0=2

(24)
with N(©) being the average number of neighbors around each
constellation point in ). defined in (9). For the case of QPSK
with { = 1-bit partitioning,

1\2
SR =(1-=—] .
0= (1-3)
Proof. The proof is detailed in Appendix O

(22)

(23)

SR(B) =

B. Symbol error rate evaluation

Using the ML criterion in Lemma [2] the correct detection
zone D around a symbol sg is the Voronoi region centered
around sg such that

D(L)=V(sg) ={veC:lsg—v| <|s—wv],Vse L} (25)

with £ = A, at Bob and £ = . at Eve. The bounds of
the detection region depend on the scaled minimal Euclidean



distance where dg(Ay) = % and is equal to dg(92.) = %
The symbol error probability is,
P, = Prob{u, = (u+h~'2) ¢ D(L)}, (26)

where D(L) is the detection zone specified in Figure E] and u,
is the random noise with coordinates in the rotated 7- system
for £ = 1 or the Cartesian system for ¢ = 2, havmg as pdf
distribution detailed in Lemma [I] In the high SNR regime, the

S(u)
d(92)

A [ A

!
=

ror Bop Tx ok or R R R 51 R g R

7 4 B B % 2 5

(@) Evewith =1, SND#S (b) Eve with ¢ =2, DC S

Fig. 6: Error detection zone D is in gray and the uniform noise
domain space S is filled with a dot pattern

average BER can be deduced from the most dominant error
event computed in (26) as,

7(b),(e)

BER()(®)(SNR) = J -H__pW®()(SNR),  (27)

with Jg ) (resp. CZ(HS )) being the average Hamming distance in
Ay (resp. Q) that are summarized in Table

1) Error rate evaluation at Eve: At the eavesdropper, the

SER is computed from where the detection zone with

one-bit partitioning is such that,
R -~ R
D1(Qe) = {u. € C: |R(u.)| < E; [R(wz)| + [S(u.)| < B},

and for two-bits partitioning,

R

R
Da(620) = {us € C: [R(u:)] < 7118w < g7

We can notice from Figure [6a] that if the detection zone
D1(2) NS = S, the symbol error probability becomes
negligible in the hlgh SNR regime. However, D1 (Q.)NS # S,
requires that % < B < 1. Similarly, Do(Q.) NS # S if
% < B < 1. The expansion of these SER expressions shows
that in the high SNR regime, the SER achieves a constant high
SER floor as detailed in Theorem 2

Theorem 2 (eavesdropper error rate). For % < B <1, the
SER at the eavesdropper, for a noisy IPM considering 29-
QAM constellation (q # 2) achieves a constant error floor:

For the one-bit partitioning (£ = 1):

2
Pl ~ 2(1 — 279/2) (1 - 215) +0(SNRY).  (28)
For the two-bit partitioning (¢ = 2):
1 1-2792 1
PED x(1-279(1- =) (1+ —————
€ ( )( 2&)( 1L'1+2—q/225>
+0(SNR?), (29

b D(ﬁ 1,2) Ak)

which is approximately equal to ]P’ée’Q) ~1-— ﬁ for high

modulation order. A correction term should be added to the
SER when attempting to decode two symbols carrying the
. . . (e,2 (e,2)
same information binary sequence, as, P¢l’ = Pe¢ —
2

274 (1 — %) . For the case of QPSK constellation with one-
2

bit partitioning, Pge’l) ~ (1 — %)

Proof. The proof is provided in Appendix O

2) Error rate evaluation at Bob: At the legitimate receiver,
the error rate is computed from (26) where

R
{u. € C:|R(u.)| < 3 and |S(u,)| < }
The expansion of this expression is detailed in Theorem Bl
given |h|. The average error rate considering Rayleigh fading
channel distribution as well as its asymptotic behavior are
computed in Corollaries [3.1] and 3.2}

Theorem 3 (General case). Let § be the decoded symbol at the
receiver side and sg being the transmitted one. Considering
the general noisy-IPM, the symbol error probability at Bob is,

