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ABSTRACT 

 

District heating networks are urban-scale heat energy supply systems. These networks offer a flexible manner 

to supply heat energy by leveraging the thermal inertia of the network pipes and the presence of distributed heat 

sources. To exploit such flexibility and reach energy supply efficiency, optimal operational control strategies of 

the networks are essential.  However, existing models developed for an optimal control strategy are hindered 

by their computational costs, rendering them impractical for large networks. The computational burden stems 

mostly from the iterative simulation of the networks required for each optimization resolution step, until optimal 

control parameters are attained. Indeed, each simulation of the network has computational costs proportional to 

the size of the networks. In this study, we propose a hybrid Model Predictive Control (MPC), a control 

framework using a hybrid model to simulate the network and optimize the mass flow rates and supply 

temperatures injected by the heat sources to fulfill substation energy demands with the lowest surplus and 

deficits of delivered heat. The proposed approach substitutes clusters of consumer substations with artificial 

Neural Networks (NN) models, trained to replicate real-time consumption patterns and leaving waters’ 

temperatures evolution of the replaced clusters. This hybrid approach reduces computational costs while 

maintaining prediction errors below 0.52 %. Results demonstrate that replacing one-third of the network leads 

to a reduction of 9% of the computational time required by a physics-based MPC.   

 

1 INTRODUCTION 
 

District heating networks (DHNs) are an important component of urban energy infrastructure, offering a 

sustainable solution for heat energy distribution. As the emphasis on energy efficiency and greenhouse gas 

reductions grows, DHNs have seen increased interest in recent years. The recent trend involves integrating 

distributed heat sources with more renewable sources (Guelpa et al., 2019), and lower generation temperatures 

(Buffa et al., 2019). However, to achieve optimal energy efficiency in these complex systems, effective control 

on the heat sources is crucial (Wirtz et al., 2021). 

 

Model predictive control (MPC) has proven to be a very effective control method for DHNs due to its ability to 

combine system forecasting, anticipation and optimization (Jansen et al., 2023). It operates by searching for the 

optimal control sequence over a predefined and finite horizon window. At the end of each optimization, only 

the first variables of the control sequence are applied, the horizon window is shifted forward, and the 

optimization process restarts over on the new horizon. This “rolling horizon” (Marquant et al., 2015) approach 

allows the controller to adapt to changing conditions and uncertainties, making it well-suited for the dynamic 

nature of DHNs. MPC provides flexibility in defining its optimization functions, allowing for both linear 

(Zimmerman et al., 2019) and non-linear (Sandou et al., 2006) formulations depending on specific operational 

objectives. Notably, incorporating dynamic-based simulations of the network, as presented in Giraud et al. 

(2017) within the MPC framework significantly enhances its accuracy. Dynamic simulations allow to capture 

subtle water temperatures changes and to leverage the thermal inertia of the pipes (Lund et al., 2021). However, 

these dynamic models come at the cost of high computational burden, especially for large networks 

(Benonysson et al., 1995). To address this challenge, Bavière and Vallée (2018) proposed a simplified approach 

that assumes that substation temperatures are weighted combinations of source unit temperatures. While it 

reduced computational burden, it relied on assumptions about mass flow rates that limit its applicability and 

compromise the accuracy compared to fully dynamic simulations (Jansen et al., 2023). 
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On the other hand, data-driven models, such as machine learning (ML), have shown remarkable success in 

learning from data and replacing complex physical models in various applications.  Integrating ML models into 

MPC to substitute computationally expensive physical models is a hybrid MPC approach (Zhang et al., 2023) 

which reduces significantly computational costs. Recent related works include building indoor temperature 

optimal control by Zhang et al. (2023) and Ma et al. (2022). Ma et al. (2022) used a recurrent neural network 

with Long Short-Term Memory (LSTM) units (Hochreiter & Schmidhuber, 1997) to predict indoor 

temperatures based on forecasts and past states, combined with a particle-swarm optimization (PSO) algorithm 

(Kennedy & Eberhart, 1995) to control the frequency of a pump at the thermal inlet of a building to meet heating 

demands. Similarly, Zhang et al. (2023) employed LSTM-based networks for indoor temperature prediction in 

a building connected to a DHN substation. LSTM and Gated Recurrent Units (GRU) (Chung et al., 2014) are 

designed to effectively capture long-term dependencies, making them ideal for systems with high inertia. While 

offering similar performance, GRU boast lower complexity and computational requirement compared to LSTM 

(Cahuantzi et al., 2023).  

