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Abstract

This paper provides a comprehensive numerical analysis of daughter crack localization in pure antiplane shear. Although antiplane

shear fracture is important in various industrial applications, understanding the morphology of the resulting fragmentation

remains challenging. The paper develops innovative phase-field models to induce the facets using a small spatial variation in

the toughness field and examines the impact of numerical and material parameters on the newly formed daughter cracks’ shape

and spacing. Through meticulous comparison to the coupled criterion, the paper reveals a compelling connection between the

internal length-scale of damage regularization, Irwin’s length and the facet crack spacing. Furthermore, the effect of Poisson’s

ratio on the crack form and spacing is investigated: the results reveal a significant influence and showcase comparable initiation

distances between the numerical simulations and experimental measurements in pure antiplane loading.
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1. Introduction1

In the context of linear elastic fracture mechanics, loading in the vicinity of a preexisting crack can be decomposed into three2

loading modes: mode I, corresponding to tensile opening; mode II, corresponding to in-plane shear; and mode III, corresponding3

to antiplane shear (Irwin, 1958; McClintock and Irwin, 1965). The quantitative understanding of fracture in the presence of4

mode III loading is relatively obscure compared to mode I+II, primarily due to the complexity and 3D nature of the crack5

propagation pattern. While propagation in mode I+II generally occurs smoothly and can be addressed through a 2D elasticity6

problem (Erdogan and Sih, 1963), mode III loading often results in the fragmentation of the crack into numerous facets with7

complex 3D shapes (Sommer, 1969; Knauss, 1970; Lazarus et al., 2008; Pham and Ravi-Chandar, 2014), making accurate8

prediction of its morphology challenging.9

Mode III fracture is of significant concern in industrial applications, as it can occur in various materials and structures10

subjected to torsional loading. Examples of such applications include propeller shafts in shipbuilding (Fonte et al., 2006),11

helicopter and jet engines in the aerospace industry (Raghavachary et al., 1990), automotive components, energy industry12
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equipment such as wind turbines and generators (Nikravesh and Meidan-Sharafi, 2016), and even in rails experiencing the13

passage of train wheels (Bonniot et al., 2018).14

In addition to its importance for safety reasons in industry, understanding antiplane shear fracture is also relevant in other15

areas of science and engineering. For example, the study of this fracture mode can provide valuable insights into the behavior16

of fractures in earthquakes (Cooke and Pollard, 1996; Cambonie et al., 2019), where shear loading is common. Additionally, in17

medical science (Zimmermann et al., 2009), spiral fractures in bones are a common type of antiplane shear fracture that requires18

careful diagnosis and treatment.19

Finally, the understanding of antiplane shear fracture can also be applied in the design and fabrication of architected materi-20

als (Alsaadi et al., 2018), which are composite materials with designed microstructures to achieve desired mechanical properties.21

By incorporating knowledge of antiplane shear fracture into the design process, it is possible to create materials that are more22

resistant to shear loading and thus have improved overall strength and toughness.23

24

The first well-controlled experiments demonstrating crack facet segmentation were conducted by Sommer (1969) using glass.25

During the same period, Knauss (1970) and later Palaniswamy and Knauss (1978) demonstrated the formation of semi-penny-26

shaped cracks in pure mode III conditions. Since the 1970s, numerous researchers have shown that the appearance of daughter27

cracks is independent of the material, segmentation occurs during the movement of tectonic plates (Pollard et al., 1982; Cox and28

Scholz, 1988), in the orogeny of mountains (Younes and Engelder, 1999), and in solids such as polymers (Hull, 1994; Lazarus29

et al., 2008; Lin et al., 2010; Chen et al., 2015), gels (Ronsin et al., 2014), gypsum, and even in cheese (Goldstein and Osipenko,30

2012).31

The characteristic behavior under investigation is depicted in Fig. 1 (Lazarus et al., 2008; Hattali et al., 2021). The initial32

slit (observable in black) segments into facets or echelon cracks. In the literature, the initial slit is referred to as the ”mother33

Figure 1: Typical segmentation and facet coarsening observed in fatigue bending experiments performed on plexiglass with an inclined initial crack
(Chen et al., 2015; Lazarus et al., 2020; Hattali et al., 2021). The bar in each figure represents 1 mm. The first row shows the sample from the top, with
facets advancing in this direction. The initial slit appears dark and blurred in the background, and the facets are clear and sharp in the foreground.
The second row shows the view from the side, depicting the crack propagation upwards. Each column represents the advancement in time, illustrating
the crack evolution during the experiments.
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crack”, and the small facets are termed ”daughter cracks”. These daughter cracks then progressively advance in the direction34

of the original slit, gradually transforming to obtain a pure mode I opening state. As the crack propagates, the initially small35

facets grow both in length and width, eventually coalescing and merging into larger and fewer facets. In this paper, we will use36

both the terminology ”facets”, ”echelon” or ”daughter” cracks to describe the segmented crack front.37

The mixed mode problem can be addressed at two scales (Leblond et al., 2015; Lazarus et al., 2020). At the macroscopic scale,38

crack propagation is governed by the principle of local symmetry or the maximum energy release rate criterion (Amestoy and39

Leblond, 1992). This means, that in the case of pure mode III, the crack propagates globally in a horizontal manner (Sommer,40

1969). In bending experiments, as the front experiences mode II that changes sign from one side to the other, opposite tilt angles41

are observed, so that the front seems to progressively rotate until it aligns perpendicularly to the bending direction (Lazarus42

et al., 2008). On the microscopic scale, in contrast, the original crack tip undergoes fragmentation into facets due to the local43

mode III opening. These facets initiate at an angle to the mother crack and gradually coalesce during propagation, ultimately44

creating a jagged macroscopic surface. While the macroscopic problem is relatively straightforward to model (Gravouil et al.,45

2002; Citarella and Buchholz, 2008; Wu and Huang, 2020; Molnár et al., 2022), the phenomenon occurring at the micro-scale46

is much more complicated. Therefore, in this paper, we will specifically concentrate on the micro-scale initiation of the facets.47