N(b)
22/26

P®)(SNR®) ~ E, [ )(SNR®) + P)(SNR(®) )]

(30)

where

IEDgj:)L = 277PQ(77P V SNRS))) - 277mQ(77m V SNREP)’ €2))

2 - 7211 b _772 b
- [ () s s
h

(32)

b
B}

)

with SNRy, = PSNRelWE Ly 9t/2(1 - ), o, = 29/2(1 4+
B) and Néb) N( ) with N®) defined in (El) and .
Proof. The proof is provided in Appendix O

Corollary 3.1 (Average SER with Rayleigh fading distribu-
tion). For noisy IPM case, the average symbol error proba-
bility considering the Rayleigh distribution of |h| is,

G (b)
N _

PO (SNR®) () ®)
(SNR®) ~ 77 ﬂ[ 1 (SNR®) 4P, ,(SNR )}, (33)
where

b b

—(b) o 77m, SNR"(M 772 S 7(¢)

Ps,l Mp m 1(34)
VP SNRY 41 /n2SNRY) 1

_ 1 1 1

p®) 35)

e2 — -

VENRu \ /2 SNRY) 41 (/52 SNR(Y 41
with SNR{Y) = £~ SNR®)
Proof. The proof is detailed in Appendix [D-C| O




Corollary 3.2 (Asymptotic behavior for noisy IPM). In the
high SNR regime, the symbol error probability behavior at the
legitimate receiver is:

1) Partial-noisy Voronoi region where 0 < 3 < 1,

PO (SNR®)) ~ N0 1 + o(SNR™)

‘ 2(1 - B?) Es SNR® '

(36)
2) Full-noisy Voronoi region B =1,
NP6 1

PO (SNR®)) ~ 2 — SNR™Y);
(37)
Proof. The proof is provided in Appendix O

C. Vulnerabilities and countermeasures

In this subsection, we consider different types of attacks
that can be exploited by the eavesdropper to compromise the
security of IPM scheme.

1) Reuse of the same common seed: In non-dynamic en-
vironments, there is a non-zero probability to get, based on
quantized wireless channel estimation, identical common seeds
for two neighboring legitimate receivers. This situation arises
when the transmitter communicates with two neighboring
users within a period that is lower than the coherence time.
By tracking the position of users, the eavesdropper can make
use of the same index reuse to perform joint decoding in
A x Ay C Q2 for all values of k. As a result of this joint
decoding in the subset Aj x Ay instead of 22, the BER at
the eavesdropper is significantly enhanced. The common seed
reuse weakens the security of the encryption and compromise
the communication security. To overcome this problem, the
transmitter needs to save within the coherence time the values
of the common seed used to initialize the PRNG. If a reuse of
the same common seed is detected, the transmitter indicates to
the receiver to change the default precision parameter of the
congruential PRNG from p = 12 to another random integer
value (Line 1 in Algorithm [I). This modification ensures that
the legitimate receivers’ binary index sequences are distinct.

2) Highly correlated wireless legitimate and eavesdropper
paths: Most of literature work on physical layer key genera-
tion assumes that the distance between Eve and Bob is higher
than half of the wavelength. This assumption guarantees that
the wireless paths are uncorrelated and that the common seed
quantized on 128 bits cannot be predicted at the eavesdropper.
However, in the case that Eve is situated at a distance that
is less than half of the wavelength to Bob, the correlation
between their wireless channels will create a risk of Eve
predicting the common seed. To avoid this worst case scenario
and to limit the vulnerability window, a regular update for the
physical layer key should be performed at intervals that are
higher than the coherence time.

3) Attack with spatially distributed and coorperative eaves-
dropper: When different spatially distributed eavesdroppers
cooperate to intercept the signal, the noisy signal is decoded
on an equivalent Single Input Multiple Output channel. In the
high SNR regime, we have shown in Theorem [2] that the error

probability at the eavesdropper is independent of the SNR. The
receiver diversity does not enhance the eavesdropper error rate.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the noisy IPM in terms of secrecy rate and error rate, as well
as its robustness against attacks.

