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Abstract

Caballeronia insecticola is a bacterium belonging to the Burkholderia genus sensu lato, which is able to colonize multiple environments
like soils and the gut of the bean bug Riptortus pedestris. We constructed a saturated Himar1 mariner transposon library and revealed
by transposon-sequencing that 498 protein-coding genes constitute the essential genome of Caballeronia insecticola for growth in free-
living conditions. By comparing essential gene sets of Caballeronia insecticola and seven related Burkholderia s.l. strains, only 120 common
genes were identified, indicating that a large part of the essential genome is strain-specific. In order to reproduce specific nutritional
conditions that are present in the gut of Riptortus pedestris, we grew the mutant library in minimal media supplemented with candidate
gut nutrients and identified several condition-dependent fitness-defect genes by transposon-sequencing. To validate the robustness
of the approach, insertion mutants in six fitness genes were constructed and their growth deficiency in media supplemented with
the corresponding nutrient was confirmed. The mutants were further tested for their efficiency in Riptortus pedestris gut colonization,
confirming that gluconeogenic carbon sources, taurine and inositol, are nutrients consumed by the symbiont in the gut. Thus, our study
provides insights about specific contributions provided by the insect host to the bacterial symbiont.

Keywords: gut symbiosis, Caballeronia insecticola, Riptortus pedestris, Tn-seq, essential gene, fitness gene, Burkholderia sensu lato,
genome comparison

Introduction
Essential genes in a bacterial genome are genes that are indis-
pensable to support cellular life. Together, they constitute a min-
imal gene set required for a living bacterium. Essential genes are
a subset of fitness genes that contribute to the reproduction of an
organism independently of its environment. Thus, a fitness gene
can be defined as any gene whose perturbation causes a prolifer-
ation defect and an essential gene is the extreme case when there
is no proliferation at all [1, 2]. In contrast to the environment-
independent essential and fitness genes, conditionally essential
or fitness genes are only required for proliferation under specific
conditions. Identification of (conditionally) essential and fitness
genes of a bacterium contributes to the understanding of the
molecular factors enabling its lifestyle and, from an applied point
of view, it can help in designing new ligands for disease manage-
ment or development of improved bio-stimulants [3, 4].

Multiple methods have been developed to identify essential
and fitness genes at the whole-genome scale. Among them is
the systematic deletion of all possible genes and their one-
by-one precise phenotyping [5, 6]. This method is laborious,

making it difficult to undertake for most bacterial species.
However, the recent development of Transposon-sequencing (Tn-
seq) and related methods has provided an efficient and fast
solution to determine the essential genome that is accessible for a
large number of bacterial species. Tn-seq allows to perform high-
throughput genetic screens and to quantify in a single selection
experiment the fitness impact of all genes of a genome in a
condition of interest. Tn-seq uses saturated transposon-mutant
populations, determines the relative abundance of all mutants
in the population by high-throughput sequencing, and compares
these abundances in different growth conditions [7]. The analysis
of the genome-wide mutation frequency in the population grown
in standard conditions identifies the essential and fitness genes,
whereas the determination of altered mutation frequencies
between conditions identifies the conditionally essential genes.
By quantifying gene fitness by Tn-seq in many different specific
environments, a fitness landscape of a bacterium in a large
diversity of conditions can be created [8-10].

Burkholderia sensu lato (s.l.), corresponding to the former
Burkholderia genus and belonging to the Betaproteobacteria, is
a large group of pathogenic, phytopathogenic, symbiotic, and
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environmental bacteria composed of eight different genera:
Paraburkholderia, Robbsia, Pararobbsia, Mycetohabitans, Caballeronia,
Trinickia, Burkholderia sensu stricto, and Burkholderia cepacia complex
[11]. Caballeronia insecticola (formerly Burkholderia insecticola) is able
to colonize multiple environments like soil or the gut of the bean
bug R. pedestris and related stinkbug species [12-14]. In this latter
environment, C. insecticola is involved in a mutualistic relationship
with the insects. The symbiotic bacteria colonize an exclusive
niche composed of crypts located in the posterior midgut region
of the insect where, starting from a limited number of infecting
bacteria acquired from the environment through feeding, a
massive extracellular population is established in the midgut
crypts in a few days [15, 16]. In return, C. insecticola enhances
the insect’s development, reproduction, and immunity [17, 18].
A transcriptome analysis of C. insecticola in free-living growth
and during colonization of the R. pedestris gut crypts suggested
that C. insecticola is fed in the gut with specific nutrients and
also recycles host metabolic wastes, and in return, the bacterial
symbiont provides the host with essential nutrients limited in
the insect food, contributing to the rapid growth and enhanced
reproduction and immunity of the bean bug host [13].