Furthermore, we limit our focus to pure mode III loading, which poses distinct challenges, as discussed below.48

49

Most analytical studies of crack front instability focus on mixed mode I+III loading, using linear stability analysis that50

considers the evolution of small perturbations (Leblond et al., 2011; Leblond and Lazarus, 2015; Leblond et al., 2019; Vasudevan51

et al., 2020; Lebihain et al., 2022). The analysis seeks a helicoidal solution that assumes a constant energy release rate and relies52

on the principle of local symmetry. However, this solution has two major limitations. Firstly, when only mode III loading is53

present, the allowed perturbation reduces to 0 because crack opening is not satisfied along the new crack front. Secondly, due to54

the lack of an internal length-scale, the solution is unable to produce a finite initiation distance between facets, resulting in an55

infinitesimally small pitch (initiation distance) for the helicoid. Additionally, the linear stability limit predicted by this solution56

as a function of Poisson’s ratio and mode mixity does not correspond to the experimental observations as facets generally form57

below this threshold (Pham and Ravi-Chandar, 2014).58

As previously noted, there are few simulations available that address the fundamental process of initiation, with only a handful59

of models incorporating a finite length-scale to depart from Griffith’s singular description. In the literature, researchers have60

employed various techniques, such as the phase-field method (Pons and Karma, 2010), material-point erosion method (Pandolfi61

et al., 2013), and more recently, the extended finite element approach (Shi et al., 2022). While the latter two methods show62

promise, accurately quantifying crack propagation remains a challenge. As a result, we will primarily focus our discussion on63

the phase-field model.64

The first phase-field study to focus on simulating facet initiation was conducted by Pons and Karma (2010). They introduced65

infinitesimal random perturbations to the crack front and observed a helical crack pattern. They then estimated the fastest66
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growing wavelength for small mode mixing ratios. However, they only considered mixed I+III mode loading, with a predominant67

mode I contribution, and did not account for tension/compression energy decomposition in their model, meaning their cracks68

would have opened under compression in pure mode III. In their study, Chen et al. (2015) utilized this model to compare69

their results with experimental data. Their findings demonstrated a noteworthy aspect: the stability of straight propagation is70

subcritical. This implies that facet formation exhibits highly nonlinear behavior and can be initiated below the linear stability71

threshold, aligning with experimental observations. They initiated the helical crack pattern using a helical perturbation on the72

crack front and evaluated its growth or decay under different deformation states. The paper also provides insights into the73

coarsening phenomenon and the evolution of the facet angle. However, the authors did not provide any information on the74

characteristic initiation wavelength as a function of material parameters or mode mixity due to the aforementioned limitations.75

Contrary to both logic and experimental observations (Knauss, 1970), both works fail to predict facet formation in pure mode III76

loading. Subsequently, Henry (2016) employed mixed mode stress boundary conditions to investigate the coalescence of initially77

irregular crack fronts. The presented results were only validated for small amounts of antiplane shear. Given the considerable78

popularity of the phase-field model proposed by Bourdin et al. (2000), Pham and Ravi-Chandar (2017) were the first to utilize79

it for analyzing the facet initiation problem. Their paper presented pure mode III results, but they were unable to initiate facets80

in a pristine material and had to use relatively significant defects to induce daughter cracks. This resulted in an impact on the81

spacing between facets due to the initial model conditions. The authors concluded that an energy barrier might have prevented82

facet creation in antiplane shear. Later in this paper, we will further elaborate about the differences between our and existing83

phase-field models, and more particularly the model of Pham and Ravi-Chandar (2017).84

Parallel to numerical simulations, researchers have also utilized the coupled criterion to study mixed mode I+III fracture (Mit-85

telman and Yosibash, 2015; Yosibash and Mittelman, 2016; Doitrand and Leguillon, 2018b; Campagnolo and Sapora, 2021). The86

coupled stress-energy criterion has been successfully employed to assess crack front segmentation under mode I+III loading.87

Previous studies (Yosibash and Mittelman, 2016; Doitrand and Leguillon, 2018b; Doitrand et al., 2023) have focused on deter-88

mining the initiation remote loading corresponding to a given angle and shape of a facet. However, it has been observed that89

the initiation loading for facet nucleation is larger than what is required for straight crack propagation, which raises questions90

about the experimental occurrence of facet nucleation (Mittelman and Yosibash, 2015). Recently, researchers have taken into91

account mode-dependent fracture properties and T-stress, leading to the identification of configurations that are more likely to92

result in facet nucleation rather than straight crack propagation, which aligns better with experimental observations (Doitrand93

et al., 2023). Existing works have primarily examined the determination of facet initiation angles under mixed mode I+III94

loading, considering either a single facet in an infinite medium (Mittelman and Yosibash, 2015; Yosibash and Mittelman, 2016)95

or a periodic array of well-separated facets (Doitrand et al., 2023). These studies have overlooked the influence of facet spacing.96

While the coupled criterion was successfully applied to evaluate the tendency of facet formation, none of these studies provided97

a combined description of the facet spacing, and the effect of material properties in pure mode III opening. Additionally,98

most studies assumed that the facets were sufficiently far apart from each other to avoid interaction, without discussing this99
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assumption’s validity. Although the coupled criterion mostly utilizes an idealized crack shape, and the stress field remains singu-100

lar, it shows promise in improving our understanding of the phenomena observed in numerical experiments (Molnár et al., 2020a).101