A. Secrecy performances

Figures [7a] and [7b] compare the mutual information of the
IPM scheme for Bob and Eve considering three modulation
schemes 64-QAM, 16-QAM with one and two bits index
length and a QPSK with a one-length index. In the high SNR
regime, Bob’s mutual information in Figure converges to
(¢ — £) bits per channel use (bpcu). However, the mutual
information of Eve in Figure [7ais degraded compared to Bob
and it reaches a plateau value that is significantly lower than
(¢ — ¢) bpcu in the high SNR regime. We can notice that the
theoretical asymptotic values computed in Corollary [T.1] and
illustrated in dot-dash lines converge towards the simulated
ones. Knowing the dynamic index, Bob is able to decode its
own information considering only the indexed partition with
distant neighboring symbols. However, Eve has to consider
the whole constellation 2. and to deal with the confusing
uniform AN that adds random perturbation to the symbols
in an area that exceeds their Voronoi region. This noise will
not affect the legitimate receiver as the random uniform AN
lies inside the Voronoi region of the symbols belonging to a
single partition. Figures [/c| and compare the SER at Eve
and Bob. Figure [/c| shows that for all the spectral efficiencies,
the SER at Eve achieve plateau values that converge to the
theoretical ones computed in Theorem |2} We can also see that
the SER at Eve with two-bits partitioning is higher than the
one-bit partitioning. This is a consequence that the error occurs
almost surely when the received noisy IPM symbol is situated
at the intersection of random uniform AN region and outside
the Voronoi region around a symbol. This region is larger with
two-bits partitioning than with one-bit partitioning. At Bob, the
SER decays in function of SNR, and the theoretical values in
Corollary [3.T] as well as the asymptotical ones in Corollary [3.2]
converge to the simulated ones.

Figures and compare the SER at Eve and Bob
considering different values of 5 with SNR = 20 dB. For
all the spectral efficiencies, the performance of Eve in terms
of SER and secrecy rate are degraded when increasing the
value of 5. The injected noise becomes more powerful when
beta increases and the domain space of the random uniform
noise becomes larger. This will increase the confusion at
the eavesdropper and will increase the SER and the secrecy
rate. The partitioning with two bits has better performances
than the one bit partitioning. The increases of 3 degrades
the performance of Eve but also degrades the ones of Bob.
However, the SER remains low enough in the ranges of
1073 to 10~* at an SNR of 20 dB. A trade-off between the
degradation of the quality of the transmission at Eve and the
correct detection at Bob should be found by adjusting the value
of 3 and the spectral efficiency.



St G1QAY
GIQANLE = 1. Sbpen 08
a5 45 ]
16QAM-£ 2, 2bpen| 08
4 B QPSIc - 1, thpen
go7 K- bpeu
935 s Theo: QPSK-£ = 1, 1bpen
2 Thee, Q3K - 1, Lopen g g
o 2 o6
w3 - 8 =
® Kl 2
< c ©05
s = 5 £
E 25 = ! L2 5
E £ g
s 5 204
E 2 N £ 3
] E] £
Sis 1 P 303
1 4 02
05 4 05 0.1
) o . . . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
SNRin dB SNRindB SNRin dB
(a) Eve: Mutual Information (8 = 0.8) (b) Bob: Mutual Information (3 = 0.8) (c) SER at Eve (8 = 0.8)
10°, T
07 T T T T 107
—+— 64QAM-{ = 1, 5bpeu —+— 64QAM-{ = 1, 5bpcu
10! 4 06 o | —e— 64QAM-{ = 2, dbpeu
g —+— 16QAM-( = 1, 3bpcu
o —6— 16QAM-{ = 2, 2bpeu
3 05 10 QPSK-£ = 1, Tbpeu 1
s ° o«
5107 E 2 <
3 g 7]
E St GIOAM — 1, 5 bpen <
H Theor G1QAM-¢ — 1, 3 bpeu 204 g
s Asyms G4QAM-L — 1, 5 bpen H I
5 0%p | o Smoian K] 8
s gos 5
3 . >
£ S £
s E g
02 3
<
Simu: QPSK-¢ = 1, Thpeu e
Theo: QPSK-£ = 1, 1bpeu g 0.1 w
10° Asym: QPSK-£ = 1, Thpen 4
. . . . . . . . . ol 108 | | | |
0 5 15 20 25 30 35 40 45 50 05 06 0.7 0.8 0.9 1 0.5 0.6 0.7 08 0.9 1
SNRiin dB Value of 3 Value of 3