 

Most hybrid MPC models aim to entirely replace physical modeling of energy systems, offering significant 

computational and operational benefits (Saloux et al., 2023). The authors proposed black-box ML models to 

predict aggregated heating demand and boiler performance curves. However, this entire-system approach faces 

limitations due to data exhaustiveness. As highlighted by Stoffel et al. (2023), these "numerical twins" are only 

valid within the operational scenarios used for training, leading to unreliable predictions outside that domain. 

Substituting the full DHN dynamic simulation with an ML model would require vast, exhaustive data 

incorporating all possible scenarios, an impractical approach due to the exponential growth of possible 

scenarios. 

 

Focusing on cluster-level substations presents a more efficient alternative with lower data requirements. 

Focusing the learning on the cluster's local physical dynamics for a wider range of temperatures and flow rates, 

regardless of network-wide scenarios and control strategies, this approach presents potentially better 

computational efficiency and lower data requirement. The utilization of clusters within DHNs has been explored 

for various applications, including optimal heat sources placement (Marquant et al., 2018) and network topology 

reduction (Kane and Rolle, 2020). However, to our knowledge, the application of machine learning (ML) 

models to replace DHN substation clusters within a model predictive control (MPC) framework remains 

unexplored. This paper addresses this gap by proposing a hybrid MPC approach that incorporates trained ML 

models replicating the dynamic behavior and heat consumptions of individual clusters. The proposed framework 

aims to balance accuracy and computational efficiency. The rest of this paper is structured as follows: the 

methodology section introduces the proposed hybrid MPC approach, the results section evaluates its accuracy 

and computational cost reduction compared to a baseline MPC using a physical dynamic simulation model, and 

the conclusion section summarizes the key findings. 

 

2 METHODOLOGY 
 

2.1 Dynamic simulation model of the DHN 

The dynamic simulation model of the District Heating Network (DHN) employed in this study leverages the 

node method introduced by Benonysson et al. (1995). This method represents the DHN as a directed graph, 

with nodes representing substations categorized as consumers (with heating demand powers) and sources (with 

heat generation powers). Heating powers injected by the sources are controlled by varying the mass flow rates 

and temperatures of hot water injected into the network. Edges depict two identical transport pipes (supply and 

return) of the network, oriented arbitrarily in the supply flow direction. Overall, the modeling of the DHN is 

composed of both hydraulic and thermal models. Hydraulic model contains mass conservation at the substation 

nodes at every time step 𝑡 (Equation 1) and pressure drops inside the pipes modeled by the Darcy-Weisbach 

equation (Equation 2) where ∆𝐻𝑒 indicates the head pressure loss through the pipes of the edge 𝑒, 𝑔𝑟𝑣 the 

gravity, 𝑢𝑒 the water flows’ velocity, 𝑑𝑒 the diameter, 𝑙𝑒 the length and 𝑓𝑒 the friction factor of the pipes. This 

friction factor 𝑓𝑒 is a function of the flows’ Reynolds number and the pipes’ effective roughness, further detailed 

in the work of Betancourt Schwarz et al. (2019). Equation 1 ensures mass balance at every substation node on 

both supply and return side. �̇�𝒔 denotes the mass flow rates extracted by sources from the return pipe, heated 

and re-injected into the supply pipe at hot generation supply temperatures 𝑻𝒔𝒔. Similarly, �̇�𝑐 depicts the mass 



 

 

 

flow rates of supply water extracted by the consumers from the supply pipe to respond to heating demands 