102

While both analytical studies (Leblond et al., 2011), numerical simulations (Pons and Karma, 2010), and experimental103

investigations (Pham and Ravi-Chandar, 2014) have posited the crucial requirement for a regularization length in comprehending104

mode III fracture; the feasibility of determining the initiation distance on a small scale using straightforward and readily105

measurable material parameters, and thus establishing a suitable internal length scale, remains ambiguous. Consequently,106

additional research is imperative to gain a comprehensive understanding of the interplay between material properties and the107

initiation distance of facets.108

In this paper, we introduce a phase-field model that utilizes a small spatial perturbation in toughness to determine idealized109

facet spacing. We focus on pure antiplane shear, that has not been studied elsewhere. A thorough parametric study demonstrates110

that the statistical results are independent of the perturbation field and can be considered characteristic of the material. By111

narrowing our focus in this way, we hope to gain a deeper understanding of the mechanisms behind facet initiation and provide112

a foundation for further research in this area. We emphasize that the obtained spacing is an upper limit, which can be reduced113

by the presence of defects. In parallel, we propose a rudimentary analysis using the coupled criterion, wherein we explain why114

initiation happens at a higher loading state with facets and estimate a characteristic initiation distance. This analysis allows us115

to establish a correlation between the regularization length used in phase-field calculations and the material’s tensile strength.116

The paper is structured as follows. First, our strategy is laid out in Section 2, then Section 3 presents the results obtained117

with the phase-field method. After which Section 4 describes the development of the coupled criterion. In Section 5, we compare118

and contrast the results obtained with the two methods, highlighting their similarities and differences. Finally, in Section 6, we119

draw conclusions based on our findings.120

2. Theoretical framework121

This section aims to introduce the mechanical problem and delineate the objectives of the analysis. It highlights the two122

methods – the phase-field technique and the coupled criterion – employed to address the current challenge.123

These two methods have been chosen due to the incorporation of a characteristic length scale, either as an input parameter124

or through the combination of material properties. Given their well-established nature, this section offers a succinct overview125

of their fundamental principles, define the necessary input variables, and outline potential outputs. The primary emphasis is126

on comparing how these two methods facilitate facet formation, providing a nuanced understanding of crack propagation under127

pure mode III loading conditions.128
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2.1. Problem statement129

Consider a planar crack with a straight crack front residing within an infinite linear elastic medium characterized by a Young’s130

modulus (E), Poisson’s ratio (ν), and critical fracture energy (gmat) (see Fig. 2a). Our objective is to address the propagation131

of this crack under the influence of an increasing mode III loading, denoted as KIII, applied uniformly along the crack front.132

In our investigation, we focus on two potential scenarios: (i) continuous development of facets from the initial front, as133

depicted in Fig. 2b, and (ii) abrupt nucleation of facets at discrete points along the front, shown in Fig. 2c. To explore the first134

possibility, we will employ the phase-field method, while for the second possibility, the coupled criterion will be used. Special135

attention is directed towards comparing the outputs of the two methods, with a specific focus on the distance between facets as136

a function of the material’s characteristic lengths.137

2.2. Regularization length in phase-field138

The fundamental concept underlying phase-field models is to approximate the crack discontinuity using a smeared damage139

field (d). Typically, a single length scale parameter (lc) is introduced to govern the extent of damage penetration within the140

material. The phase-field model balances the elastic and diffused fracture energies to determine the energetically favorable crack141

front. Various versions of the model exist, sharing common inputs: the elastic constants E, and ν; the fracture toughness gmat;142

and the regularization length lc. Detailed information about the phase-field model used herein will be provided in Section 3.143

Utilizing the Π-Vaschy-Buckingham theorem (Vaschy, 1892; Buckingham, 1914), we can construct dimensionless variables144

using two independent physical units. By selecting lc and E, we normalize the critical loading
Kcr

III

E
√
lc

and the facet spacing Λ
lc

and145

express these quantities as a functions of the normalized critical energy release rate gmat

Elc
and Poisson’s ratio ν. Introducing the146

normalized critical loading for straight crack initiation (Irwin, 1957):147

kIIIc

E
√
lc

=

√
gmatE
1+ν

E
√
lc

(1)

we can equivalently express Kcr
III/kIIIc and Λ

lc
as a functions of gmat

Elc
and ν.148

Figure 2: Mode III crack front segmentation: (a) Problem definition; (b) continuous formation; (c) abrupt facet emergence. The mother crack is
displayed in gray, while the facets are shown in red. The blue arrows show the direction of the macroscopic shear applied in the yz plane.
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2.3. Irwin’s length and the coupled criterion149

The fundamental concepts of the coupled criterion combines the incremental form of Griffith’s energy release rate with a150

stress threshold criterion. The method assumes a predetermined shape and array of cracks at nucleation. The extent of the crack151

surface is identified where both the incremental energy release rate exceeds the fracture toughness, and the nominal opening152

stress surpasses the material’s tensile strength over the entire newly opened crack surface. Similarly to the phase-field model,153

the elastic medium in the coupled criterion is characterized by Young’s modulus E and Poisson’s ratio ν, with the materials154

fracture toughness gmat. However, instead of regularizing the crack, a tensile strength σc is introduced. Further details of the155

method used herein is given in Section 4.156

The introduction of a stress criterion reveals the emergence of a characteristic length, such as an arrest length or characteristic157

crack spacing (Faria Ricardo et al., 2020). For dimensional reasons, this length is linked to Irwin’s length (Leguillon and Yosibash,158

2003; Martin et al., 2018), which relates Young’s modulus, fracture toughness, and tensile strength by the following formula:159

lmat =
Egmat

σ2
c

. (2)

As before, for dimensional reasons, the coupled criterion yields the normalized critical loading (Kcr
III/kIIIc), and the normalized160

facet spacing (Λ/lmat) as a function of the normalized fracture toughness gmat/(Elmat) and ν.161

2.4. Equivalence between the two lengths162

The phase-field method and the coupled criterion offer distinct approaches for modeling cracks. The phase-field method163

allows the crack to evolve continuously, enabling us to capture the formation of complex crack patterns. On the other hand,164

the coupled criterion adopts a discrete fracture approach, representing cracks as discrete, predetermined entities and focusing on165

single critical loading for crack initiation.166

As observed earlier, both methods are capable of determining the initiation spacing Λ, but they rely on distinct characteristic167

lengths. The phase-field method yields Λ/lc as a function of ν and gmat/(Elc), whereas the coupled criterion provides Λ/lmat as a168

function of ν and gmat/(Elmat). While lmat can be derived from mechanical parameters, the physical meaning and measurement169

of lc remains an open question, particularly in the context of mode III loading.170