Here, a saturated Himar1 mariner transposon mutant library
of C. insecticola allowed us to identify the essential gene set for in
vitro growth in standard rich medium and in a defined minimal
medium (MM). In addition, to mimic specific nutrient conditions
that are likely present in the insect symbiotic organ, this mutant
library was grown in minimal medium supplemented with spe-
cific gut nutrients and we identified several condition-dependent
fitness genes. Thus identified candidate genes for growth on
different carbon sources were selected for mutagenesis and the
constructed mutants were tested for growth on the relevant
nutrient sources and for their capacity to colonize the R. pedestris
symbiotic gut organ in mono inoculation or in co-inoculation with
the wild-type (WT) bacteria.

Materials and methods
Bacterial strains and growth conditions
Caballeronia insecticola strains were cultured at 28◦C in Yeast-
Glucose medium (YG: 5 g/l yeast extract; 1 g/l NaCl; 4 g/l glu-
cose) for routine use or in MM supplemented with various car-
bon, sulfur, or nitrogen sources for the Tn-seq screens (Supple-
mentary Data Set S1). Caballeronia insecticola RPE75 is a sponta-
neous rifampicin (Rif)-resistant derivative of the WT strain RPE64
[12]. For standard molecular microbiology purposes, Escherichia
coli strains DH5α, HB101, WM3064, MFDpir, S17-1λpir, and their
derivatives were grown in LB medium (5 g/l yeast extract, 10 g/l
tryptone, 5 g/l NaCl) at 37◦C. Growth of the MFDpir and WM3064
strains that are �dapA derivatives, auxotroph for diaminopimelic
acid (DAP) synthesis, required the supplement of 300 μg/ml DAP
to the medium. When appropriate, antibiotics were added to the
medium in the following concentrations: 50 μg/ml kanamycin
(Km) for E. coli and 30 μg/ml for C. insecticola; 25 μg/ml chloram-
phenicol; 30 μg/ml Rif; 100 μg/ml ampicillin. For solid agar plates,
the media were supplemented with 1.5% agar.

Generation of a Caballeronia insecticola RPE75
Himar1 transposon library
A Himar1 transposon library was generated following the methods
described before [19]. Detailed procedures for the construction
and quality control of the library are provided in the Supplemen-
tary Text.

Tn-seq screening of the Himar1 transposon
library for growth with different nutrients
An aliquot of the Tn-seq library was 100-fold diluted to reach a
suspension of 2 × 108 cfu/ml. Hundred microliter of this dilution
was inoculated into 20 ml of a growth medium, supplemented
with Rif and Km, to obtain an initial inoculum of 106 cfu/ml
(OD600nm ≈ 0.0015). Eleven growth conditions were tested: YG
medium and 10 different MM supplemented with various
carbon, sulfur, or nitrogen sources. The assembly from stock
solutions and the composition of the MM medium are provided in
Supplementary Data Set S1. Cultures were incubated at 28◦C, with
shaking at 180 rpm. When the cultures reached an OD600nm ≈ 1,
corresponding to ∼9–10 generations of multiplication, bacteria
were collected by centrifugation at 4000 rpm for 20 min at 4◦C
and the pellets were stored at −20◦C until DNA extraction. Each
condition was performed in triplicates.

DNA extraction and preparation of the
high-throughput sequencing libraries
Genomic DNA was extracted from the bacterial pellets using the
MasterPure™ Complete DNA and RNA purification kit (Epicen-
tre) according to the manufacturer’s instructions. Preparation,
concentration determination, and quality control of the high-
throughput sequencing libraries were done following procedures
described before [19] and detailed in the Supplementary Text.

Sequencing and sequence data treatment
Sequencing and sequence data treatment were done as described
[19], using the reference genome of C. insecticola (accession
n◦ NC_021287.1 (Chromosome 1), NC_021294.1 (Chromosome
2), NC_021288.1 (Chromosome 3), NC_021289.1 (Plasmid 1),
NC_021295.1 (Plasmid 2)). Detailed information is provided in
the Supplementary Text.

Identification of (conditionally) essential genes
by Transit software
Tn-seq sequencing data were handled by TRANSIT Version 3.2.0
[20] using Hidden Markov Model (HMM) analysis to determine
essentiality within a single condition and resampling analysis to
compare two conditions. Detailed information is provided in the
Supplementary Text

Homology-based comparison between
Burkholderia sensu lato species
OrthoVenn2 [21] was used to compare the essential genomes
of eight selected Burkholderia species. We used E-value of 1e−15
and inflation value of 1.5 as analysis parameters. Data from the
following studies were used to establish the lists of the essential
genome for each of seven other Burkholderia species besides C.
insecticola: Burkholderia pseudomallei strain K96243 [22], Burkholderia
cenocepacia strain J2315 [23], B. cenocepacia strain H111 [24], B. ceno-
cepacia strain K56-2 [25], Burkholderia thailandensis strain E264 [26],
Burkholderia vietnamiensis strain LMG10929 [27], and Paraburkholde-
ria kururiensis strain M130 [27].

