
HAL Id: hal-04611464
https://hal.science/hal-04611464

Submitted on 13 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse Tensors and Subdivision Methods for Finding the
Zero Set of Polynomial Equations

Guillaume Moroz

To cite this version:
Guillaume Moroz. Sparse Tensors and Subdivision Methods for Finding the Zero Set of Polynomial
Equations. Computer Algebra in Scientific Computing, Sep 2024, Rennes, France. �hal-04611464�

https://hal.science/hal-04611464
https://hal.archives-ouvertes.fr

Sparse Tensors and Subdivision Methods for
Finding the Zero Set of Polynomial Equations

Guillaume Moroz

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France,
guillaume.moroz@inria.fr

Abstract. Finding the solutions to a system of multivariate polynomial
equations is a fundamental problem in mathematics and computer sci-
ence. It involves evaluating the polynomials at many points, often chosen
from a grid. In most current methods, such as subdivision, homotopy con-
tinuation, or marching cube algorithms, polynomial evaluation is treated
as a black box, repeating the process for each point. We propose a new
approach that partially evaluates the polynomials, allowing us to effi-
ciently reuse computations across multiple points in a grid. Our method
leverages the Compressed Sparse Fiber data structure to efficiently store
and process subsets of grid points. We integrated our amortized evalua-
tion scheme into a subdivision algorithm. Experimental results show that
our approach is efficient in practice. Notably, our software voxelize can
successfully enclose curves defined by two trivariate polynomial equations
of degree 100, a problem that was previously intractable.

Keywords: Subdivision, sparse tensor, polynomials, root finding

1 Introduction

Subdivision algorithms are widely used to enclose the zero set of a function
F ([17, 18, 21, 24, 27] among others). They roughly consist in evaluating F on
boxes created along a subdivision tree. If the input function is a high degree
polynomial, one of the bottlenecks of those algorithms is the time required to
evaluate F . We propose a new approach that amortizes the evaluation cost over
the boxes created in a subdivision algorithm. It combines on the one hand partial
evaluations of the input polynomial with interval arithmetics, and on the other
hand sparse tensors [5, 26] to store the boxes created during the subdivision
algorithm. This approach was implemented in the software voxelize, and the
source code is available on gitlab1. Experimental results show that this software
can enclose the zero set of polynomial systems that were not reachable with
state-of-the-art software.

After giving an overview of our main results in the introduction, we present
in Section 2.1 the Compressed Sparse Fiber data structure and we show in
Section 2.2 how it can be used to evaluate efficiently a polynomial on a subset

1 https://gitlab.inria.fr/gmoro/voxelize

https://gitlab.inria.fr/gmoro/voxelize

of a grid of boxes. Then in Section 3.1, we show how our new evaluation scheme
yields a quasi-linear time algorithm to compute a discrete Fourier transform. We
show in Section 3.2 how to integrate our evaluation scheme into a subdivision
algorithm to enclose the zero set of a polynomial system. Finally, in Section 4, we
present the timing results of voxelize on several polynomial systems, including
random polynomial systems (Section 4.1), and systems coming from applications
(Section 4.2).

Fig. 1. Boxes on the same level of
the subdivision tree

Fig. 2. Enclosing of a curve de-
fined by 2 trivariate polynomials of
degree 100

1.1 Amortized Evaluation on a Grid of Boxes

The first idea to reduce the evaluation redundancies is to use partial evalua-
tion. Assume that F (x1, x2) is a bivariate polynomial of degree d. Moreover, let
(Ii)0≤i<n and (Ji)0≤j<n be two sequences of real intervals. Using the Hörner
scheme, evaluating F on a box requires O(d2) arithmetic operations, and eval-
uating F on all the boxes Ii × Jj for 0 ≤ i, j < n requires O(d2n2) arithmetic
operations. By reorganizing the operations using partial evaluations, the num-
ber of arithmetic operations can be reduced to O(dn(d + n)). This idea is well
known and was used for example to speed up the multiplication of polynomi-
als [23]. It is also currently implemented in the well-spread library NumPy to
evaluate polynomials in 2 and 3 variables [9].

More precisely the operations are reordered as follows. For a given Ii, the
partial evaluation of F in Ii results in a univariate polynomial fi of degree d.
This step requires O(d2) arithmetic operations. Then evaluating fi on n intervals
requires O(dn) arithmetic operations. Finally, repeating these operations for all
the n intervals Ii, this allows us to evaluate F on all the boxes of the grid with
a total number of arithmetic operations in O(dn(d + n)). More generally, for
higher dimensions, this leads to the following result.

Property 1 ([23]). Let F be a polynomial in k variables and of degree at most
d−1 in each variable. Let X1, . . . , Xk be k sets of n real intervals each. Then it is

possible to evaluate F on all the boxes of X1 × · · ·×Xk in O(kdnmax(n, d)k−1)
arithmetic operations.

In the case where n > d, this approach results in a significant speedup since
the amortized number of arithmetic operations to evaluate F on each box of the
grid is O(kd) instead of O(dk).

1.2 Amortized Evaluation on a Sparse Subset of a Grid

For the simple subdivision algorithm mentioned at the beginning of the introduc-
tion, if the boxes created are never discarded, then each level of the subdivision
tree forms a dense grid of boxes. In this case, the partial evaluation approach
shown in the previous section can be applied directly to reduce the total num-
ber of arithmetic operations required to evaluate F on each box with interval
methods. In the general case though, many boxes are discarded, and the boxes
appearing in a given level of the subdivision tree form a subset of a grid, as shown
in Figure 1. The boxes created in the subdivision algorithm can be handled in
different orders. Using a breadth-first walk on the subdivision, the boxes on the
same level are a subset of a grid. In this case, we need to evaluate a polynomial
on a sparse subset of a grid.