In this paper, our goal is to establish a connection between the initiation distance among echelon cracks and quantifiable171

material parameters. This is accomplished by employing a combination of the phase-field method (elaborated in Section 3) and172

the coupled criterion (explored in Section 4). We assess these outcomes in comparison to lc and lmat in Section 5.173

3. Phase-field study174

This section offers insight into the simulation details and showcases the outcomes of employing the phase-field approach175

to simulate crack initiation and propagation under pure mode III conditions. Section 3.1 outlines the model and the post-176

processing method employed to examine facet formation. The impact of model parameters is discussed in Section 3.2, followed177
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by the presentation of material parameter effects in Section 3.3. Briefly, in Section 3.4, the results of present model is compared178

to the ones obtained in the literature. Lastly, Section 3.5 provides a summary of the findings from the phase-field study.179

3.1. Phase-field model180

3.1.1. Phase-field theory181

Bourdin et al. (2000) introduced the currently widely used theory for modeling fracture using variational methods. It182

is fundamentally based on the idea of damage mechanics (Kachanov, 1958) and the regularization of a discontinuity with a183

continuous field (Ginzburg and Landau, 1950; Cahn and Hilliard, 1958). The new theory replaced the discrete fracture surface,184

as originally formulated by Griffith (1921, 1924), within the variational framework proposed by Francfort and Marigo (1998).185

Instead of a discrete crack surface, a continuous damage density function was employed. This transformation of the original186

minimization problem involved the utilization of the Mumford and Shah functional (Mumford and Shah, 1989), which is a specific187

case within the broader Ambrosio and Tortorelli elliptic regularization framework (Ambrosio and Tortorelli, 1990). The phase-188

field fracture model was founded on the diffuse representation of localized discontinuities, where the crack surface is approximated189

using a damage variable (d) that ranges from 0 to 1. When the phase-field is 0, the domain is undamaged, while a value of 1190

indicates that the crack has fully formed, and the material has lost all of its resistance and stiffness. This approach allows for191

the gradual transition from an intact material to a fully fractured state, thus enabling the simulation of crack initiation and192

propagation without the need for explicit crack tracking. The evolution of damage in phase-field models is dictated by a system193

of partial differential equations. This phase-field problem is commonly coupled with equations that describe the mechanics of the194

material; in this context, linear elasticity. As damage evolves, it influences the mechanical behavior of the material, instigating195

the initiation and propagation of cracks. Fundamentally, the energy of the solid body, as shown in eq. (3), is minimized. In this196

process, the accumulation of elastic energy drives the formation of damage and the subsequent opening of cracks.197

There are several phase-field models available in the literature (Bourdin et al., 2000; Miehe et al., 2010a; Ambati et al.,198

2015; Wu, 2018b). In this paper, we employed the AT1 model proposed by Pham et al. (2011), which incorporates a classic199

quadratic energy degradation function with a linear crack surface density equation. This model is preferred due to its ability200

to provide an initial elastic threshold, which is essential for accurately simulating the onset of damage. The AT1 model has201

been extensively validated and widely used in fracture simulations in various materials science applications (Ambati et al., 2015;202

Tanné et al., 2018). To enforce positive damage increments and irreversibility, we adopted Lagrange multipliers (Lu et al.,203

2020) in our implementation. For a deeper comprehension of the phase-field theory, we recommend interested readers consult204

the works of Bourdin et al. (2000) and Miehe et al. (2010a). As for implementation details, we direct readers to our recent205

publication (Molnár et al., 2022), where additional information is provided. For sake of self-consistency, we highlight the main206

ingredients that are relevant to this particular study.207

The internal energy of the solid is described with the following equation:208
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Π (u, d) = E (u, d) +W (d)

=

∫
Ω

[
g (d)ψ+

0 (u) + ψ−0 (u)
]
dΩ

+

∫
Ω

[
3gc
8lc

(
d+ l2c |∇d|

2
)]
dΩ.

(3)

The strain and fracture energy components are denoted as E and W , respectively and u is the sought displacement field209

on a domain Ω. Fracture energy can be described using two parameters: the numerical critical energy release rate, gc, and the210

crack density function. The diffusion of damage is controlled by the length scale lc. The undamaged strain energy density, ψ0, is211

separated into positive (ψ+
0 ) and negative components (ψ−0 ). Only the positive (tensile) component is subject to damage, which212

is represented using a quadratic degradation function: g (d) = (1− d)
2
. This means that only tensile energies contribute to the213

formation of cracks. To distinguish between tensile and compressive strain energies, the decomposition proposed by Bernard214

et al. (2012) was adapted:215

ψ+,−
0 =

3∑
i=1

µ 〈εi〉2+,− +
λ

2
〈tr (ε)〉2+,− . (4)

The eigenvalues, denoted as εi, are computed using the infinitesimal strain tensor, defined as ε = ∇Su. The material param-216

eters λ and µ are Lamé parameters. Functions 〈〉± stand for: positive 〈x〉+ = (x+ |x|) /2 and negative 〈x〉− = (x− |x|) /2217

parts.218

The fracture surface in the phase-field technique was obtained by integrating the crack surface density function over the219

entire domain:220

S =

∫
Ω

3

8lc

[
d+ l2c |∇d|

2
]
dΩ. (5)

In Fig. 3a, we present the geometric configuration of the phase-field model employed in our study. We commence with an221

initial planar mother crack, characterized by a straight front, within a cylinder of radius R and length L. The intention was to222

use sufficiently large values of R and L to emulate behavior in a medium with properties approaching that of infinity (as depicted223

in Fig. 2a). Consequently, we applied elastic K-field displacement boundary conditions, representative of pure mode III, to the224

cylinder’s mantle:225

ûx = 0, ûy = 0, ûz (r, θ) =
KIII

µ

√
2r

π
sin

θ

2
, (6)

where KIII is a loading parameter, which represents the apparent mode III stress intensity factor at initiation. Parameter226