Construction of Caballeronia insecticola RPE75
insertion mutants and fluorescent protein
tagged strains
For insertion mutagenesis of C. insecticola RPE75, internal frag-
ments (300–600 bp) of the target gene were amplified by PCR
(Supplementary Table S1) and cloned into the pVO155-pnptII-
GFP vector using restriction enzymes SalI-XbaI or XhoI-XbaI and
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Table 1. Relevant features of the genome of Caballeronia insecticola.

Size (bp) N◦ of TA sites N◦ of genes N◦ of TA sites in genes N◦ of genes without TA Gene size without TA (bp)

Chromosome 1 3 013 410 45 986 2803 27 310 34 25–199
Chromosome 2 1 465 356 23 340 1337 14 103 18 53–170
Chromosome 3 900 830 14 869 790 9368 3 106–164
Plasmid 1 1 275 199 20 575 1157 13 056 8 61–143
Plasmid 2 309 692 5965 262 3439 0 —
Whole genome 6 964 487 110 735 6349 67 276 63 25–199

ligation or alternatively by Gibson assembly cloning. Constructs
were introduced in E. coli DH5α by heat shock transformation and
selection with Km. Candidate colonies were confirmed by colony-
PCR and Sanger sequencing (Eurofins Genomics). The plasmid
construct was transferred to the recipient C. insecticola RPE75
strain by triparental conjugation, with the E. coli DH5α donor
strain and the E. coli HB101.pRK600 helper strain. Transconjugants
were selected with Rif and Km. Candidate C. insecticola mutants
were verified by colony-PCR and by checking the GFP fluores-
cence. A mScarlett-I-tagged strain of C. insecticola was created by
introducing a Tn7-Scarlet transposon using triparental mating as
described [28, 29] (Supplementary Text).

Bacterial growth determination on different
nutrients
To determine the growth capacity of the C. insecticola mutants
on different carbon sources, precultures of tested strains were
grown in MM medium. Overnight grown cultures were diluted
to an OD600nm = 0.3 in fresh medium and grown until they
reached OD600nm ≈ 1. The cells were pelleted by centrifugation,
resuspended to an OD600nm = 0.05 in fresh medium with the tested
carbon source. These cell suspensions were dispatched in a 96-
well plates, which were incubated in a SPECTROstar Nano plate
incubator (BMG Labtech). The growth of the cultures in the wells
was monitored by measuring the OD600nm and data points were
collected every hour for 48 h. Plates were incubated at 28◦C with
double orbital shaking at 200 rpm. Data and growth curves were
analyzed using Microsoft Excel.

Insect rearing and inoculation tests
Insect rearing and inoculation tests were conducted as before
[30]. At 3 and 5 days postinoculation, insects, at the stage of the
end of the second instar nymphs or the third instar, respectively,
were dissected. The colonization rate of mono-inoculated insects
was estimated by fluorescent signal detection of colonizing bac-
teria with GFP or mScarlett-labeled fluorescent proteins. For co-
inoculation experiments, M4 region samples were homogenized
in PBS solution and bacteria in suspension were counted by flow
cytometry, using the fluorescent tags to determine the relative
abundance of the two inoculated strains (see Supplementary Text
for details).

Results
Construction and sequencing of a Tn-seq library
of Caballeronia insecticola
We mutagenized C. insecticola with a Himar1 mariner transposon
that selectively inserts in TA sites of the genome. The five repli-
cons of the C. insecticola genome, Chromosomes 1–3 and Plasmids
1 and 2, present a total DNA content of 6.96 Mbp and contain
6349 annotated genes [31]. Among the 110 735 TA sites present

in the genome, 67 276 of them are located in the annotated genes.
Among the 6349 annotated genes, 6286 possess TA sites; hence,
Himar1-based mutagenesis covers ∼99.01% of genes. The genes
lacking TA sites (63 genes) are short to very short open reading
frames varying in length from 25 to 199 nucleotides and encoding
mostly peptides of unknown function (Table 1). On the other hand,
genes with TA sites have a mean of 10.6 TA sites in their sequence.
Thus, as the proportion of genes without TA sites in the genome
is small (0.99%) and the large majority of genes have a high
number of TA sites, it was feasible to produce a genome-wide
C. insecticola transposon insertion library with a good coverage
using the Himar1 mariner transposon. A large-scale mutagenesis
resulted in ∼2.5 × 108 independent clones, representing an over
2000-fold coverage of all theoretically possible mutants, with 80%
of the TA sites located within a gene carrying insertions.