To evaluate a polynomial on a general set of points, the case of a univari-
ate polynomial is well understood [6, 10, 16, 20]. For multivariate polynomials,
there are fewer results that are efficient in practice when the points are not ar-
ranged as a grid. A breakthrough, that was recently improved, is a quasi-linear
algorithm to evaluate a polynomial of degree d in k variables on dk points in a
finite field [1,2,12,19,28]. For multipoint evaluation with real numbers, the only
subquadratic algorithms are for bivariate polynomials [22], or require precom-
putation more than quadratic in the number of points [13, 14]. Finally, a recent
work addresses the case of approximate numerical evaluation [7]. Unfortunately,
those approaches are not yet efficient in practice. Our main result is a practical
improvement to amortize multipoint evaluations in the case were the points or
boxes that we consider are a sparse subset of a grid.

Boxes in a sparse subset of a grid can be gathered and stored as a sparse
tensor in the Compressed Sparse Fiber (CSF) format [5, 26]. The CSF is a gen-
eralization of the Compressed Row Format used to store the entries of a sparse
matrix. Then, F can be evaluated efficiently on these boxes (see Section 2.2 for
more details). This approach was implemented in the library voxelize. Figure 2
shows the output boxes of the software voxelize enclosing an algebraic curve
defined by two polynomial equations of degree 100, where the coefficients are
randomly drawn from a normal law centered at zero. Performing the partial
evaluation approach on a set of boxes in a CSF format leads to Theorem 1.

1.3 Notations

For a set E, we denote by |E| its number of elements. Then, we define the
notations for the size of the projection of a subset E of a grid. In particular, the

size of the projection is smaller when the elements of E are aligned within the
grid.

Definition 1. Given a finite set E ⊂ Nk, and an integer i between 1 and k, we
denote by Ni(E) (resp. Ñi(E)) the number of elements in the projection E on
the first (resp. last) i coordinates, counting repeated projections only once.

Even though this definition holds for a set of integer tuples, it can be natu-
rally extended for multivariate polynomials. Indeed, for each monomial, we can
associate its vector of exponents. If F is a polynomial in k variables, for a given
integer i, we can define Ni(F) (resp. Ñi(F)) as the size of the projections of the
set of vectors of exponents of F to their first (resp. last) i coordinates.

For S a set of points or boxes that is a subset of a grid, we can also extend the
definition of Ni by simply indexing the elements of S by their integer positions
in the grid. Letting Sind be the set of integer indices of the boxes of S, we can
define Ni(S) by Ni(Sind).

1.4 Main Result

We can now state our main theorem to evaluate a multivariate polynomial on
a set of boxes that is a sparse subset of a grid of boxes G that is the Cartesian
product of k sets of intervals X1 × · · · ×Xk.

Theorem 1. Let F be a polynomial in k variables, and S be a subset of boxes of
G. It is possible to evaluate F on all the boxes of S in O(

∑k−1
i=0 Ñk−i(F)Ni+1(S))

arithmetic operations.

When the set of boxes enclose a variety of dimension j,the projection of S on
the first j coordinates is often a dense grid. In this case, we have the following
corollary.

Corollary 1. For 1 ≤ j ≤ k − 1, assume that the projection of S on the first j
coordinates is:

i. a dense grid, denoted by X1 × · · · ×Xj

ii. |Xi| > d for all 1 ≤ i ≤ j.

Then we can evaluate each box of S in O(j(d + 1)k−j+1) arithmetic operations
on average, instead of O((d+ 1)k) operations.

Proof (Corollary 1). First, if F has degree at most d in each variable, then

Ñk−i(F) is less than dk−i for all non-negative integers less or equal to k.
For 0 ≤ i < j, Assumption i implies that Ni+1(S) = Ni(S)|Xi+1|. Then we

deduce with Assumption ii. that (d+ 1)Ni(S) ≤ Ni+1(S). This implies that:

Ñk−i(F)Ni+1(S) ≤ (d+ 1)k−iNi+1(S)

≤ (d+ 1)k+1−j

Nj(S) ≤ (d+ 1)k+1−j |S|.

For i ≥ j we have Ñk−i(F) ≤ (d + 1)k−i, such that Ñk−i(F)Ni+1(S) ≤
(d+ 1)k−i|S|. Thus, the evaluation of F on all the boxes of S is in

O(j(d+ 1)k−j+1|S|+
k−1∑
i=j

(d+ 1)k−i|S|) = O(j(d+ 1)k−j+1).

In particular, the amortized cost of evaluating each box is in O(jdk−j+1) arith-
metic operations instead of O(dk) with a direct algorithm.

2 Evaluating Polynomials with Compressed Sparse Fibers

2.1 Sparse Tensor Data Structure

The main data structure used in our algorithms is the Compressed Sparse Fiber,
as described in [5,26]. This data structure is well suited to store a subset of a grid
in high dimension. It can be seen as a generalization of the classical Compressed
Sparse Row data structure used to store the entries of a sparse matrix as in
Figure 3.