µ is the shear modulus, r and θ are the polar coordinates in the xy plane. We imposed periodic boundary conditions in the z227
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direction for all degrees of freedom located on the lateral faces of the cylinder. The initial mother crack was included both in the228

geometry (node splitting) and with a d̂ = 1 Dirichlet boundary condition. Note that in the undamaged state, the displacement229

field conforms to eq. (6) across the entire domain within the precision of the finite element approximation.230

The mechanical and damage phase-field problems were solved in a staggered, weakly coupled fashion. The load step was231

automatically controlled using the elastic energy increment scheme proposed by Molnár et al. (2020b,a). A parametric study,232

presented in details in Appendix A, investigates the influence of the load step size on the convergence of crack patterns. The233

simulation employs a mesh consisting of fully integrated, eight-node, linear hexahedral elements, with an average size of hPF = lc.234

It is worth mentioning that, even though the critical loading is influenced by the coarse mesh (Miehe et al., 2010a; Tanné et al.,235

2018; Molnár et al., 2022), we have observed no impact of the ratio lc/hPF on the crack pattern, as demonstrated in Fig. A.24236

in Appendix A.237

The material’s response was evaluated at Gaussian integration points, while the phase-field is determined at the nodes,238

introducing a localization error. Hence, in our comparison with the coupled criterion, we mitigate the localization error as239

described by Molnár et al. (2022) by introducing a numerical fracture toughness. To fully open a crack, it is crucial for the240

damage to uniformly approach 1 across the entire element. This, in conjunction with the crack’s presence, results in an apparent241

increase in the model’s effective toughness. To counteract this effect, the numerical toughness (gc) was adjusted using the242

following equation (Bourdin et al., 2008; Linse et al., 2017; Tanné et al., 2018):243

gc = gmat

(
1 +

3hPF

8lc

)−1

, (7)

where hPF represents the characteristic mesh size of the model and gmat is the materials fracture toughness. When the ratio244

lc/hPF is significantly large, the procedure of distinguishing between gc and gmat can be omitted, as gc approaches gmat. This245

ensures consistency in the comparison and has been widely adopted in the literature.246

3.1.2. Inhomogeneous fracture toughness247

As highlighted by Pham and Ravi-Chandar (2017), initiating facets in anti-plane shear does not occur if no perturbation is248

applied in the model. To solve this issue, we propose in this paper to introduce a 3D Gaussian random field1 (GRF) (Lang and249

Potthoff, 2011; Dietrich and Newsam, 1997) to spatially alter the critical fracture toughness (gc) of the material.250

The covariance function used to define the GRF in this study is given by:251

cov (∆x,∆y,∆z) = σ2
G exp

[
−
(

∆x

lG

)2

−
(

∆y

lG

)2

−
(

∆z

lG

)2
]
. (8)

1Gaussian random fields are stochastic processes that are defined by a set of random variables that follow a Gaussian distribution. These random
variables are defined over a continuous spatial domain and are correlated with each other according to a specified covariance function. Gaussian random
fields are commonly used in numerical simulations as a tool for generating spatially correlated random fluctuations in a given parameter, such as the
toughness of a material, which can be used to initiate defects or irregularities in the simulation.

10



The covariance function used to define the GRF is a measure of the correlation between different points in the field. Specifically,252

it describes how the variation in one point is related to the variation in another point, as a function of their distance. The253

covariance function (8) used in this study has a Gaussian form and depends on the distance (∆x, ∆y, ∆z) between two points254

in the field, and a length scale parameter, lG, which controls the decay of the correlation with distance. The standard deviation255

of the GRF, σG, determines the overall magnitude of the perturbation to the material’s toughness. The GRF was periodic only256

in the z direction. The histogram and a 2D slice of the generated random field is depicted in Fig. 3b and 3c respectively.257

3.1.3. Elementary crack shape258

In this subsection, we initially illustrate how the model operates and generates facets in antiplane shear. Subsequent sections259

delve into the impact of material properties on its key features. The material was considered linear elastic with a Poisson’s ratio260

of ν = 0.37 and with a normalized fracture toughness of gc/(Elc) = 1. The parameters of the GRF were set to lG = lc and261

σG = 10−3gc. The influence of the GRF and the material parameters are discussed in Sections 3.2.1 and 3.3. The results in this262

section were obtained for R = 20lc and L = 80lc. Extensive verification confirms that these dimensions were sufficiently large to263

ensure that the boundaries do not influence the form or behavior of the crack at initiation (see Fig. A.23 in Appendix A).264

Fig. 4 displays the isosurface2 of the damage for d = 0.8 at the beginning of the propagation. The lower part of the figure265

shows the 3D view of the fully initiated daughter cracks before coarsening, while the upper part displays the crack in the xz,266

xy, and yz planes. As the isosurface highlights only the region where d = 0.8, the damaged zone around the mother crack tip267

appears blank, therefore to highlight this area where d > 0.8, we have enclosed it with a blue circle.268

Initially, a homogeneous damage zone emerged around the tip of the mother crack, exhibiting self-similarity in the z direction.269

2An isosurface is a three-dimensional surface that represents a constant value of a scalar field. In other words, it is a surface that connects points
in space where a particular scalar field has the same value.

Figure 3: (a) The geometry and boundary conditions of the phase-field model are depicted. (b) The histogram shows the variation applied by the
Gaussian random field (GRF) used to induce facets in the model. (c) A 2D example of the GRF is also shown. Both the abscissa of the histogram and
the color bar are scaled between -3σG and +3σG.
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Figure 4: Typical crack pattern obtained from the phase-field model under antiplane shear. The red surface in the figure corresponds to the isosurface3

of the damage variable at d = 0.8, with a model size of R = 20lc and L = 80lc and material parameters gc/(Elc) = 1 and ν = 0.37.