The mutant library was grown in three different standard
growth media: a rich medium (YG) and a defined MM with glucose
or succinate as carbon source, and cultures were subjected to
Tn-seq. The essential genome was determined using the HMM
in Transit software [20] and considering only the genes that
are common to the three conditions as part of the essential
gene set. This analysis classified the majority of the genes (92%)
as nonessential and 498 (8%) protein-coding genes as essential
(Fig. 1; Supplementary Data Set S2). This proportion of the C.
insecticola genome identified as its essential genome is very similar
to what is found in other bacteria [32]. These 498 genes were
mostly located on Chromosome 1 (464 genes or 93% of total).
Another 22 genes (4.5%) were on Chromosome 2 and only 5, 4, and
3 genes were found on Chromosome 3, Plasmid 1, and Plasmid 2,
respectively.

According to clusters of orthologous genes (COG) classification
[33], the most represented category of essential genes was related
to translation, ribosomal structure, and biogenesis (J category)
(Fig. 2). Genes encoding for 30S and 50S ribosomal proteins are
examples of this functional class (Fig. 3). The cell wall biogenesis
category (M category), the coenzyme transport and metabolism
category (H category), and the energy conversion and produc-
tion category (C category) also contain many essential functions.
Examples in these three categories are genes involved in lipid A
and peptidoglycan biosynthesis, the heme biosynthesis pathway,
or genes involved in respiration, like the ATP synthase subunits
(Fig. 3) and the Respiratory Complex I subunits. Other highly
represented categories are amino acid metabolism (E category)
with the genes taking part in the L-histidine biosynthesis as
examples or the transcription machinery (K category) with the
RNA polymerase subunits. The distribution of the essential genes
among the COG categories is very different compared with all the
annotated genes in the genome (Fig. 2), demonstrating that our
analysis identified specific functions as essential.

Of note, in the cell cycle control, cell division, and chromosome
partitioning category (D category) are the genes involved in
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Figure 1. Caballeronia insecticola essential genes; circular representation of the genome of C. insecticola, the markings outside the outer circle represent
genome positions (in Mb) for each chromosome or plasmid; Chr 1 is Chromosome 1, Chr 2 is Chromosome 2, Chr 3 is Chromosome 3, Pl 1 is Plasmid 1,
and Pl 2 is Plasmid 2; the second and third tracks represent CDS on the forward and reverse strand, respectively; subsequent tracks 4, 5, 6, and 7
represent, respectively, the essential genes that are common to the YG, MM glucose, and MM succinate conditions, the essential genes specific for YG,
MM succinate, and MM glucose media; the innermost track 8 shows the number of TA sites per 1000 bp; the Venn diagram in the center represents the
number of essential genes identified for each medium: top left, YG; top right, MM glucose; bottom, MM succinate.

the replication and partitioning of the genome. Chromosome
1 has a typical organization similar to the principal chromo-
some of B. cenocepacia, carrying on the replication origin locus
the genes rpmH (BRPE64_RS14035), rnpA (BRPE64_RS14030),
dnaA (BRPE64_RS00005), dnaN (BRPE64_RS00010), and gyrB
(BRPE64_RS00015), and on a nearby locus the chromosome parti-
tioning genes parA (BRPE64_RS13400) and parB (BRPE64_RS13395)
[34, 35]. Except for rpmH that has no TA sites, all these genes were
found to be essential in agreement with their crucial role in the
replication and thus persistence of Chromosome 1. On the other
hand, Chromosomes 2 and 3 have, similarly to Plasmids 1 and 2, a
plasmid-like replication origin locus, with its own distinct parABS

system and a plasmid-like replication protein (Chromosome 2:
BRPE64_RS14050, BRPE64_RS14055, BRPE64_RS14060; Chromo-
some 3: BRPE64_RS20740, BRPE64_RS20745, BRPE64_RS20750;
Plasmid 1: BRPE64_RS24690, BRPE64_RS24695, BRPE64_RS24700;
Plasmid 2: BRPE64_RS30485, BRPE64_RS30490, BRPE64_RS30495).
Thus, Chromosomes 2 and 3 have plasmid-like features although
they carry several essential genes. According to a new classifi-
cation of bacterial replicons, Chromosomes 2 and 3 should be
considered as “chromids” [36-38]. Interestingly, each of these
parABS and replication protein-encoding genes were found to
carry no transposon mutations, indicating that these replicons
require their own cognate machinery for replication and partition.