9

5 1

37

8 4

0 1 2 3 4 5

0

1

2

3

Fig. 3. Numbers stored in a sparse matrix

For a subset of a 2D grid, the data structure is a labeled tree that stores
the positions of the non-empty rows in the children of the root node, and then
in each row, the position of the non-empty entries are stored in the children of
the corresponding node (Figure 4). In higher dimension k, this idea is applied
recursively. Let E be a subset of points in Nk. For t = (t1, . . . , tℓ) ⊂ Nℓ a tuple
of size ℓ < k, we denote by πt(E) the subset of N defined by:

πt(E) = {i ∈ N | ∃yℓ+2, . . . yk ∈ N such that (t1, . . . , tℓ, i, yℓ+2, . . . , yk) ∈ E}.

Then the Compressed Sparse Fiber (or CSF) data structure associated to E
is a labeled tree of depth k defined recursively as follows. The root of the tree

is at depth 0 and its children are the nodes labeled by the elements of π∅(E),
where ∅ denotes the empty tuple. Consider now a node N of the tree at depth
1 ≤ ℓ < k. Let t(N) be the tuple of size ℓ, where the i-th coordinate is the label
of the i-th node on the path from the root to N . Then the children of N are the
nodes labeled by the elements of πt(N)(E). Finally, for a node N at depth k, it is
possible to add a leaf that can be labeled with the value of the entry associated
to the tuple t(N). Given a CSF data structure, the corresponding set of tuple E
is unique and is called its support.

As an example, using the compressed sparse data structure to store the sparse
matrix given in Figure 3, we get the tree shown in Figure 4, and its support is
{(0, 0), (0, 1), (1, 0), (1, 1), (3, 0), (3, 3), (3, 4)}.

0 1 3

0 1 0 3 410

5 1 7 3 8 4 9

Fig. 4. Compressed Sparse Fiber associated to the sparse matrix

Remark 1. Given T a CSF data structure associated to E, remark the size of
the projection on the first i coordinates is the number of nodes of depth i in T .
In particular, we have Ni(E) =

∑
t∈Ni−1 |πt(E)|.

Representing a Multivariate Polynomial. A natural application of the
Compressed Sparse Fiber data structure is to encode the monomials of a sparse
polynomial. Given a polynomial in k variables, the exponents of each monomial
can be represented as a k-tuple of integers in Nk, and the coefficients can be rep-
resented as the entries associated to each tuple. Using this representation, it can
be directly encoded in a CSF data structure. Given a polynomial F (x1, . . . , xk),
we denote by TF the CSF tree associated to F . By extension of Definition 1, we
define the size Ni(F) as the size Ni(Tf) of its corresponding CSF tree truncated
to depth i.

For example the following polynomial in two variables would be encoded with
the CSF tree in Figure 4:

5 + x2 + 7x1 + 3x1x2 + 8x3
1 + 4x3

1x
3
2 + 9x3

1x
4
2

Representing a Set of Boxes. A sparse subset of a grid of boxes can also
be represented with the Compressed Sparse Fiber data structure, by applying it
to the indexes of the boxes within the grid. Without loss of generality, consider
a subdivision of the unit box [0, 1]k into nk smaller boxes, where each box is a

product of intervals of the form
∏k

i=1[ai, bi], where ai and bi are real numbers.
In the case where the subdivision is uniform, let Gn be the set of these nk boxes.
Each cube from Gn can be indexed by a k-tuple of integers in Nk. In particular,
for a sparse subset of Gn, we can associate the set B of the indices of its boxes.
Then, B can be encoded in a CSF data structure. In this case, the tree we
construct won’t have leaves since there is no entry associated to each box.

2.2 Evaluation Algorithm

One Variable. A classical way to evaluate a univariate polynomial on a point
is the Hörner algorithm that we recall in Algorithm 1 for the evaluation of a
sparse polynomial on an interval.

Algorithm 1: Hörner algorithm

Input: An interval I and a polynomial F (x) = a0x
e0 + · · ·+ aℓx

eℓ where:
e0 < · · · < el are integers

a0, . . . , aℓ are real numbers or intervals.
Output: The interval obtained by evaluating F on I with the Hörner scheme.

1 J ← al

2 for j from ℓ− 1 to 0 do
3 J ← J × Iej+1−ej + aj

4 return J

Several Variables. For multivariate polynomials F , we can use the Hörner
scheme recursively. Moreover, if we want to evaluate F on a set of boxes, Al-
gorithm 2 generalizes the Hörner scheme to the case where F and the boxes
are stored in a CSF data structure. The key idea in Algorithm 2 is that for
boxes that share the same coordinate, we only evaluate the polynomial partially
on those coordinates. Then we reuse those partially evaluated polynomials to
evaluate the boxes on the remaining coordinates.

The advantage of using the approach in Algorithm 2 is that it allows us to
amortize the cost of the evaluation when several boxes have the same projec-
tion. In the following, we will prove that the complexity of Algorithm 2 is in
O(
∑k−1

i=0 Ñk−i(F)Ni+1(S)) arithmetic operations, which will prove Theorem 1.

Proof (Theorem 1). Since Algorithm 2 is recursive, we will prove its complexity
by recurrence. Algorithm 2 is a loop over the nodes of the root of T . In particular,

Algorithm 2: Evaluation on a set of boxes

Input: F a polynomial in k variables
T a CSF tree representing the indices of a subset S of boxes of a grid

X1 × · · · ×Xk, where Xi is a set of intervals.
Output: A CSF data structure representing the evaluation of the polynomial

represented by F on all the boxes in S.