(d) SER at Bob (8 = 0.8)

(e) Variation of Eve SER with 8 (SNRe > 20 dB) (f) Variation of Bob SER with 8 (SNR; = 20 dB)

Fig. 7: SER and mutual information at Eve and Bob

100 T T T T T T T T 10°
——TPM: GIQAMZ = 1. Shpen
- PM: GIQAM-£ = 1, Sbpcu
GIQAME — 1, Sbpen
107"
e N N
b=t RN T Tl 3
z @ RN et e 2
2 H 2.
3 2 3 8 10
o & N @
3 K N K
2 492 L 4
z 210 RS 2
8 g o 5
& g
@ 2 RN 8 09
i X 510
@ NN =
AR @
2 = =0 E
10 IPM: GIQAM-£ = 2, 4bpeu NN R
—0- Gray-IPM; G1QANE( = 2, dbpeu N 10 “o;
o

15

20 30 10 15

25
SNRin dB

(a) Secrecy rate with 64QAM

20 25
SNRiin dB

(b) BER at Eve

30 10 15 20 25

SNRiin dB

(c) BER at Bob

Fig. 8: Comparison of IPM (8 = 0.8), IPM with Gray labeling (5 = 0.8) and noiseless IPM

is obtained by considering that, by = by & ...bg_; and
bq = b% @...bq,1 b() = 1@(()1 @...b%,l) and bq =
bg@. .. by_1 if the index is equal to 01, by = b1D. .. b%,l
and by = 1@ (bg ®...by—1) if the index is equal to 10,
and by = 1@(()1@ . ~b%—1) and bq = 1@(()% D.. .bq_1)
if the index is equal to 11.

To compare the efficiency in terms of BER and secrecy rate
of our proposed IPM scheme, we consider two other schemes:

e Non noisy IPM with 8 = 0. In this case, the injected
random uniform noise is null.

IPM with Gray labeling: we can notice that the Gray
labeling of the QAM constellation symbols with a binary
label bgb; . ..b,_1 partitions the QAM constellation into
two sets by considering that by = by @ . .. b,_1 when the
index is equal zero, and bg = 1 ® (by ® ...b,—1) when
the index is equal to one.The four set partitioning case

Table [l compares the Hamming distribution of the Gray map-
ping and our proposed cross-labeling for a 64QAM constella-
tion with one or two bits partitioning. At Eve, the probability to
get a zero Hamming distance between two neighboring symbol



TABLE II: Hamming distance distribution

0 1 2 3 4

0 Cross 0 0.07 0.36 0.43 0.14
~ @ Gray 028 072 0 0 0
Ll g Cross 0 082 0 018 0
m  Gray 0 0.57 0.43 0 0
2 Cross 0 0.57 0.43 0 0
~ @ Gray 036 064 0 0 0
L5 Cos 0 1T 0 0 0
@ Gray 0 064 036 0 0

is non-zero compared with our cross-labeling. This means that
the injected random uniform noise will not always degrade the
BER at Eve. Indeed, the Gray mapping degrades slightly the
BER at Bob as the average Hamming distance with the Gray
mapping is higher than the cross-labeling.