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycad001/7512909 by guest on 12 January 2024



Fitness genes in an insect gut symbiont | 5

Figure 2. Distribution of C. insecticola essential genes in COG
categories; the categories are
S, function unknown; ND, not determined; R, general function prediction
only; Q, secondary metabolites biosynthesis—transport—catabolism; P,
inorganic ion transport—metabolism; I, lipid transport—metabolism; H,
coenzyme transport—metabolism; F, nucleotide transport—metabolism;
E, amino acid transport—metabolism; G, carbohydrate
transport—metabolism; C, energy production—conversion;
N, cell motility; O, posttranslational modification—protein
turnover—chaperones; U, intracellular trafficking—secretion—vesicular
transport; M, cell wall—membrane—envelope
biogenesis; T, signal transduction mechanisms; V, defense mechanisms;
D, cell cycle control—cell division—chromosome partitioning;
L, replication—recombination—repair; K, transcription; J, translation—
ribosomal structure—biogenesis; for each category, the number of genes
and the percentage that they represent are indicated; top histograms
indicate the whole genome of C. insecticola, center histograms
indicate the essential genome of C. insecticola, and lower histograms
indicate the common essential genes to eight Burkholderia s.l. species.

While the three chromosomes carry other essential genes, only
the genes implicated in replication and partitioning are free of
mutations in the two plasmids. Thus in this case, the absence
of transposon insertions in these genes does not mean that
they are essential for cell viability but rather essential for
the maintenance of the replicon. On the contrary, since the
chromosomes contain other essential genes, these replicons and
their replication/partitioning functions are essential for viability.

Taken together, the pathways of the C. insecticola essential
genome highlight cellular functions, like transcription, transla-
tion, energy production, cell envelope biosynthesis, and cell cycle,
known to represent vital functions for bacteria [39, 40].

Comparative analyses of essential genes in eight
Burkholderia s.l. species
Tn-seq techniques were used to identify essential genes in
pathogenic Burkholderia species including B. pseudomallei strain
K96243 [22], B. cenocepacia strain J2315 [23], B. cenocepacia
strain H111 [24], and B. cenocepacia strain K56-2 [25]; in the
plant-associated species B. vietnamiensis strain LMG10929 and
Paraburkholderia kururiensis strain M130 [27]; as well as in the envi-
ronmental species B. thailandensis strain E264 [26]. These studies
revealed 505, 383, 339, 493, 620, 700, and 406 essential protein-
coding genes in these bacteria, respectively. The comparison of
these gene sets with the C. insecticola essential genes allowed us to
identify a total of 120 essential genes shared between all eight
species (Supplementary Fig. S1; Supplementary Data Set S3).
If essential genes shared by seven out of the eight species are
considered, the number of common genes increases to 231
(Supplementary Fig. S1) and the number of pairwise shared
essential genes ranges from 195 to 412 genes with as a mean
291 genes (Supplementary Fig. S2). Among the 37 COG that are
essential in at least four of the considered species but not in C.
insecticola, we found for five clusters that the C. insecticola genome
lacked the corresponding gene. In 26 cases, the gene was present
but nonessential, and in six cases, the gene was duplicated in the
genome.

Considering the 120 genes that are commonly essential to all
eight species, an important part of them ensures functions related
to the translation process (J category), the cell wall biosynthesis (M
category), the coenzyme transport and metabolism (H category),
or the energy production (C category) (Fig. 2). Examples of essen-
tial genes common to these eight bacterial species encode ribo-
somal subunits, initiation factors of translation, cell division and
chromosome replication, ATP synthase and respiratory chain sub-
units, peptidoglycan biosynthesis enzymes or enzymes involved
in lipid A biosynthesis. Remarkably, among the latter are part
of the genes of the arnBCA1A2DarnT cluster (BRPE64_RS06345–
BRPE64_RS06375 in C. insecticola), encoding the biosynthesis of 4-
amino-4-deoxy-L arabinose (Ara4N) and its transfer to the lipid
A moiety of lipopolysaccharide (LPS) (Fig. 3B). This gene cluster
was in an independent approach found to be essential for viability
in B. cenocepacia strain K56-2 [41]. The Ara4N modification of
LPS mediates resistance against cationic antimicrobial peptides
(AMPs) in many gram-negative bacteria, including Burkholderia
species [42]. In the γ -proteobacteria Salmonella and Pseudomonas,
the Ara4N modification is not essential and not constitutively
present in lipid A but is introduced upon sensing of AMPs in the
environment [43-46]. In contrast, the essentiality of the Ara4N
modification in Burkholderia s.l. spp. suggests that the Ara4N lipid
A modification is constitutive. Indeed, the lipid A structure of B.
cenocepacia and C. insecticola is modified with one or two Ara4N
moieties [41, 46]. As demonstrated for B. cenocepacia, the Ara4N
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Figure 3. IGV plots for genomic regions containing selected C. insecticola essential genes; (A) 30S and 50S ribosomal proteins encoding region; (B) Ara4N
lipid A modification gene cluster; (C) ATP synthase subunits encoding region; tracks, from bottom to top: position of TA sites, region of interest and its
flanking neighbors, histogram of insertion counts at TA sites for the indicated experimental conditions, genome positions (in kb) on Chromosome 1.

modification is required for LPS export by the Lpt transporter that
transfers fully assembled LPS from the inner membrane to the
outer membrane and that has an absolute specificity for Ara4N
carrying LPS molecules [47].