1 Function EvaluationCSF(F ,T):
2 X1 ← the list of intervals of the first coordinate in the grid G
3 L← empty list
4 for i in π∅(T) do
5 I ← the interval of index i in X1

6 FI ← F (I, x2, . . . , xn)
7 if F is univariate
8 Append FI to L

9 else
10 Ti ← the subtree of T rooted at the node at depth 1 with label i
11 Li ← EvaluationCSF(FI , Ti)
12 Append Li to L

13 return L

this loop will be called N1(S). In each loop, the dominating complexities are in
line 6 and 11. In line 6, the complexity of evaluating partially F in one variable
x1 is Ñk(F). Thus, the total complexity carried by line 6 is in O(Ñk(F)N1(S)).

And if F is univariate, the complexity of Algorithm 2 is in O(Ñ1(F)N1(S)).

Then, if F is a polynomial in k variables with k > 1, the number of operations
is again carried by lines 6 and 11. Let SI be the set of boxes represented by the
tree TI . By recurrence the number of operations in line 11 is in

O

(
k−2∑
i=0

Ñk−1−i(FI)Ni+1(SI)

)
.

In particular, remark that Ñk−1−i(FI) = Ñk−1−i(F). And using Remark 1,
the sum of the Ni+1(SI) on all the intervals I children of the root of T is
equal to Ni+2(S). Thus, the complexity of Algorithm 2 carried by line 11 is

O
(∑k−2

i=0 Ñk−1−i(F)Ni+2(S)
)
. By changing the index of the sum, this complex-

ity becomes

O

(
k−1∑
i=1

Ñk−i(F)Ni+1(S)

)
.

Since the complexity carried by line 6 is O(Ñk(F)N1(S)), this concludes the
proof.

3 Applications

3.1 The Fast Fourier Transform Revisited

Given a vector u of d+1 complex numbers u0, . . . , ud, its discrete Fourier Trans-
form is the vector v of d+ 1 complex numbers v0, . . . , vd such that:

vk =

d∑
j=0

uje
−i2π k

d+1 j (1)

The fast Fourier Transform algorithm returns the vector v using O(d log d)
arithmetic operations. If we reinterpret Equation (1) as the evaluation of a mul-
tivariate polynomial on a set of points stored with a CSF tree data structure,
we can use Algorithm 2 to compute the discrete Fourier transform in O(d log d)
arithmetic operations.

Without restriction of generality, assume that there exists an integer k such
that d+1 = 2k is a power of two. Let F be the polynomial in k variables defined
by:

F =
∑

(i1,...,ik)∈{0,1}k

u
i1+···+ik2k−1

xi1
1 · · ·xik

k

Moreover, let w be the (d+1)-th root of unity e−i2π/(d+1). For 1 ≤ j ≤ k, let

Xj = {1, w2k−j}, and let G be the grid of points gi1,...,ik in Ck for (i1, . . . , ik) ∈
{0, 1}k, defined by:

gi1,...,ik = (wi12
k−1

, . . . , wik) ∈ X1 × · · · ×Xk

Then, using the notations of Equations (1), for an integer j = i12
k−1+· · ·+ik

we have vj = F (gi1,...,ik). The polynomial F has a degree at most 1 in each
variable and the set of points on which F is evaluated is a Cartesian product
X1 × · · · ×Xk where Xj has size 2 for all 1 ≤ j ≤ k. Then, using Claim 1, this
evaluation can be done using O(k2k), that is O(d log d) arithmetic operations.

3.2 Subdivision Algorithm

A classical approach to find the zero locus of a set of a polynomial equation is
to use a subdivision algorithm. Given a polynomial equation F and a box B,
assume that we have two criteria C0(F,B) and C1(F,B) such that:

– if C0(F,B) is true, then F doesn’t vanish in B
– if C1(F,B) is true, then F vanishes in B

The idea of a subdivision algorithm is to start with a set of boxes, and to
bisect them recursively until the criterion C0 is true, or C1 is true and the size
is smaller than a given threshold. Recall that the grid Gn is the set of nk boxes
obtained by subdividing uniformly [0, 1]k in n boxes in all the directions. Given
a box B from the grid Gn, if we bisect it uniformly in 2 in all the directions, we

end up with a set of 2k boxes, all of them included in G2n. In particular, if we
bisect a set of boxes in Gn, we end up with a set of boxes in G2n. Moreover, if the
criteria C0 and C1 are based on polynomial evaluations, we can use Algorithm 2
to amortize the evaluation. This leads to Algorithm 3, that computes a set of
boxes that enclose the zero-set of a polynomial equation. If we want to compute
the zero set of a system of polynomial equations and inequalities, Algorithm 3
can be used unchanged, and the criteria C1 and C0 can be easily adapted to
detect if a system of equations has solutions or not in a given box. To ensure
that Algorithm 3 terminates, it is necessary that for boxes small enough, either
criterion C0 or C1 succeed.

Algorithm 3: Simple subdivision algorithm to enclose the zero locus
of a polynomial equation

Input: F a multivariate polynomial
ε a positive threshold real number

Output: A CSF data structure representing the boxes of size at most ε, such
that F vanishes in all the boxes, and doesn’t vanish outside the
boxes.