(Equation 3) and re-injected into the mass flow rates at fixed and constant return temperature 𝑇𝑟𝑐. The thermal 

model governs heat consumptions, enthalpy balances and heat transport (Equations 3-6). Equation 3 governs 

the consumption at consumer nodes and gives the effective heat power consumed to meet heating demands 𝐷𝑡 

at each time step. Deviations between heating demands and real heating power consumptions 𝑃𝑐 may occur due 

to the delay time between the moment heat is generated at the sources and the moment that it is available to 

consumers, leading to consumptions surplus (𝑃𝑐 > 𝐷) or deficits (𝑃𝑐 < 𝐷). Thermal losses through the pipes 

may also contribute to this deviation. Enthalpy balance enforced at nodes for both return and supply pipes 

(Equations 4 and 5) translates to a weighted sum of incoming water temperatures. This modelling approach 

aligns with common approach in the literature, as detailed in Fang and Lahdelma (2015) work. Our model shares 

similarities with theirs, except for pipe modeling. Here, we employ the partial derivative heat transport equation 

(Equation 6) to model water temperature evolution through the pipes. This approach, based on the works of 

Betancourt Schwarz et al. (2019) and Giraud et al. (2015), utilizes the finite volume model and upwind schemes 

for spatial and temporal discretization, respectively. 
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2.2 Model Predictive Control of the DHN 

Building on the DHN model described above, Model Predicted Control (MPC) aims to find the optimal sequence 

of supplied power by the sources. This sequence is determined by optimizing the injected supply mass flow 

rates �̇�𝒔
𝒕  and generation supply temperatures 𝑻𝒔𝒔

𝒕 , across all time steps 𝑡. The objective is to minimize total heat 

production while satisfying consumer heating demands. We achieve this by minimizing the difference between 

the total consumed energy (integrated consumed heat powers 𝑃𝑐 over the optimization horizon) and the total 

demanded heat energy. At each node, there may be either surpluses or deficits of heating power consumed 

compared to heating demands. In fact, both values reflect differences between the consumed and demanded heat 

by the consumers and differ only by their sign. Consider 𝛿𝑖
𝑡 the difference between heating consumption power 

and demanded power by the consumer 𝑖 at time 𝑡. Integrating surplus (𝛿𝑖
𝑡 > 0)  and deficits (𝛿𝑖

𝑡 < 0) of heating 

power consumptions over the optimization horizon gives total energy surplus and deficits of the network. We 

report these values in percentage of total heating demands of the network, denoted respectively as 𝛿𝑠𝑢𝑟𝑝𝑙𝑢𝑠 and 

deficits 𝛿𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑠 (Equation 7). In addition to minimizing total heat production, the MPC aims to keep these 

surplus and deficits percentage within an acceptable range (below 2% in our work). From the operational 

standpoint, minimizing the heat production by minimizing the heat supplied by the sources may potentially 

increase consumer deficits. Conversely, increasing heat supply can result in large total heat production and 

unnecessary surplus of energy. To capture this trade-off and achieve optimal DHN control, the MPC objective 

function (Equation 8) minimizes a function which balances these opposing factors. 
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The MPC objective function 𝐽 (Equation 8) consists of two main parts. The first term represents the total heat 

production across all sources. Each source has a maximum supply power capacity 𝑃𝑠𝑠. 𝑇𝑠𝑟𝑖
 are the time-

dependent temperature of the return water at the source 𝑖. The second term penalizes total energy surpluses and 

deficits ratios, exceeding chosen threshold of 2%. Numbers 𝑀1 and 𝑀2 determine the weight of each penalty 

term (e.g., 1000). Both the objective function (Equation 8) and the constraint (Equation 9) are non-analytic 

functions due to their dependence on the dynamic simulation model (Equations 1-6). Evaluating the objective 

function requires a complete simulation of the DHN to calculate state variables (water temperatures, 

consumptions, mass flow rates) using the control variables as boundary states. This non-smoothness prevents 

the use of analytical optimization algorithms. Similar to Fang and Lahdelma (2015), we employ metaheuristic-

based optimization algorithm which is, in our case, the Mesh Adaptative Direct Search or MADS (Audet and 