Figure compares the secrecy rate of the 64-QAM
constellation considering one or two bits partitioning, with
the noiseless IPM case and the IPM with Gray labeling.
For noiseless IPM, the average mutual information of Eve
converges to the maximal spectral efficiency (¢ — ¢), and the
secrecy rate converges to zero at high SNR. Compared to the
Gray-labeling, the cross-labeling maximizes the secrecy rate
as observed in Figure The same behavior of the Gray-
labeling versus the cross-labeling is also observed in the BER
in Figure[8] For the noiseless IPM, the BER at Eve in Figure[3b]
decays with SNR with a small loss in coding gain compared
to Bob. At Bob in Figure the BER is slightly degraded by
the random uniform noise compared with the noiseless case.

B. Secrecy robustness

As explained in Subsection the error probability at
the eavesdropper decreases with the reuse of common seed
to initialize the logistic map. However, the error rate at the
eavesdropper remains unchanged when multiple distributed
eavesdroppers cooperate to decode the signal. Table [IIIj com-
pares the SER at the eavesdropper without reuse of the
common and with two reuse of the common seed. We also
compute the SER considering 4 cooperative eavesdroppers. As
mentioned, the common seed reuse problem can be mitigated
by changing the parameter of the congruential PRNG. By
changing in Algorithm |I| the parameter p from 12 to 14, 50%
of the bits generated in the new sequence are different than
the previous one.

TABLE III: SER at the eavesdropper (16QAM ¢ = 2)

SNR 25 30 35 40

Unique index 0.6465 0.6538 0.6446 0.6354
Reused index 0.2856 0.2939 0.2880 0.2836
Cooperative 0.6486 0.6541 0.6453 0.6353

VII. CONCLUSION

In this paper, we proposed a new PLS scheme, referred
noisy and dynamic IPM to secure wireless communication

against eavesdropping in a non-degraded wiretap channel. The
IPM scheme relies on three main components: a dynamic
index generator that selects the secret partition at each time,
a QAM cross-labelling and a random uniform noise injection.
Our analytical and numerical results show that the IPM creates
an error floor on the eavesdropping link while maintaining
transmission quality on the legitimate link. Compared to a
classical modulation, the IPM does not increase the compu-
tational complexity at the transmitter or at the receiver side.
However, the regular updates of physical layer key generation
exhibit additional complexity at all the legitimate entities.
Indeed, perfect synchronization is required to ensure that the
same partition index is used at the transmitter and the receiver
sides. The IPM scheme is compliant with wireless technologies
based on QAM constellation such as the IEEE 802.11p used
in Intelligent Transportation Systems (ITS). In the context
of vehicular communication, eavesdropping compromises the
privacy and the anonymity of sensitive information such as ve-
hicle location, travel pattern, personal information of travelers.
The power of artificial noise is adjusted using the parameter
£ to induce confusion at the eavesdropper, depending on the
information’s sensitivity [

APPENDIX A
PROOF OF LEMMA[I]

The proof of this Lemma is obtained from the convolution
between Gaussian distribution and uniform one. Note that, for
the index of length 1, the square region inside the Voronoi
region is rotated with an angle of 7/4. As the rotation does
not change the Gaussian distribution of the complex random
noise, in both cases of 1-bit or 2-bits of index length, the
random uniform noise u varies in a square region S defined
in the m/4-rotated coordinate system for £ = 1 and in the
Cartesian one for ¢ = 2.

APPENDIX B
PROOF OF LEMMA [7]
The variation of w(y|sg, h) as a function of v = |u,]| is
deduced from the derivative of w(.) with respect to v,
Ow  Ow Oug, ow Ou,;
o Ou,, Ov Ouy; Ov
By computing the partial derivatives,
(Rtusz,r)? (R—uz,r)?
W S, , _ :
o = pi (e o —e o ),
Oy r 4R?
R—u,, R+u,,
pi = q)(“) @(“ ,
Ohp Oh
ou,, v
ov Upp

Note first that p; is the probability that a Gaussian value
to be bounded by two values and is then 0 < p; < 1. If

0 z,r
Uy > 0, ng,, < 0 and === > 0. If u,, > 0, then,
" ous . .
az“" > 0 and gy’ < 0. This means that in both case
' dw Ouz r S Ow Ouzi -
cases 5,5, < 0. In a similar manner, Bu.; o 18 also

Ow

negative. Consequently, 52 < 0. Maximizing the function



w(y|so, k) is then equivalent to minimize v. At the legitimate
receiver, the index k is assumed to be perfectly known. The
ML estimation is then performed within the alphabet Aj. At
the eavesdropper, the estimated symbol resulting from the
MAP decoding is § = arg miny, mingea, |y — vVOPhs|?. This
is equivalent to search for the minimal distance in €Q..