1 S ← {[0, 1]k}
2 R← {}
3 size ← 1
4 while S is not empty do
5 S ← set of boxes B in S not satisfying C0(F,B)
6 if size < ε
7 R← R union the set of boxes B in S satisfying C1(F,B)
8 S ← set of boxes B in S not satisfying C1(F,B)

9 S ← set of boxes bisected from the boxes in S
10 size ← size/2

11 return R

Criteria for Exclusion and Inclusion

Exclusion Criterion. A simple exclusion criterion C0(F,B) consists in evaluat-
ing F on B using interval arithmetic. Interval arithmetic is the generalization
of standard arithmetic operations to the case where numbers are replaced by
intervals. If [a, b] and [c, d] are two intervals, the result of [a, b] + [c, d] is the
interval [a+ c, b+ d]. If F is a polynomial in k variables and B is a product of k
intervals, we denote by □F (B) the interval returned when F is evaluated on B
using interval arithmetic. The main property of interval arithmetic is that the
interval □F (B) satisfies {F (x) | x ∈ B} ⊂ □F (B). In particular, if 0 /∈ □F (B),
then F does not vanish in B. Thus, we can define C0(F,B) as the predicate
0 /∈ □F (B).

The exclusion criterion can also be computed using other schemes to evaluate
F on B, such as the Taylor form, which can reduce the overesetimation near the
zeros of F [11, §3.5].

Definition 2 (Taylor Form [25, Definition 3.3], [15]). If c is the middle
point of B, for a given integer m, the Taylor form of order m of the polynomial
F in k variables is defined by:

Tm(F, x) = F (c) + · · ·+ F (m−1)(c)

(m− 1)!
(x− c)m−1 +

□F (m)(B)

m!
(x− c)m

where x = (x1, . . . , xk) is a tuple of symbolic variables.

This evaluation scheme satisfies the property {F (x) | x ∈ B} ⊂ Tm(F,B),
such that 0 /∈ Tm(F,B) implies that F does not vanish in B. In the case of a
system of several equations, we can simply test if any of the input polynomial
does not contain 0.

Inclusion Criterion. For the inclusion criterion C1(F,B) to detect if F vanishes
in B, a simple test consists in evaluating F on all the vertices of B and returning
true if two of them have different signs, and false if all the signs are the same.
Remark that the set of all the vertices of all the boxes are a subset of a grid,
and thus we can also use Algorithm 2 to amortize the cost of their evaluation.

The inclusion criterion C1(F,B) can also be based on the Taylor form if we
computed it with order m, where m is an integer greater or equal to 2. Let
ℓ(x) be the linear part of Tm(F, x). Let Vmin be a vertex of B that minimizes ℓ
and Vmax one that maximizes ℓ. Then we can reduce the evaluation of F to the
vertices Vmin and Vmax. We can also use the Taylor form to evaluate lower and
upper bounds of the values of F at Vmin and Vmax. In this case, our predicate
will return true if the lower bound on F (Vmax) is positive and the upper bound
on F (Vmin) is negative.

If F is a vector of multiple polynomials, and if we want to test if they van-
ish simultaneously inside a box, we can use a criterion C1 derived from the
Newton Interval criterion [8, 21]. First, when the number of input equations
F1 = 0, . . . , Fk = 0 is equal to the number of variables, the Newton Interval
criterion can be seen as a fixed-point theorem. Letting S be the k × k matrix
defined by

Sij =

{
Fi(x1,...,xj−1,xj ,cj+1,...,ck)−Fi(x1,...,xj−1,cj ,cj+1,...,ck)

xj−cj
if xj ̸= cj

dF
dxj

(x1, . . . , xj−1, cj , . . . , ck) if xj = cj
,

and c be the center of the box B, we define the formula N(x) = c−S(x)−1F (c).
If N(B) ⊂ B, the fixed-point theorem ensures that there exists a point x0 in
B such that N(x0) = x0, which is equivalent to F1(x0) = 0, . . . , Fk(x0) = 0.
Otherwise, when the number of polynomial equations is less than the number of
variables, we can intersect the box with the linear space spanned by the gradient

vectors of the input polynomial at the center of the box B. Then we can use the
Newton Interval criterion on the resulting system that has as many equations as
variables.

4 Experiments

Algorithm 2 and 3 have been implemented in C++ in the software voxelize.
This software can take as input a list of polynomial equations and polynomial
inequalities, and it returns a list of boxes enclosing the set of points where the
input system has solutions. Furthermore, if the input is a single polynomial
equation, then it is guaranteed to vanish in each box returned by voxelize that
are larger than a threshold given by the user. The software can be used as a
standalone program, taking one file per polynomial, or it can be used through a
python interface.

The criterion C0 used to exclude boxes is based on the Taylor form evaluation
scheme described in Definition 2. The criterion C1 is implemented in the case
where the input is a single polynomial equation, and it follows the approach based
on the Taylor form detailed at the end of Section 3.2. In the case of multiple
input polynomial equations, the subdivision process stops when the boxes are
smaller than a threshold given by the user.

4.1 Random Polynomials

In Table 1, we show the time to enclose the zero-set of polynomial equations in
k variables where k is either 2, 3 or 4. In each case, we consider three cases: a
hypersurface defined by one equation, a curve defined by k− 1 equations, points
defined by k equations. And for each case, we generated random polynomials of
total degree either 20 or 100, except for k = 4 where voxelize could not handle
polynomials in 4 variables and total degree 100. The random coefficients are
floating-point numbers with double precision uniformly sampled between −10
and 10.

The computation have been done on a laptop with a 1.9GHz CPU and 16G
of RAM. The tests have been done with one thread, for easier comparison with
other single-thread programs. Note that voxelize is also implemented with the
multi-thread library openmp and it can distribute the computations on several
threads. Up to our knowledge, voxelize is the only available software that can
handle the systems with polynomials of degree 100 in 3 variables presented in
Table 1.