Dennis, 2006), influenced by the high computational cost of the dynamic simulation. MADS extends the 

Generalized Pattern Search approach by exploring denser set of directions, enabling fast convergence but not 

guaranteed to the global minimum. In our application, we focus on reducing the overall computational time, 

regardless the optimality of the found solution as long as 𝛿𝑠𝑢𝑟𝑝𝑙𝑢𝑠 and 𝛿𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑠 are below the 2% objective. In 

this work, generation supply temperatures are limited to 70°C - 80°C, while supply mass flow rates are 

determined by the mass balance constraint (Equation 1). The optimizer essentially allocates mass flow rates and 

corresponding supply temperatures to minimize the total necessary heat production while respecting sources’ 

capacities and consumers’ heating demands. Due to the convergence difficulty towards the optimal global, the 

number of iterations serves as the stopping criteria for the optimization process.  

Figure 1: Illustration of DHN simplification on an example cluster 



 

 

 

2.3 Hybrid MPC 

Standard MPC suffers from high computational cost due to repeated calls of the dynamic simulation during 

optimization. For large DHN, this cost becomes impractical. Our hybrid MPC approach proposes a solution by 

combining dynamic simulation with machine learning models. Predetermined Clusters of substation nodes (i.e., 

sets of connected consumer nodes), selected according to expertise analysis, are replaced with trained Neural 

Network (NN) models which mimic their physical behavior. These NN models eliminate the need to simulate 

the replaced clusters, significantly reducing the computational burden to simulate the network. Figure 1 

exemplifies this approach with cluster of substation nodes (1, 2, 3). Here, the physical cluster is replaced by a 

single “numerical twin node 𝑣𝑁𝑁” modeled by a trained NN model. This substitution reduces the network's 

topological complexity (see reduced DHN in Figure 1). However, the objective function (Equation 8) must 

remain consistent with the original and reduced DHN. This implies maintaining identical return temperatures at 

the sources and total deficits and surpluses of consumptions. To ensure this consistency, the "numerical twin 

nodes" preserves heat losses and transport delays of the replaced clusters. Additionally, the twin nodes maintain 

identical consumptions as the original clusters, preserving 𝛿𝑠𝑢𝑟𝑝𝑙𝑢𝑠 and 𝛿𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑠. Figure 1 illustrates this 

concept. The twin node preserves outlet information (water temperatures) upstream of node 0 and downstream 

of nodes 4 and 5. In essence, the NN models predict both outlet information and real consumption of the replaced 

cluster. They take inlet information (water temperatures and mass flow rates) from the surrounding network and 

heating demands {𝐷1, 𝐷2, 𝐷3} of the original cluster composing nodes as input. This creates a hybrid simulation 

framework where the dynamic simulation on the original network is replaced with a combination of NN models 

and a reduced network simulation. In this work, the considered clusters include only consumer substations. The 

focus of this paper lies on the potential of the hybrid simulation within the MPC framework, deferring a detailed 

explanation of the hybrid simulation for future studies. Figure 2 outlines the core process of the proposed "hybrid 

MPC" approach. The core idea consists in leveraging the use of hybrid simulation on the reduced DHN with 

lower computational load and preserving the physical equivalency with the original DHN. 

 

Figure 3: NN models architecture 

Figure 2: Hybrid MPC flow chart 



 

 

 