Conditional fitness defect genes
In a previous study, the comparison of the transcriptomes of the
free-living and R. pedestris midgut-colonizing C. insecticola high-
lighted up or downregulated metabolic pathways [13]. Trans-
porters or metabolic pathways of diverse sugars such as rham-
nose and ribose, and sulfur compounds like sulfate and taurine
(C2H7NO3S) were upregulated in the midgut-colonizing bacteria.
Moreover, glycolytic pathways were downregulated and the glu-
coneogenesis pathway was upregulated. These data indicate that
symbiotic bacteria could depend on particular sources provided
by the insect. We used Tn-seq to identify key genes in C. insecticola
for growth on these nutrients.

To mimic the specific nutrient conditions that can be found
in the insect symbiotic organ, the C. insecticola transposon
mutant library was grown in MM supplemented with different
compounds. Glucose, 3-hydroxybutyric acid (HBA), mannitol,
succinate, myo-inositol, or rhamnose were used as the only
carbon sources. Taurine was used as sole carbon source, or as
sole nitrogen or sulfur source, or as sole carbon/nitrogen/sulfur
source. Tn-seq data were obtained for each growth condition,
and we used the resampling method analysis from the Transit
software package to identify the fitness defect genes for each
condition, using MM with glucose or YG rich medium as the
reference control condition (Supplementary Data Set S4). By
these comparisons, we identified sets of condition-dependent
fitness defect genes for each growth conditions (Fig. 4 and
Supplementary Fig. S3; Supplementary Data Set S4). Exam-
ples are amino acid biosynthesis genes that are not fitness
defect genes in rich medium, but are fitness defect genes
in MM lacking any source of amino acids. Genes encoding
glycolytic enzymes, like the phosphoenolpyruvate carboxylase ppc
(BRPE64_RS03260), are fitness defect genes in MM supplemented
with glycolytic substrates glucose, rhamnose, mannitol, or myo-
inositol but not with gluconeogenic substrates succinate, HBA,
and taurine. Inversely, the gluconeogenesis-specific genes pps
(BRPE64_RS05810), encoding phosphoenolpyruvate synthase, and

fbp (BRPE64_RS03750), encoding fructose-1,6-bisphosphatase, are
fitness defect genes in MM with gluconeogenic substrates but
not in MM with glycolytic substrates. maeB (BRPE64_RS11265),
encoding the malic enzyme, is a fitness defect gene only
in MM with succinate. Some genes appear as fitness defect
in very specific conditions only. Examples are a contiguous
cluster of nine genes encoding an ATP-binding cassette (ABC)
transporter and involved in myo-inositol assimilation into the
tricarboxylic acid cycle (TCA) cycle and gluconeogenesis/g-
lycolysis (BRPE64_RS09045–BRPE64_RS09085) that has fitness
defect only in the growth on myo-inositol condition. The gene
BRPE64_RS07345, incompletely annotated as encoding a chloride
channel, shows a fitness defect specifically in MM supplemented
with taurine as carbon source, as nitrogen source, as sulfur
source, or as carbon/nitrogen/sulfur source. This suggests that
the BRPE64_RS07345-encoded chloride channel protein is a
taurine uptake transporter, which we named TauT. TauT is unlike
known bacterial taurine transporters, which are ABC transporters
[48] or Tripartite ATP-independent periplasmic transporters
[49]. Interestingly, the mammalian taurine transporter is a
chloride-dependent channel. Gene cluster BRPE64_RS16735–
BRPE64_RS16785 (11 genes) is specifically required for growth
on rhamnose and codes for an ABC uptake transporter and the
enzymes that incorporate rhamnose into pyruvate metabolism.
The genes BRPE64_RS05370 and BRPE64_RS05375 encoding the
subunits of 3-oxoacid CoA transferase allow to assimilate HBA
into the TCA cycle and are specifically required for growth on HBA.
Finally, genes BRPE64_RS02530–BRPE64_RS02555 are specifically
required for growth on mannitol and codes for an ABC uptake
transporter.