4.2 Polynomials Coming from Applications

We also used the software on two polynomial systems coming from robotics and
automatic applications. In these cases, we compared our software with the state-
of-the-art subdivision software ibex. The ibex software is a general subdivision
software including a specific feature called contractors [3]. A contractor is an

Table 1. Timing in seconds for computing enclosing boxes in the cube [−2, 2]k. For
points and curves, the subdivsion process stopped for boxes smaller than 2−8 ≃ 0.004.
For hypersurfaces, the subdivision process stopped when either the criterion C0 or C1

was satisfied on all the boxes, and the boxes had a size smaller than 2−5 ≃ 0.03.

dimension k 2D 3D 4D

degree d 20 100 20 100 20

points2 (k equations) 0.006 0.32 0.5 273 56
curves2 (k − 1 equations) 0.062 0.31 1.3 270 91
hypersurfaces (1 equation) 0.062 0.31 1.1 412 373
2 Only the exclusion criterion was implemented for
this case, and not the inclusion criterion.

operator that takes as input a function F and a box B, and that returns a
smaller box B′ such that the intersection of B′ with the zero set Z of F is the
same as the intersection of B with Z.

Robotics. In robotics, a classical problem is to compute the parallel singulari-
ties of a robot. That is the set of control parameters around which the robot
can be assembled in two nearby configurations. In particular, the following set
of equations defines the singularities in the orientation space of the 3-PPPS
manipulator [4]. The orientation space is modeled with 4 quaternion variables,
commonly used to parametrize the rotation matrices in 3D. The sum of the
squares of the quaternion variables is constrained to be 1.

(R)



0 = −6Q2
2Q3Q1 + 6Q2Q3

2Q4 + 3
√
3Q2

2Q3Q4

− 6Q2Q1
2Q4 + 6Q1Q4

2Q3

− 3
√
3Q2Q1Q4

2 + 3
√
3Q2Q3

2Q1

− 3
√
3Q3Q1

2Q4 +
√
3Q2

3Q1

−
√
3Q2Q1

3 +Q4

√
3Q3

3 −Q3

√
3Q4

3

1 = Q2
1 +Q2

2 +Q2
3 +Q2

4

Automatic. In control theory, a common problem is to decide if it is possible to
add a controller to a dynamic system such that it becomes stable. In some case,
this problem can be reduced to decide if a polynomial system does not vanish on
complex numbers of modulus less than one. For example, the following system in
3 complex variables was communicated by Thomas Cluzeau and Alban Quadrat.
If it has no solution where z1, z2 and z3 have a modulus less than 1, then it is
possible to design a stable controller for the corresponding dynamic system.

(A)



|z1| ≤ 1

|z2| ≤ 1

|z3| ≤ 1

0 = z1z
2
2 − z1z3 − 2

0 = 12z32z
3
3 − 2z21z2z

2
3 + z32z

2
3 − 2z22z

3
3 − 12z2z

4
3 + 2z21z

2
3 − z2z

3
3

−2z1z2z3 − 7z32 − 10z22z3 + 14z1z3 − 8z22 + 9z2z3 + 12z23 + 30z3 + 2

0 = z31z
3
3 + z1z2z

4
3 − z31z

2
3 + z1z

4
3 − 12z22z

3
3 − 6z21z2z3 + 3z21z

2
3 − z1z2z

2
3

−z22z
2
3 − 10z2z

3
3 − 7z21z3 − 12z1z2z3 − 2z1z

2
3 − z2z

2
3 + 2z33 − z1z2

−9z1z3 + 7z22 + 10z2z3 − z1 + 15z2 + 8z3 + 8

0 = z31z2z
2
3 − z31z

2
3 + z1z

4
3 + z21z2z3 − 12z2z

3
3 − 7z21z3 − z1z2z3 − z1z

2
3

−z2z
2
3 + 2z33 − 11z1z3 − z1 + 7z2 + 10z3 + 8

By using the change of variable zj = xj + iyj , we get 8 polynomial equations
in 6 variables, with the additional inequalities x2

i + y21 ≤ 1.

Experiences. We used voxelize and ibex on those two system of polynomial
equations and inequalities. The timings and the number of boxes returned for
the two software are presented in Table 2.

Table 2. Subdivision solvers used to enclose the zero-set of the systems (R) and (A).
For the system (R), the subdivision process was stopped when boxes were smaller than
2−4 ≃ 0.06, both in ibexsolve and voxelize.

Software Robotics (R) Automatic (A)

Time Number of boxes Time Number of boxes

ibexsolve 103s 29871 2.5s 0

voxelize 0.1s 7228 1.2s 0

We can see that both solvers could detect that the system (A) has no com-
plex solutions of moduli less than 1. In both cases, voxelize was faster than
ibexsolve, and significantly faster for the system (R). This shows that the amor-
tized evaluation scheme based on the CSF data structure is efficient not only in
theory, but also in practice. On the other hand, ibexsolve and voxelize solve
the system (A) with a time within the same order of magnitude, despite the
fact that ibexsolve does not used amortized evaluations. This might be due
to the fact that the contractors used by ibexsolve work well for this system.
Remark that it could be possible to combine contractors and amortized evalu-
ation scheme. The main issue is that after applying a contractor, the boxes are
not anymore aligned on a grid. This could be solved by snapping the boxes to
expanded boxes from a refined grid after applying the contractors.

Acknowledgments. The author wishes to thank Luc Jaulin, Thomas Cluzeau and

Alban Quadrat for their insightful remarks and examples discussed in this article.