2.4 Neural Network models 

The considered input and output features are highly time-dependent. To effectively capture the thermal inertia 

of the replaced substations clusters, we rely on many-to-one recurrent neural networks architecture. Such type 

of NN considers sequences of the input features with fixed length, called prediction length, and predicts the 

output feature at given time step. We consider a prediction length of 60 corresponding to the number of dynamic 

steps per time-steps used to simulate the DHN. More precisely, to predict output features at time 𝑡, input features 

between time steps (𝑡 − 60) and 𝑡 are fed into the neural networks. The chosen NN architecture utilizes two 

layers of gated recurrent units (GRUs) followed by a hidden dense layer and the output dense layer leading to 

the output features (see Figure 3). Dense (hidden and outputs) and GRUs layers use rectified linear unit and 

hyperbolic tangent respectively as activation functions. We have performed a random search on pre-defined 

values of hyperparameters including the number of units at each GRU layer, the number of activated neurons 

at the hidden dense layer, the batch size and the rate of dropout (Srivastava et al., 2014). The hyperparameters 

leading to the best learning performances use 20 units for each GRU per layer, 80 units at the hidden dense 

layer, batch size of 64 and dropout rate of 0. Relying on this NN architecture, we compare two configurations 

of the NN models. The first consists in training a single NN model per cluster which predicts both outlet 

information (i.e., temperatures of outgoing waters) and cluster real consumption (i.e., total of composing nodes 

consumptions). While the second consists in training two NN models per cluster using the same presented 

architecture which respectively predict the outlet information and the cluster consumption (i.e., total of 

composing nodes consumptions). These two versions of the NN models are respectively referred as “single 

model” and “two models” configurations. Indeed, the intuition is that the first configuration focuses on 

prediction speed while the second approach should emphasize precisions in the predicted values. 

 

3 EXPERIMENTS AND CASE STUDY DHN 
 

To validate the proposed hybrid MPC, we employ a synthetic DHN comprising 150 substation nodes. This case 

study network includes 3 distributed heat sources and 147 heat consumers, connected by 149 edges in total (149 

supply pipes and 149 return pipes). Four clusters, denoted K1, K2, K3 and K4 (see Figure 4), are selected for 

Figure 4: Synthetic District Heating Network case study, with considered clusters 

delimited in dashed lines 



 

 

 

substitution with NN models. The selection of the clusters, including their number and size (i.e., number of 

composing nodes) are supported by operational considerations which are not detailed in the current paper. Listed 

clusters (i.e., K1, K2, K3 and K4) are order by their sizes with cluster K1 the smallest (13 nodes) and cluster 

K4 the largest (50 nodes). 

 

3.1 Data generation 

To train and effectively test the NN models, we simulated the case study DHN using realistic heating demand 

forecasts from four distinct months (January, April, August, November) across 2880 hours (see Figure 5). 

Heating demands shown in this figure include both space heating and domestic hot water demands. Each hour 

is discretized by the simulation into 1 minute time steps, resulting in a total of 172,680 simulation steps, 

representing the data points. To ensure the NN models can handle the entire range of generation supply 

temperature (70°C - 80°C) which will be explored during the optimization processes, we have generated our 

simulation data with sinusoidal supply temperatures varying between these limits over a 3-day period (72-hour 

steps). This approach avoids abrupt temperature changes while covering the entire relevant domain. Since the 

optimization process determines the distribution of mass flow rates among sources, we have generated random 

dispatch values for all distributed sources. Furthermore, the values of dispatch which guide the supply mass 

flow rates are constrained by the sources' maximum capacities and must sum to one, reflecting the optimization's 

dispatch decisions. 

 

3.2 Data preprocessing and split 

The previously described simulation setup leads to a dataset composed by time varying variables (i.e., waters 

temperatures, heating consumptions and mass flow rates) with length of 172,680. This dataset is split into 

training and test sets. Splitting this temporal data for training, validation, and testing purposes is crucial. To 

ensure the NN models' ability to generalize effectively, the test set must be independent of the training and 

validation sets. Therefore, we adopted a seasonal split strategy. Data from the first three months is used for 

training and validation, while data from the remaining month (November) serves as the test set for evaluating 

the models' performance. For illustration purpose of the data preprocessing, consider 𝑋 ∈ 𝑅(𝑛𝑡×𝑛𝐼) and 𝑌 ∈

𝑅(𝑛𝑡×𝑛𝑂), respectively the time-varying input and output features for a given replaced cluster (details in section 

2.3). 𝑛𝑡 is the total number of time steps in the data, 129,600 for the training data and 43,200 for the test. 𝑛𝐼 and 