By increasing the load, upon the onset of localization, daughter cracks began to form within a characteristic distance. The fully270

developed daughter cracks took on a fin-like shape, extending in the positive x direction. The upper and lower portions of271

the cracks curved back and reconnected with the mother front, creating a recurring pattern reminiscent of the form proposed272

by Leblond et al. (2011). There was an additional advancement of the helicoid spiral in the x direction compared to the273

aforementioned analytic solution.274

As supplementary material (Appendix B), we have included two components. Firstly, a movie showcasing the behavior of the275

large R = 40lc and L = 200lc model with ν = 0, providing a comprehensive visual representation. Secondly, we have included276

a small example input file that can be executed on a desktop computer. This example features ν = 0, L = 15lc, and R = 20lc,277

allowing for a practical and manageable demonstration.278

3.1.4. Quantitative description279

To provide a more refined description of the crack pattern, we propose to use two key metrics: the average distance between280

neighboring facets at initiation and the maximum tilt of the daughter cracks. However, defining an accurate initiation distance281

poses a challenge due to the inherent coarsening that takes place in the phase-field approach. Therefore, we plotted the average282

distance between facets as a function of their extent in the x direction. This was achieved by capturing slices of the isosurface283

(with d = 0.8) aligned with the yz plane at x = a, and then measuring the distance between the centers of individual contours284

within these slices. The visualization and methodology are illustrated in Fig. 5. This approach yields the average distance285

between facets at a given distance a.286

The angle of the facet was determined by identifying the contour edge of the facet, as illustrated at the bottom part of Fig. 5287

using black solid lines. Subsequently, the angle of this contour was measured with respect to the z axis within the yz plane at288
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Figure 5: Schematic illustration of the method used to measure the initiation distance between neighboring facets and the facet angle (with a model
size of R = 20lc and L = 200lc and material parameters gc/(Elc) = 1 and ν = 0.37).
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Figure 6: Effect of GRF variation (σG) on the crack pattern for the same loading with lG = lc. The simulation domain dimensions were L = 80lc and
R = 20lc with material parameters gc/(Elc) = 1 and ν = 0.37.

the facet’s maximum extent, indicated as x = amax.289

3.2. Effect of model parameters290

The paper aims to establish a correlation between material parameters and the properties of emerging cracks. Consequently,291

it is imperative to identify how model parameters influence the formation of crack patterns. Therefore, in the following sections,292

the effect of the perturbation field and then the effect of the energy decomposition scheme is analyzed.293

3.2.1. Toughness perturbation294

We have demonstrated that perturbing spatially the toughness proved to be a viable strategy to inducing facets. The295

perturbation could be considered physically meaningful as it represents a variation in the material’s structure. However, to296

explore facet initiation in a quasi-perfect material, we strove to find a set of Gaussian random field parameters that do not297

statistically influence the initiation of facets. Therefore, a series of tests were carried out to investigate the impact of the GRF298

parameters on the crack pattern. In this section the material parameters were kept fixed at ν = 0.37 and gc/(Elc) = 1.299

Fig. 6 illustrates the effect of the magnitude of the variation in toughness (σG) on the crack pattern with lG = lc and a fixed300

random seed. The results reveal that σG has a pronounced effect on the crack shape while having little impact on the initiation301

distance between neighboring facets. Initial signs of localization became detectable at σG = 10−7gc, and this localization became302

distinctly visible after reaching σG = 10−6gc. As the modification progresses, it began to influence the shape of the crack,303

leading to a less defined damaged zone above 0.2gc, as illustrated in the upper left figure. Within the range of [10−7 − 10−1]gc,304

no discernible alterations were observed in the position or distance between the initial localizations. Additional results for305

σG = [10−1, 10−2, 10−5, 10−8]gc are presented in Appendix A. For further analysis, we choose the smallest perturbation, which306
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Figure 7: Effect of GRF length scale on the crack pattern with the same random seed. (a) gc map corresponding to σG = 10−3gc. The colors in
the figure represent a variation of approximately -3σG to +3σG. The GRF is displayed with lG = lc on the top and lG = 10lc on the bottom. (b)
Corresponding phase-field crack patterns with gc/(Elc) = 1 and ν = 0.37. The simulation domain dimensions were L = 80lc and R = 20lc.

gave the most pronounced facets, thus σG = 10−3gc. This value can be considered small enough to ensure that the results are307

statistically independent of the GRF.308

Fig. 7 shows the effect of the GRF length scale (lG) on the crack pattern obtained for the same random seed and σG = 10−3gc.309

Tests with lG < lc were not included due to the homogenizing effect of the phase-field method, which would make it difficult310

to observe any significant differences in the resulting crack pattern. The results in Fig. 7 demonstrate that the crack patterns311

obtained for different GRF length scales with the same random seed and a small σG are similar, with only a slight shift to the312

right. Furthermore, the initiation distance between facets remains unchanged and is not affected by the ratio lG/lc. In addition,313

in Fig. A.22 in Appendix A presents the results obtained using two additional random seeds. The results show that while the314

GRF did affect the exact position of the facets, it had little impact on their spacing.315

In summary, these results indicated that the crack pattern is primarily influenced by loading and material parameters, rather316

than the specific realization of the Gaussian random field (GRF) with reasonably small fluctuations. While the local toughness317

variation induced by the GRF can be viewed as inherent fluctuations in the material’s structure, our primary objective in this318

paper was to identify a sufficiently small perturbation that does not significantly impact initiation statistically. Consequently,319

by analyzing a quasi-pristine material sample, we can establish a link between material properties and the crack pattern. For320

subsequent simulations, we fixed lG = lc and σG = 10−3gc for a reference GRF.321

3.2.2. Energy decomposition scheme322

We also investigated the impact of the energy decomposition scheme on the crack pattern, using an identical GRF field. Fig. 8323

showcases the crack patterns obtained with different energy decomposition methods. Part (a) presents the crack pattern with324

the spectral energy decomposition scheme (see eq. 4) used in previous studies. In this case, both the hydrostatic and deviatoric325

components of the tensile strain energy were distinguished. Notably, the facets were present, and they exhibited localization at326

equal distances.327
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In contrast, part (c) illustrates the crack’s form when no decomposition was utilized and the energies were defined as328