References

1. Bhargava, V., Ghosh, S., Guo, Z., Kumar, M., Umans, C.: Fast multivari-
ate multipoint evaluation over all finite fields. In: 2022 IEEE 63rd An-
nual Symposium on Foundations of Computer Science (FOCS). pp. 221–232.
IEEE Computer Society, Los Alamitos, CA, USA (nov 2022). https://doi.

org/10.1109/FOCS54457.2022.00028, https://doi.ieeecomputersociety.org/

10.1109/FOCS54457.2022.00028

2. Bhargava, V., Ghosh, S., Kumar, M., Mohapatra, C.K.: Fast, algebraic multivari-
ate multipoint evaluation in small characteristic and applications. In: Proceedings
of the 54th annual ACM SIGACT symposium on theory of computing, STOC ’22,
Rome, Italy June 20–24, 2022, pp. 403–415. New York, NY: Association for Com-
puting Machinery (ACM) (2022). https://doi.org/10.1145/3519935.3519968

3. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173(11), 1079–1100
(2009). https://doi.org/10.1016/j.artint.2009.03.002

4. Chen, C., Gayral, T., Caro, S., Chablat, D., Moroz, G., Abeywardena, S.:
A six-dof epicyclic-parallel manipulator. Journal of Mechanisms and Robotics
4(4) (Apr 2012). https://doi.org/10.1115/1.4007489, https://hal.science/
hal-00684803, https://hal.science/hal-00684803/file/MEPaM-JMR-FINAL.pdf

5. Chou, S., Kjolstad, F., Amarasinghe, S.: Format abstraction for sparse tensor alge-
bra compilers. Proc. ACM Program. Lang. 2(OOPSLA), 123:1–123:30 (Oct 2018).
https://doi.org/10.1145/3276493

6. Fiduccia, C.M.: Polynomial evaluation via the division algorithm the fast fourier
transform revisited. In: Proceedings of the Fourth Annual ACM Symposium on
Theory of Computing. p. 88–93. STOC ’72, Association for Computing Machinery,
New York, NY, USA (1972). https://doi.org/10.1145/800152.804900, https:
//doi.org/10.1145/800152.804900

7. Ghosh, S., Harsha, P., Herdade, S., Kumar, M., Saptharishi, R.: Fast
numerical multivariate multipoint evaluation. In: 2023 IEEE 64th Annual
Symposium on Foundations of Computer Science (FOCS). pp. 1426–1439.
IEEE Computer Society, Los Alamitos, CA, USA (nov 2023). https://doi.

org/10.1109/FOCS57990.2023.00088, https://doi.ieeecomputersociety.org/

10.1109/FOCS57990.2023.00088

8. Goldsztejn, A.: Comparison of the Hansen-Sengupta and the Frommer-Lang-
Schnurr existence tests. Computing 79(1), 53–60 (2007). https://doi.org/10.
1007/s00607-006-0217-8

9. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M.,
Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Ŕıo, J.F., Wiebe, M.,
Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Ab-
basi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature
585(7825), 357–362 (Sep 2020). https://doi.org/10.1038/s41586-020-2649-2,
https://doi.org/10.1038/s41586-020-2649-2

10. van der Hoeven, J.: Fast composition of numeric power series. Tech. Rep. 2008-09,
Université Paris-Sud, Orsay, France (2008)

https://doi.org/10.1109/FOCS54457.2022.00028
https://doi.org/10.1109/FOCS54457.2022.00028
https://doi.org/10.1109/FOCS54457.2022.00028
https://doi.org/10.1109/FOCS54457.2022.00028
https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00028
https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00028
https://doi.org/10.1145/3519935.3519968
https://doi.org/10.1145/3519935.3519968
https://doi.org/10.1016/j.artint.2009.03.002
https://doi.org/10.1016/j.artint.2009.03.002
https://doi.org/10.1115/1.4007489
https://doi.org/10.1115/1.4007489
https://hal.science/hal-00684803
https://hal.science/hal-00684803
https://doi.org/10.1145/3276493
https://doi.org/10.1145/3276493
https://doi.org/10.1145/800152.804900
https://doi.org/10.1145/800152.804900
https://doi.org/10.1145/800152.804900
https://doi.org/10.1145/800152.804900
https://doi.org/10.1109/FOCS57990.2023.00088
https://doi.org/10.1109/FOCS57990.2023.00088
https://doi.org/10.1109/FOCS57990.2023.00088
https://doi.org/10.1109/FOCS57990.2023.00088
https://doi.ieeecomputersociety.org/10.1109/FOCS57990.2023.00088
https://doi.ieeecomputersociety.org/10.1109/FOCS57990.2023.00088
https://doi.org/10.1007/s00607-006-0217-8
https://doi.org/10.1007/s00607-006-0217-8
https://doi.org/10.1007/s00607-006-0217-8
https://doi.org/10.1007/s00607-006-0217-8
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

11. van der Hoeven, J.: Reliable homotopy continuation. Research report, LIX, Ecole
polytechnique (Jan 2015), https://hal.science/hal-00589948

12. van der Hoeven, J., Lecerf, G.: Fast multivariate multi-point evaluation revisited. J.
Complexity 56, 38 (2020). https://doi.org/10.1016/j.jco.2019.04.001, id/No
101405

13. van der Hoeven, J., Lecerf, G.: Fast amortized multi-point evaluation. J. Complex-
ity 67, 15 (2021). https://doi.org/10.1016/j.jco.2021.101574, id/No 101574

14. van der Hoeven, J., Lecerf, G.: Amortized multi-point evaluation of multivari-
ate polynomials. J. Complexity 74, 17 (2023). https://doi.org/10.1016/j.jco.
2022.101693, id/No 101693