𝑛𝑂 are respectively the number the input features required and the output features to predict. 𝑋 is divided into 

sequences 𝑋𝑡 ∈ 𝑅(60×𝑛𝐼). Each 𝑋𝑡 is associated with the corresponding 𝑌𝑡 ∈ 𝑅(1×𝑛𝑂). The couple (𝑋𝑡 , 𝑌𝑡) 

Figure 5: Case study DHN aggregated heating demands for four distinct months 



 

 

 

constitutes a set. The training sets are then shuffled and split into training and validation sets. Validation sets 

include 20% of the overall training sets. 

 

3.3 Training procedure 

The training process aims to minimize the mean squared error (Equation 10) between predicted output features 

�̂�𝑖 and ground truth values from the dynamic simulation 𝑦𝑖 for each set inside the training sets within a batch of 

size 64. This minimization is performed using the Adam optimizer (Kingma and Ba, 2014) for a maximum of 

40 epochs. An early stopping mechanism halted the training process if the mean squared error measured on the 

validation sets after each optimization step does not improve over 10 consecutive epochs in order to preventing 

overfitting. Additionally, we decrease the learning rate by a factor of 0.1 every 10 epochs. Our experiments 

have shown better learning performances using such step-wide decreases. 

1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=𝑛

 (10) 

 

 

4 RESULTS 
 

Learning performances of the NN models over the considered clusters are presented in this section along with 

the hybrid MPC results. 

 

4.1 NN models learning performances 

The performance of the NN models was evaluated using the Mean Absolute Percentage Error (MAPE) between 

predicted and simulated values (from dynamic simulation) over the test set. Table 1 reports the performance of 

both considered NN models’ configurations to preserve the temperatures flowing out the replaced clusters and 

their thermal power and energy consumption. According to presented values, the “two models” configuration 

offers no significant improvement in learning and generalization performances compared to the “single model” 

configuration, while increasing computational complexity. Indeed, “two models” per cluster imply twice the 

training processes and prediction times. Therefore, we focused on the “single model” configuration for further 

analysis. Notably, the size of the clusters does not display strong correlation with the NN model performance. 

However, the number of output features, linked to the number of outgoing waters’ temperatures to learn, directly 

impacts the performances of the model. More output features mean indeed more outgoing waters’ temperatures 

to lean and predict and, thus, higher physical complexity to apprehend. Crucially, the NN models successfully 

conserved the thermal energy consumption of the replaced clusters (Table 1). In the reported values, the NN 

models show satisfying results in predicting the consumption power and energy of the replaced clusters. Results 

highlight higher error in power predictions than energy. The power errors likely stem from overestimation and 

underestimation at each time step, leading high range variations with mean values presented in Table 1. These 

errors in powers cancel off due the integration over the test sets, leading to low errors in consumption energy 

predictions. From our application, high accuracy on the consumption energy infers high accuracy on the 𝛿𝑠𝑢𝑟𝑝𝑙𝑢𝑠 

and 𝛿𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑠 over the optimization horizon. Our experiments demonstrated a mean error of 0.52 % or less, 

implying that clusters’ consumptions energy was accurately predicted over the test sets.  

 

Table 1: NN models learning performances results 

 Cluster K1 Cluster K2 Cluster K3 Cluster K4 

Number of clustered nodes 13 18 36 50 

Number of output features 3 2 2 2 

Temperature error 

▪ Single model 

▪ Two models 

 

0.58 % 

0.59 % 

 

0.06 % 

0.27 % 

 

0.22 % 

0.22 % 

 

0.23 % 

0.22 % 

Consumption power error 

▪ Single model 

▪ Two models 

 

2.31 % 

1.47 % 

 

0.92 % 

0.76 % 

 

2.65 % 

2.66 % 

 

1.79 % 

1.56 % 

Consumption energy error 

▪ Single model 

 

0.07 % 

 

0.52 % 

 

0.43 % 

 

0.24 % 



 

 

 

▪ Two models 0.27 % 0.51 % 0.42 % 0.26 % 

 

4.2 Hybrid MPC results 

The primary aim of the proposed hybrid MPC is to generate optimal control variables of the DHN while 

reducing the computational time. Therefore, achieving significant time reduction is crucial alongside accuracy. 