ψ+
0 =

3∑
i=1

µε2
i + λ

2 tr(ε)
2

and ψ−0 = 0. As a result, both tensile and compressive components of the strain tensor induced damage,329

leading to a horizontal crack without any facets.330

Finally, part (b) demonstrates the situation where only the hydrostatic component was separated as: ψ+
0 =

3∑
i=1

µε2
i+

λ
2 〈tr (ε)〉2+331

and ψ−0 = λ
2 〈tr (ε)〉2−. In this case, the crack also propagated horizontally with no facets present.332

These observations show that omitting the split on the deviatoric component resulted in a horizontal propagation without333

facet formation. This phenomenon underscores the importance of not only distinguishing between hydrostatic tension and334

compression alone, as it is insufficient for accurately modeling facet formations in antiplane shear. Instead, the inclusion of local335

tensile opening at the crack tip is critical to get facets to form.336

Figure 8: Effect of different energy decomposition schemes on the crack pattern (with a model size of R = 20lc and L = 80lc and material parameters
gc/(Elc) = 1 and ν = 0.37).

3.3. Effect of material parameters337

In this section, our objective is to investigate the impact of material parameters, specifically gc/(Elc) and ν on the forming338

crack facets. The GRF parameters were held constant at lG = lc and σG = 10−3gc. To ensure statistical significance in our339

results, we extended the length of the model to L = 200lc. Two model diameters were considered: R = 20lc and 40lc, to which340

we will refer to as the small and the large model in the following.341

Due to computational constraints, we analyzed two large simulations, each comprising 6.3 million degrees of freedom. These342

computations took 6-8 weeks on a 24-core cluster node. The analysis encompassed two limit cases, namely ν = 0 and ν = 0.45,343

with a fixed value of gc/(Elc) = 1. In order to explore the transition between these aforementioned limits, we utilized smaller344

models, completing them within 6 days. For the small model we varied the material properties within the ranges of ν = [0−0.37]345

and gc/(Elc) = [0.1− 10].346

Consistent with the approach in previous sections, we initially present the overall behavior in Section 3.3.1. Subsequently, we347

delve into specific details, discussing the average distance between neighboring facets at initiation in Section 3.3.2, the evolution348

of the facet tilt in Section 3.3.3, and the critical loading at initiation in Section 3.3.4.349
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Figure 9: Crack evolution for increasing KIII/kIIIc in the large model with ν = 0, R = 40lc and L = 200lc (with gc/(Elc) = 1).

3.3.1. Screening effect and coarsening350

The evolving crack pattern for various normalized loading stages is depicted in Fig 9 for the large model with ν = 0. The351

load parameter (KIII) was normalized with the critical value defined in eq. (1) for horizontal initiation.352

Fig. 9 shows, that at initiation (KIII/kIIIc = 2.26) the straight crack front underwent a transition where slight ruffling353

occurred and small undulated forms became apparent. In the subsequent stage, these undulations began to grow, gradually354

forming incipient facets. At this point, the facets exhibited a relatively shallow angle, approximately 30◦. In the third row,355

corresponding to KIII/kIIIc = 2.42, it became evident that certain daughter cracks halted their propagation. The screening356

effects prompted adjacent nodes to expand and to fill the void left by the arrested cracks. In the subsequent row, a distinct357

observation emerges as various facets arrested at diverse lengths. This progression gave rise to a crack pattern characterized by358

a hierarchical structure, showcasing a discernible coarsening phenomenon.359

In the scenario characterized by a Poisson’s ratio of ν = 0.45 (Fig. 10), the initial undulations exhibit a reduction in magnitude,360

and only larger fragments commence and expand. Owing to the initiation occurring at a comparatively greater distance, the361

fragments grow in a more uniform fashion, leading to a greater degree of equidistant length.362
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Figure 10: Crack pattern for ν = 0.45 and KIII/kIIIc = 3.92 in the large model with R = 40lc and L = 200lc (with gc/(Elc) = 1).

3.3.2. Average facet distance363

We recall that for dimensional reasons, the normalized facet spacing at initiation (Λ/lc) supposed to depend only on gmat/(Elc)364

and ν. We took precautions to ensure the use of a sufficiently large domain and a small enough perturbation to obtain accurate365

results. In Fig. 11a, the influence of the critical energy release rate (fracture toughness) is illustrated. It is observed that366

a hundred-fold magnification of gc/(Elc) has no discernible impact on the evolution of crack patterns, particularly during367

the initiation phase under normalized loading. Both Kcr
III/kIIIc and Λ/lc are independent of gc/(Elc), and consequently, from368

gmat/(Elc) based on the relationship between gmat and the numerical toughness gc, as shown in eq. (7).369

Furthermore, Fig. 11b demonstrates the impact of varying Poisson’s ratio in the small model. Similarly to the results shown370

in Fig. 9 and 10 for the large model, our observations indicate that increasing Poisson’s ratio leads to a larger process zone,371

evidenced by the presence of more homogeneous damage surrounding the mother crack tip. We also noted that small cracks,372

which quickly arrested in low ν scenarios, did not appear for larger Poisson’s ratios.373

To investigate the quantitative impact of Poisson’s ratio on the initiation distance between neighboring facets, we have374

calculated Λ in various cuts. The results are summarized in Fig. 12a. It is shown, that for smaller values of Poisson’s ratio,375

smaller cracks can initiate and propagate, while for larger values of ν, smaller cracks arrest at a shorter distance. The average376

facet distance and its standard deviation are displayed in Fig. 12b at a = 4lc. However, smaller advancement values cannot be377

(a) Effect of fracture toughness on the crack pattern with the nor-
malized loading of KIII/kIIIc = 3.56.

(b) Effect of Poisson’s ratio on the crack pattern at initiation with
the same maximum crack extension (max(amax,i) = 10lc). The nor-
malized loading was taken respectively KIII/kIIIc = 2.56, 2.87 and
3.27 for ν = 0, 0.3 and 0.37.