15. Hormann, K., Kania, L., Yap, C.: Novel range functions via taylor expansions
and recursive lagrange interpolation with application to real root isolation. In:
Proceedings of the 2021 on International Symposium on Symbolic and Algebraic
Computation. p. 193–200. ISSAC ’21, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3452143.3465532, https://
doi.org/10.1145/3452143.3465532

16. Imbach, R., Moroz, G.: Fast evaluation and root finding for polynomials with
floating-point coefficients. In: Proceedings of the 48th international symposium on
symbolic and algebraic computation, ISSAC, Tromsø, Norway, July 24–27, 2023,
pp. 325–334. New York, NY: Association for Computing Machinery (ACM) (2023).
https://doi.org/10.1145/3597066.3597112

17. Jaulin, L., Kieffer, M., Didrit, O., Walter, E., Jaulin, L., Kieffer, M., Didrit, O.,
Walter, É.: Interval analysis. Springer (2001)

18. Kearfott, R.B.: Rigorous global search: continuous problems. Nonconvex optimiza-
tion and its applications, Kluwer Academic Publishers, Dordrecht, Boston (1996),
http://opac.inria.fr/record=b1092397

19. Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition.
SIAM J. Comput. 40(6), 1767–1802 (2011). https://doi.org/10.1137/08073408X

20. Moroz, G.: New data structure for univariate polynomial approximation and appli-
cations to root isolation, numerical multipoint evaluation, and other problems. In:
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).
pp. 1090–1099. IEEE (2022)

21. Neumaier, A.: Interval methods for systems of equations. Cambridge University
Press (1990). https://doi.org/10.1017/CBO9780511526473

22. Nüsken, M., Ziegler, M.: Fast multipoint evaluation of bivariate polynomials.
In: Algorithms – ESA 2004. 12th annual European symposium, Bergen, Nor-
way, September 14–17, 2004. Proceedings., pp. 544–555. Berlin: Springer (2004).
https://doi.org/10.1007/b100428

23. Pan, V.Y.: Simple multivariate polynomial multiplication. J. Symb. Comput.
18(3), 183–186 (1994). https://doi.org/10.1006/jsco.1994.1042

24. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces. In:
SGP ’04: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing.
pp. 245–254 (2004). https://doi.org/http://doi.acm.org/10.1145/1057432.

1057465

25. Ratschek, H., Rokne, J.: Computer methods for the range of functions. Ellis Hor-
wood Series in Mathematics and Its Applications. Chichester: Ellis Horwood Lim-
ited; New York etc.: Halsted Press: a Division of John Wiley & Sons. 168 p. £
16.95 (1984). (1984)

26. Smith, S., Karypis, G.: Tensor-matrix products with a compressed sparse ten-
sor. In: Proceedings of the 5th Workshop on Irregular Applications: Architectures

https://hal.science/hal-00589948
https://doi.org/10.1016/j.jco.2019.04.001
https://doi.org/10.1016/j.jco.2019.04.001
https://doi.org/10.1016/j.jco.2021.101574
https://doi.org/10.1016/j.jco.2021.101574
https://doi.org/10.1016/j.jco.2022.101693
https://doi.org/10.1016/j.jco.2022.101693
https://doi.org/10.1016/j.jco.2022.101693
https://doi.org/10.1016/j.jco.2022.101693
https://doi.org/10.1145/3452143.3465532
https://doi.org/10.1145/3452143.3465532
https://doi.org/10.1145/3452143.3465532
https://doi.org/10.1145/3452143.3465532
https://doi.org/10.1145/3597066.3597112
https://doi.org/10.1145/3597066.3597112
http://opac.inria.fr/record=b1092397
https://doi.org/10.1137/08073408X
https://doi.org/10.1137/08073408X
https://doi.org/10.1017/CBO9780511526473
https://doi.org/10.1017/CBO9780511526473
https://doi.org/10.1007/b100428
https://doi.org/10.1007/b100428
https://doi.org/10.1006/jsco.1994.1042
https://doi.org/10.1006/jsco.1994.1042
https://doi.org/http://doi.acm.org/10.1145/1057432.1057465
https://doi.org/http://doi.acm.org/10.1145/1057432.1057465
https://doi.org/http://doi.acm.org/10.1145/1057432.1057465
https://doi.org/http://doi.acm.org/10.1145/1057432.1057465

and Algorithms. pp. 5:1–5:7. IA3 ’15, ACM (2015). https://doi.org/10.1145/
2833179.2833183

27. Snyder, J.M.: Interval analysis for computer graphics. In: Proceedings of the 19th
annual conference on Computer graphics and interactive techniques. pp. 121–130.
SIGGRAPH ’92, ACM, New York, NY, USA (1992). https://doi.org/10.1145/
133994.134024, http://doi.acm.org/10.1145/133994.134024

28. Umans, C.: Fast polynomial factorization and modular composition in small char-
acteristic. In: Proceedings of the 40th annual ACM symposium on theory of com-
puting, STOC 2008. Victoria, Canada, May 17–20, 2008, pp. 481–490. New York,
NY: Association for Computing Machinery (ACM) (2008)

https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1145/133994.134024
https://doi.org/10.1145/133994.134024
https://doi.org/10.1145/133994.134024
https://doi.org/10.1145/133994.134024
http://doi.acm.org/10.1145/133994.134024

	Sparse Tensors and Subdivision Methods for Finding the Zero Set of Polynomial Equations