Our experiments with results presented in Table 2 used an optimization horizon of 10 hours, with a 3-hours 

sliding window advancing by one hour. We tested two decision time steps refereed as dt: 1 hour and 0.2 hour 

(i.e., 12 minutes). To assess the accuracy of hybrid MPC, we simulated the original network using the control 

variables obtained from the hybrid MPC on the reduced networks. Results in Table 2 use the “single model” 

configuration. Deficits and surpluses obtained on the original network stay within our chosen threshold (i.e., 

below 2 %). This suggests that the hybrid MPC on the reduced networks have successfully mimicked the 

physical MPC on the original network by successfully preserving the values of the objective function 𝐽 with 

acceptable errors. For further validation, we compare the hybrid MPC performances with a rule-based control 

strategy (Jansen et al., 2023) that maintains a constant generation supply temperature of 80°C. Dispatch of the 

supply mass flow rates is guided by a preference order on the sources based on production cost and capacity. 

Results in Table 2 show that the rule-based controller overproduces due to the high fixed generation temperature, 

for both dt values. With 1-hour dt, the rule-based exhibits high consumption surplus due to high temperature 

incoming flows and large decision time. However, with 12-minute dt, it achieves comparable consumption 

deficits and surpluses to the hybrid MPC. Indeed, with lower decision time, the consumers can adapt more 

dynamically their consumption rates in response to the delivered heat. Nevertheless, the rule-based controller 

tends to overproduce which leads to high heat energy produced by the sources for the entire DHN operation. 

Additionally, as shown in Table 1, the low performance of the neural network (NN) models in predicting the 

clusters’ leaving temperatures affects the hybrid MPC's ability to accurately evaluate the power generated by 

the sources. This might lead to underestimating or overestimating the heat that needs to be produced which we 

observe for clusters K1 and K4 (see Table 2). 

 

Table 2: Performances of the Hybrid MPC by substituting the clusters, the physical MPC on the original 

network and the rule-based control for 10-time steps optimization horizon using two decision time steps ‘dt’ 

of 1 hour and (0.2) hour 

 Physical MPC Hybrid MPC Rule-based 

Clusters - K1 K2 K3 K4 - 

Nb. nodes 0 13 18 36 50 0 

dt (hour) 1  
(0.2) 

1  
(0.2) 

1  
(0.2) 

1  
(0.2) 

1  
(0.2) 

1  
(0.2) 

Produced energy 

(MWh) 

202.8  
(218.3) 

206.6  
(203.5) 

202.7  
(218.4) 

203.2  
(213.6) 

203.6  
(209.7) 

235.7  
(232.4) 

𝛿𝑑𝑒𝑓𝑖𝑐𝑖𝑡𝑠 1.46  
(0.71) 

1.37  
(0.20) 

1.44  
(0.68) 

1.38  
(0.57) 

1.40  
(0.57) 

1.32  
(0.35) 

𝛿𝑠𝑢𝑟𝑝𝑙𝑢𝑠 0.41 

(0.62) 

0.68 

(0.51) 

0.39 

(0.63) 

0.40 

(0.45) 

0.44 

(0.36) 

5.94 

(0.95) 

 

In addition to the accuracy, we compare the computational time taken by the hybrid MPC on the reduced 

networks and by the physical MPC on the original network (Figure 6). Our MADS algorithm performs at most 

20 iterations per time step over the total optimization horizon. It means that the dynamic simulations or the 

hybrid simulations are run 200 times in our experimental horizon (i.e., 10-time steps). Computational time 

reduction by the hybrid simulation cumulates over the iterations and the optimization leading to noticeable 

computation gain. Each black-reverse triangle in Figure 6 represents a reduced network by substituting the 

associated cluster. The largest cluster considered in this study (i.e., cluster K4) contains 50 nodes representing 