Confirmation of Tn-seq results by mutagenesis
of selected conditional fitness-defect genes
To confirm the Tn-seq results, insertion mutants of C. insecticola
were constructed in a set of six selected fitness genes (Fig. 4)
for specific nutrient conditions, and their ability to grow on the
corresponding nutrient was evaluated. These chosen genes were
the above-mentioned gluconeogenesis genes fbp, pps, and maeB,
the glycolysis-specific gene ppc, the newly discovered putative
taurine transporter gene tauT, and the myo-inositol transporter
gene inoT.
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Figure 4. IGV plots of genomic regions carrying condition-specific fitness genes; (A) fructose-bisphosphatase encoding gene (fbp); (B)
phosphoenolpyruvate synthase encoding gene (pps); (C) malic enzyme encoding gene (maeB); (D) phosphoenolpyruvate carboxylase encoding gene
(ppc); (E) chloride channel protein and potential taurine transporter encoding gene (tauT); (F) myo-inositol utilization genes including the ABC
transporter permease (inoT); tracks, from bottom to top: position of TA sites; gene organization in the region of interest with fitness genes and their
flanking neighbors; histograms of insertion counts at TA sites for the indicated experimental conditions; genome positions (in kb) on Chromosome 1;
taurine C, taurine as carbon source; taurine N, taurine as nitrogen source; taurine S, taurine as sulfur source; taurine CNS, taurine as carbon, nitrogen,
and sulfur source.
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Growth of the mutants in MM with the relevant carbon sources
and in the rich medium YG as a control allowed us to confirm the
above Tn-seq results (Fig. 5). As expected and indicated by Tn-seq,
all mutants grew well in YG. The growth of the fbp and pps mutants
was affected in MM with succinate, HBA, and taurine as carbon
source, the maeB mutant in MM with succinate, the ppc mutant in
MM with glucose and myo-inositol, the tauT mutant in MM with
taurine as carbon source, and the inoT mutant in MM with myo-
inositol.

Next, the capacity of the mutants to colonize the gut symbiotic
organ in R. pedestris in mono-inoculation and in co-inoculation
with the WT strain was tested (see Materials and methods). The
mutants were all able to colonize the insect symbiotic organ
in mono-inoculation conditions (Fig. 6A). In co-inoculation, we
calculated a competitive index to estimate the fitness difference
between mutants and WT bacteria (Fig. 6B and C). For the three
mutants with insertions in key enzymes of the gluconeogenesis, in
particular the fbp and pps mutants, we observed that their capac-
ity of colonization of the symbiotic organ was strongly affected
in presence of the WT bacteria in co-inoculation experiments,
implying that these three genes play a key role in the bacterial
fitness for insect crypt colonization. The tauT and inoT mutants
were also clearly outcompeted by the WT although to a lesser
extent than the three first mutants, suggesting that taurine and
inositol are available nutrients in the crypt region. In contrast, the
mutant in the glycolytic enzyme ppc was equally capable as the
WT to colonize the insect symbiotic organ, implying the absence
of glycolytic carbon sources.

Discussion
The availability of a transposon mutant library of C. insecticola
and the genome-wide identification of essential and conditionally
fitness genes constitutes a step toward the characterization of
the fitness landscape of this bacterium in its different living
environments, which include persistence in soil, colonization of
the symbiotic organ of insects, as well as interactions with other
organisms present in the natural environment of this bacterium
like soil microbes and plants.

Chromosome 1 carries the large majority of genes conserved
between Burkholderia s.l. species, whereas the other replicons are
more enriched in genes with limited species distribution [50].
Accordingly, we found that nearly all the essential genes of C. insec-
ticola are located on Chromosome 1. This observation is moreover
in agreement with the plasmid origin of the other two chromo-
somes, which therefore can be considered as chromids. Probably,
ancestral plasmids acquired genes, including essential ones, from
Chromosome 1 after their capture by the ancestor of C. insecticola,
giving rise to the present essential chromids. Since Chromosome
3 contains only two essential genes besides the replication/par-
titioning genes, suggesting that, after translocation of these two
essential genes to Chromosome 1 or 2, this replicon could be
entirely cured from the C. insecticola genome. In agreement, it
was shown that Chromosome 3 in B. cenocepacia strains can be
efficiently cured [51, 52]. The absence of essential genes in the
plasmids is in line with the demonstration that Plasmid 2 can
be removed from the bacterium without affecting its fitness [13]
and further suggests that the large Plasmid 1 can be removed
as well without affecting viability. A reduced-genome engineered
strain lacking Chromosome 3, Plasmid 1, and Plasmid 2 could be
a powerful platform that can be used for gene discovery.

Among the 498 essential genes of C. insecticola, we found only
a surprisingly small portion of them conserved among related

species from the Burkholderia s.l.. However, despite the fact that
essential genes code for fundamental cellular functions, essen-
tial gene sets are known to be specific to each bacterium, and
they can even vary among strains belonging to the same bac-
terial species, similarly as we find here for the three analyzed
B. cenocepacia strains [53-55]. Non-orthologous gene displacement
is one explanation that has been put forward for the absence
of conservation of essential genes among bacteria. This concept
proposes that essential pathways or genes are replaced or coexist
with functional equivalents with no DNA homology and different
evolutionary origin [55]. Gene duplication on the other hand could
render genes nonessential because of redundancy, whereas the
encoded function remains essential. Gene duplication is observed
only for a few genes that are nonessential in C. insecticola but
essential in related species, suggesting that non-orthologous gene
displacement is accounting for a large part of the differences
among the essential gene sets in Burkholderia s.l. species. More-
over, it should be mentioned that different Tn-seq techniques
and bioanalysis tools were employed for the determination of
the essential gene sets of these eight species. This heterogeneity
in analysis methods may create biases in the identification of
common essential genes and potentially their number is in reality
higher than that we determined here.