APPENDIX C
SECRECY RATE
A. Proof of Theorem ]|

The average mutual information between the transmitted
information signal at Alice and the received one y(*) at Bob
knowing the dynamic index k is,

L(w(b),yk) = E[HyY k) —Hy®|so, k)], (38)

where sg is the normalized corresponding symbol in A; and
H(.) is the entropy of a random variable, such that,

Hy W [h", k) = —log, f(y™n "), k),
H(y® 50, i) = —logy f(y®[s0, "), k).

(39)
(40)

The conditional probability in (39) is computed by marginal-
izing over all the possibilities of sg € Ay,

1
k)= 50 > F(y®]s0, h).

s0€AL

f(y(b) \h(b)

Combining and (41), the average mutual information in

(20) is deduced. Unlike Bob, Eve is not aware of the value of
the key index. The Eve’s mutual information is,

L(4(b),y'?) = E[H(y)—Hy"p(b)], @1)

H(y@|n)) = —log, f(y'? (), (42)

H(y [ (b), k) = —logy f(y'[es(b),hl9).  (43)

At Eve, k is not known and the probability in is the
marginalization over all the values of sy € €.,

o Z (550, h®).

S0€ER:

Fy@R©) =

Indeed, the information bit vector b has multiple image in €.,
and the conditional probability in {@3) is computed,

PR B), 1) = 52 3 7 (blk), )
k

By combining (&I, and (44), the average mutual infor-
mation in (21) is deduced.

B. Proof of Corollary

Let so be the transmitted symbol and y(® (resp. y(©)) the
noisy received signal at Bob (resp. Eve) with o, — 0. The
mutual information in Theorem 1| depends on w(y|s, k) given
in Lemma [I] For o, — 0, the value of u, in Lemma [T] is

u, = VOP(sp — s) + u. (44)
The variation set of s is provided in Theorem [I] where s € Ay,

at Bob and s € Q. at Eve. The limit of w(y|s, h) is,

lim w(yl|s, h) i]l(uz €S).

= 4
Jim w(yls, 5 (45)

At the legitimate receiver, the computation of the mutual
information I (¢(b), y(*)|k) requires to compute:

ST Ly

1(u, €8).
(b) (b)
= w(y®|sg, h s#s0:8EA

Given a partition Ay and Vs # sy € Ag, the set of
potential symbols s that ensure that u, € S is empty as the
closest points to sy are sg — § = +2¢/24, .. or Sg— S =
:|:(2£/2dmin)1i with 2¢2dn > B2Y%dmi,. Consequently,
> stsosen, L(uz € §) = 0. The mutual information at the
legitimate receiver is then lim,, 0 Ip((b), y®|k) — (¢—¥).

At the eavesdropper receiver, the computation of the mutual
information requires to compute:

o ZSEQC W(y(
w(y@]s0, hlO)) + 375 b1k 50 Y
Note first that due to (@3]

Y w@ W (blk), A
ki1 (bl k) #s0
with u,, = VOP(¢(blk) — so) + u. The bit labeling in
Subsection guarantees that vAP|(¢)(blk) — s0)| >
2R for all cases except some particular cases that will be
separately studied in the following. In all the other cases,

D ke (blk)s0 @ (Y [0 (b]k), h(?)) = 0 and

e Z e)|8 h(")) Z

(e)
seQ. y(e ‘80 hte ) $F#80:5€0,

e) |s, h(e))
©1]ip(blk), b))