(1/3) of the original DHN number of nodes reduces the required computational time by a factor of 9% compared 

to physical MPC on the original DHN. In fact, the results in Figure 6 suggests a trend of computational time 

reduction with the size of the considered clusters. Notably, the substitution of the smallest cluster (i.e., cluster 

K1) has not given any reduction in computational time. In fact, the reduction in physical pipes and nodes, and 

thus in physical equations to solve, has not compensate the NN models inference time. Therefore, by 



 

 

 

extrapolation, larger clusters may in fact lead to significant computational time gain in controlling the large-

scale case study DHN. Table 1 results have indeed shown no direct correlation between the NN performances 

and the size of the clusters. Although, some clusters may present higher physical complexity, leading to more 

difficulty of the NN models to learn them. Therefore, a compromise between NN models’ performances and 

potential computational time reduction must be evaluated before clusters substitutions. 

 

5 CONCLUSIONS 

 
This paper introduces a novel hybrid MPC approach that reduces the computational cost of controlling large-

scale District Heating Networks. The approach integrates dynamic simulation with machine learning by using 

neural networks models to learn the physical behavior of substation clusters and replace them within the MPC 

optimization process. Our results show that the NN models effectively predict both outlet water temperatures 

and aggregated heating consumption across different control scenarios during a month-long test, with measured 

absolute percentage errors remaining below 0.5%. The proposed hybrid MPC has achieved a 9% decrease in 

computational time required to derive optimal control variables for the studied 150-node DHN. Interestingly, 

the results suggest a correlation between computational time reduction and the size of the replaced clusters 

which enforces the potential the proposed approach on larger clusters. However, results have also highlight 

learning performances disparities among the considered clusters which are not directly correlated with the size 

of the substituted clusters. This finding suggests that cluster size might not be the main factor influencing the 

NN models’ ability to learn cluster physical dynamics. In contrast, the number of temperatures to learn and 

predict seem to have more impact the NN models’ performances. Future work will focus on investigating the 

key physical factors or clusters internal topology metrics that most significantly affect the NN models’ 

performances. In addition, to further reduce computational time, future research will focus on simplifying the 

NN models. 
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NOMENCLATURE 

 
Abbreviations 

DHN District Heating Network   

ML Machine Learning 

NN Neural Networks 

GRU Gated Recurrent Unit 

 

Topology  

𝑆 List of source nodes inside the DHN  

𝐶 List of consumer nodes inside the DHN  

𝐸𝑖
+ List of edges pointing towards the node i (incoming supply pipes) 

𝐸𝑖
− List of edges pointing away from the node i (incoming return pipes) 

 

Physical values (not defined in the text) 

𝑇𝑒 Temperatures of waters traversing the pipes of the edge e  (K or °C) 

𝑇𝑟𝑖
 Temperatures of return waters at the substation node i   (K or °C) 

𝑇𝑠𝑖
 Temperatures of supply waters at the substation node i   (K or °C) 

�̇�𝑒 Mass flow rates of waters traversing the pipes of the edge e (kg/s) 

𝑐𝑝 Water specific heat capacity     (J/kg/K) 

𝜌 Water density       (kg/m3) 

𝑔𝑣𝑟 Gravity intensity      (m/s2) 

𝑑𝑒  Diameter of pipes composing the edge e    (m) 

∆𝐻𝑒  Head pressure losses through pipes of the edge e   (m) 

ℎ𝑒  Convective loss coefficient of pipes composing the edge e (W/K/m2) 

𝑙𝑒  Length of pipes composing the edge e    (m) 

𝑓𝑒  Friction factor of pipes composing the edge e   (-) 

𝑇𝑔𝑟𝑜𝑢𝑛𝑑Temperature of ground outside the pipes    (K or °C) 

 

Subscript 

𝑥  Flow axis 

i Substation node (source or consumer) i  

e edge e (containing a supply and a return pipe) 

 

Up-script 

t Current time step t 
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