We showed here that the transposon library in C. insecticola in
combination with the Tn-seq method provides robust fitness data
at the whole-genome level and that it can be used efficiently to
identify conditionally essential genes in this species. We identified
genes that are specifically essential for growth in media with
gluconeogenic or glycolytic carbon sources, with rhamnose, man-
nitol, myo-inositol, and taurine and confirmed their metabolic
function by mutagenesis for a subset of them. Our Tn-seq study
thus contributed to annotate genes with a previously unknown
role as exemplified by the chloride channel required for taurine
utilization.

The phenotypic characterization of constructed mutants fur-
ther revealed that the C. insecticola bacteria in the gut are fed by
the insect with gluconeogenic carbon sources, including taurine,
as well as with myo-inositol but not with glycolytic nutrients. It
appeared that if the use of gluconeogenic substrates is crucial
for an efficient colonization, the capacity to utilize individual
compounds like taurine or myo-inositol has a less strong impact
because mutants, which are unable to import these molecules,
are still able to partially colonize the insect gut in competition
with the WT. It should be noted that phosphoenolpyruvate car-
boxylase encoded by ppc is required for growth on myo-inositol
as a sole carbon source (Fig. 4D), whereas ppc is not required for
gut colonization. Therefore, myo-inositol in the gut is unlikely to
fuel the TCA cycle via ppc but is rather assimilated into a different
pathway. Moreover, all the tested mutants were able to colonize
the crypt region in the absence of competition with WT bacteria.
Together, this suggests that the insect is providing multiple but
specific nutrients to the bacteria. Thus, the nutritional exchange
in the symbiosis between C. insecticola and R. pedestris is complex
[13]. Our study demonstrates that Tn-seq can contribute to dissect
this process in detail. An exciting possibility, worth to be investi-
gated in the future, is that the feeding of the crypt bacteria with
specific nutrients tailors the symbiont metabolic fluxes toward
an optimized production of particular beneficial metabolites for
the host.

In conclusion, the Tn-seq approach is a powerful tool for
whole-genome genetic screens in C. insecticola and our strategy,
which consisted in Tn-seq analyses in MM with different
nutrient sources proposed by transcriptomics to be important
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Figure 5. Growth curves of C. insecticola WT and metabolic mutants in different media; (A) MM with glucose; (B) MM with HBA; (C) MM with taurine as
carbon source; (D) MM with myo-inositol; (E) MM with succinate; (F) YG medium. X-axis, time of growth in hours; Y-axis, growth measured as OD600;
error bars are standard deviation.

during symbiosis, is one of the few studies that have elucidated
physiological contributions, which microbial symbionts receive
from their host. Future Tn-seq experiments with C. insecticola
in other in vitro conditions or in its natural environments,

like in the insect gut, soil, rhizosphere, or cocultivation with
other microorganisms, will strongly help to better understand
the different lifestyles of this bacterium. Defining the genetic
repertoires that determine the fitness of C. insecticola in these
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Figure 6. Ability of C. insecticola mutants to colonize the R. pedestris M4 midgut region; midguts were analyzed at 5 dpi; (A) colonization capacity of WT
and mutant strains in single-strain infection conditions were determined by microscopy observation with an epi-fluorescence microscope; one
representative image is shown for each condition; infection rate (%) indicates the proportion of infected animals with indicated strains (n = 10); (B)
colonization capacity of strains in coinfection conditions; Riptortus pedestris was infected with an equal mix of mScarlett-labeled C. insecticola WT and
the indicated GFP-labeled WT or mutant strains; relative abundance of the two strains in the M4 midgut regions at 5 dpi was determined by flow
cytometry on dissected intestines; the competition index expresses for all samples the ratio of the indicated mutant to WT, corrected by the ratio of
the inoculum, which was in all cases close to 1 (mutant bacteria/WT bacteria)/(inoculum mutant bacteria/inoculum WT bacteria); each dot represents
the competition index in an individual and the mean per mutant is indicated by a horizontal black line (n = 10); CI is competition index; different
letters indicate statistically significant differences (P < .05); statistical significance was analyzed by Kruskal–Wallis test, Dunn post hoc test, and
Benjamini–Hochberg correction; (C) microscopy observation with an epi-fluorescence microscope of competition assays between C. insecticola WT
(RFP) and mutants (GFP) as in panel B; one representative image is shown for each condition. Scale bars in panels A and C are 40 μm.
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environments will highlight pre- and post-adapted traits of the
Caballeronia symbiont to the insect’s gut environment.
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