1
_ ‘S' Z ﬂ(uZJc S S)

ki (bl k)50

1(u, € S). (46)
As in the previous case, we need to identify the set A, of
feasible symbols s € €, ensuring u, € S. If 0 < 28 < 1,
then N, = () as the distance between two symbols is at least
dmin. Ns is a non-empty set if 23 > 1.

o R N R
¥ B
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Fig. 9: Confusion-regions

1) One-bit partitioning: For ¢ = 1, the set of s € . is
N5 = {s0 + dmiHQ*%(:lzl + 14)}. For each s € NV, we need
to determine the area of variation of u. The corresponding
regions are disjoint and are 1llustrated in Figure Da] and have
identical area, |S;| = (QR - 7) 1 < ¢ < 4. The value of
Fin is then equal to 1 or 2, such that,

o {1 u ¢ Usen, Sis

2 ueUSGNSS



where | J, A, i depends on the number of neighboring sym-
bols around sg, i.e.

2
1
Prob {u € UserSi} = E[|N (s0)] (1 - 2ﬁ> 47
where N(¢) = E[|N(so)]] is the average number of neighbors
around a point in Q. given in (9. It follows that,

_ 1\2
E(logy(F)) = N©[(1-—

(loga(F)) (1-35) -
For the QPSK partitioned with one bit, the symbols around
the origin, map the same information bit O or 1. This
means that, VOP|(0|0) — (0[]1)] < 2R. In this case,
Zk:w(b‘k)w(y(e)\w(b|k),h(e)) = %‘.2By repeating similar
step as before, E[log,(F)] = (1 - %)
2) Two-bits partitioning: For £ = 2, the set of s € (),
is Ny = {£dmin, Tdmin X 1i,dmin(+1 £+ 17)}. In Figure
[Oa the values of s € N, for which the conditions S; are
satisfied are s + dimin, S0 + dmin (1 — 1), So — dminli. In this
case, D o scq, Lus € S) = 3 if the three neighbors are
€ Q.. In Figure the values of s € N for which the
conditions Sg is satisfied for s = sg + dmin. This means that
>stseseq, L(uz € §) = 1. The value of F* depends on the

cardinality of N the set of neighbors around s:

1) Case of |[N,| = 2 with Prob{|N,| = 2} = 5=
(consider the right-lower quadrant) :

4 u € Sy
F=<¢2 UE(SgUSg)U(SQUS7)
1 otherwise
2) Case of |N;| = 3 with probability Prob{|N,| = 3} =
q—2
% (consider the lower half in Figure 9b):
4 wue (53 U S4)
F=<¢2 UG(51U56)USQU(SQUS7)

1 otherwise

3) Case of |V;| = 4 with Prob{|\,| = 4} = @2 1%

4 u€ ST US;US3US,
F=q2 u € S5 U Sg U Sy U Sy
1 otherwise

By replacing the values of the disjoint surfaces by their values
as, |Sl‘ = |Sg| = ‘Sg| = |S4‘ = 4R2(1 — ﬁ)Q and |SG‘ =

S7] = |Ss| = [Sy| = 4R?*(5 —1)(1 — 55) we can deduce,

_ NGO L

Eflogs ()] = N(1 ~ 52).

A correction term should be added to take into account the bit
labeling, as there exist in the constellation 4 symbols in €2,
around the origin 4114 for which v/AP|(4(b|k)—s0)| < 2R.
This can be observed for the 16QAM constellation in Figure
here VOP|(1(10[11) — (10]00))] < 2R and also
0P|(1(01|10) — +(01]01))| < 2R. This is also the case
for a 64-QAM where VOP|(¢(1101[11) — ¢(1101]00))| <

(48)

2R and also VOP|(1(0111|10) — #(0111|01))] < 2R. In
this case, Y .o w9 0(blk),h()) = rsy and F =

%Z#swega 1(u, € S) on a single quadrant of Figure
For this particular constellation symbol,

4 uGSlLJSQUSg
F=<2 u € S5 USgUS7USgU S,
1 otherwise

When averaging over all constellation points in (48], a correc-
tion term should be added as,

E[log,(F)] = N (1 — 216) - 2%_2 (1 - 215>2'

APPENDIX D
ERROR RATE EVALUATION

A. Proof of Theorem
The SER at the eavesdropper can be written as,
Prob{u, ¢ D} = Prob{u, € SN D} + Prob{u, € SND}.
In the high SNR regime, the random uniform noise is dominant
and the SER reduces to,
|S N D|
S|
where |S| = 4R? and |SN D] is deduced fr02m Figures @ and
For{ = 1,|SND| = 2N R? (1 — 35) with N(©) being
the average number of neighbors in (9). The case of ¢ = 2

is more complexe as the number of neighbors that affect the
area of |S N D| (not in a proportional way), as following:

lin%) Prob{u, ¢ D} = Prob{u, € SND} =
o—

A if [N(s0)| =4
ISND| =L A— A, if [N (s0)] =3
A—2A1—A2 if |N(80)|:2

with A = R?(4 — &), Ay = 21— L) and 4, = R*(1 -
i)2. It follows that,

25
51— 44227 =1 1,1
E[|SND|] = A-A, 507 —2A12q72— 25,3 (49)

The strict SER is then,
1 1-279/2 1
P =1-2"9(1-=)(1+ ———
e = W 25) Ui m 23

We should note that due to the cross-labeling applied to
64QAM, we have VOP|(1)(1101|11) — ¢(1101]00))| < 2R
and also vOP|(1(0111]10) — +(0111]01))| < 2R, the SER
expression will not detect that these two symbols correspond to
the same binary information sequence. To take into account
this event, we should include this particular case that arises
with probability 1/2972, for which |[SND| = A — A,. By
updating this expression,

q—2

(2% -
24—2
A correction term should be then added to the SER as P, . =

2
(e,2) - 1
ple2) _ o Q(1fﬁ) .

1 2

1)
- 2A12(17_2 _A22(17_2

E[SND|| = A— A2



B. Proof of Theorem

Assuming that the number of neighbors is equal to 4, the
correct decision probability is,

L /_*; R R

The expansion of this integral leads to,

2
1
Pe= (M(PC,I + Pc,z)) ,

2
P. =

with
SNR, SNR,
Pei=—nmert | ny, h +nperf [ 7, h ,
2 2
and

2 s
Poo—= _rgN
2 TSNR, |OP |~ SNRa

This expression can be rewritten as,

1 2
P, = (1 — m(Pe,l +Pe72))

with P, ; = 2¢?*13 —P_; and P.» = —P. 5. The expansion
of these expressions leads to (3I) and (32). Finally, the SER
can be then rewritten as,

2
— exp <“2m SNRh>

(50)

Pe =1- Pc ~ (P&l + Pe,g).

22/2-&-1/3

Due to the symmetry of the distribution function of u, in
Lemma [T} the average symbol error probability considering
the number of neighbors |A| in Ay in (7) and (8) is P, =
P, x Prob{|N,| = 4} + 2P, x Prob{|N,| = 3} + 2P, x
Prob{|N,| = 2} + 1P, x Prob{|\,| = 1} = El¥:llp

C. Proof of Corollary 3]

The expression in Corollary 3] is obtained by averaging
the SER in Theorem [3] over all the values of the Rayleigh
distributed variable |h| with parameter 1/2.

D. Proof of Corollary 3-2]

~ Note that, for 7, # 0 and 7, # 0, P, 1(SNR) and
P, 2(SNR) can be written as,

1 —1/2
0z SNR,,

1 —1/2
mew) | O

1 -1/2
]_ _
< * N, SNRu>

1 1 —1/2
— 14+ =—— . (52
Mp ( " 7712) SNRu> 62

Corollary [3.2] is deduced from the Taylor expansion of (51)
and (52) in the neighborhood of co.

Ps1(SNR) =17, |1 - (1 +
— N |1 — sign(nm) <1 +

1 1

P, =
27 SNR | [
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