Figure 11: Effect of material properties on the crack pattern at initiation with R = 20lc and L = 200lc.
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(a) Average normalized localization distance as a function of the
position of the cutting plane for different ν.

(b) Normalized average distance between neighboring facets at ini-
tiation and its standard deviation (on one simulation) as a func-
tion of Poisson’s ratio (ν) in the phase-field simulation at a distance
amax = 4lc. The results are fitted using the quadratic function (9).

Figure 12: Effect of Poisson’s ratio on the normalized average facet distance for the smaller model with R = 20lc and L = 200lc.

determined from the figures due to the initial homogeneous damage field.378

The results presented in Fig. 12b were fitted using a second-order polynomial. The coefficient of determination3, R2=0.99,379

indicates a high degree of correlation between the fitted curve and the data points. The polynomial equation used for the fitting380

is as follows:381

Λ

lc
= 15.4− 5.7ν + 66.7ν2 ≡ Λ̃PF (ν) . (9)

It is important to note that these values are subject to change based on the selected threshold and the loading state of crack382

measurements. Nevertheless, they provide a valuable estimation of how facets interact in relation to Poisson’s coefficient.383

Due to coarsening these distances are subject to change. Therefore, we have displayed the normalized average facet distance384

3The coefficient of determination is defined by 1− SSE
SST

, where SSE is the sum of squared error and SST is the sum of squared total deviation from
the mean in a least squares regression model.

Figure 13: Evolution of normalized facet distance as a function of the position of the cutting plane for a fixed loading. The dashed lines represent the

standard deviation. The measured values are fitted with the exponential function: Λ/lc = αe
β a

lc . The model dimensions were R = 40lc and L = 200lc.
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and its standard deviation in Fig. 13 for the large model, where the facets were able to evolve. The loading was fixed at385

KIII/kIIIc = 3.07 for ν = 0, and 3.92 for ν = 0.45 respectively. Then the position of the cutting plane was varied.386

As the cutting plane advances, the average facet distance increases for both samples, indicating coarsening of daughter cracks.387

The discrete jumps in the function is due to the limitations in size of our model. When we lose a crack, the average distance388

jumps. In other words, as we start with approximately a dozen cracks, losing one on a finite length results in a visible finite389

jump. Nevertheless, an approximate initiation distance between facets can be measured, and the tendencies can be made clear.390

The evolution of the facet coarsening is fitted with an exponential curve, which qualitatively corresponds well to experiments391

conducted on inclined notched, bent samples (Hattali et al., 2021).392

The distinguishing factor between the two cases lies in the behavior during propagation. For ν = 0.45, all four daughter393

cracks propagate in unison within the range of a/lc = 10 − 18, exhibiting a smaller standard deviation compared to the ν = 0394

case (which is not depicted in the figure). Conversely, in the case of ν = 0, the coarsening phenomenon is notably more dramatic395

and takes precedence over the scenario with the higher Poisson’s coefficient, manifesting after a/lc = 15.396

3.3.3. Facet angle397

When analyzing the distance between facets, we can select an advanced loading stage and segment it into different slices. In398

contrast, facet angles undergo variations during propagation and coarsening, and therefore, their assessment occurs at different399

loading stages.400

Facets initially appear at lower angles (approximately 25◦) and gradually steepen. The impact of Poisson’s coefficient shown401

in Fig. 14a is small. The average facet angle at the same amax tends to be slightly smaller with an increase in ν. However, due402

to spatial limitations in the small model, it is challenging to conclude whether this effect is transitory or if it also influences φmax403

on the plateau.404

In the large model, we observed the gradual increase in the tilt angle from quasi-horizontal as the crack advances. This405

trend is depicted in Fig. 14b for the large model, where the maximum tilt angle of the facets is illustrated across various loading406

stages. For the case of ν = 0, it is noticeable that cracks initiate at an approximate angle of 10◦ and gradually progress until407

they attain an angle of around φmax ≈ 58◦. In the instance of ν = 0.45, the initial angle starts at a lower value and gradually408

escalates to reach a plateau of 50◦. Throughout these processes, the facets undergo coarsening, with smaller facets arresting at409

angles below 50◦. Notably, in both cases, the hyperbolic fit yields a coefficient of determination exceeding 0.9, validating the410

converging behavior exhibited by the angles.411

3.3.4. Apparent fracture toughness412

Employing the model geometry and boundary conditions as depicted in Fig. 3 yields progressive initiation and propagation,413

requiring an increase in loading to advance the crack front. We have investigated the impact of Poisson’s ratio on the critical414

loading point at which facets begin to manifest. Fig. 15 displays the normalized crack surface as a function of the normalized415
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(a) Facet tilt angle as a function of crack advancement and Poisson’s
ratio in the small model with R = 20lc and L = 200lc.

(b) Facet tilt angles as a function of the facets advancement. The
results are fitted with the hyperbolic function: φ (amax) = ãcr

amax/lc
+

φmax, where φmax donates the facet angle on the plateau. Results
are plotted from various loading stages in the model with R = 40lc
and L = 200lc.

Figure 14: Effect of Poisson’s ratio on the evolving tilt angle.

loading parameter. The loading necessary for horizontal propagation is determined through calculations without energy decom-416

position. With facets the damage field starts to increase at a loading significantly greater than that is expected for horizontal417

propagation. Interestingly, each case initiates at the same normalized value (KIII/kIIIc ≈ 2.4) independently of ν, indicating that418

a higher Poisson’s ratio leads to a lower necessary stress at infinity (or its apparent stress intensity factor) due to the reduction419

in kIIIc with an increase in ν (see eq. 1). As depicted in Fig. 11a, it is noteworthy that the ratio gc/(Elc) exhibits no influence420

on the curves illustrated in Fig. 15. The absence of any discernible impact can be attributed to the initial mother crack being421

infinitely larger than lc, as a result, crack propagation follows Griffith’s criterion.422

During this initial period, the homogeneous damage forms around the original crack tip, which is represented in blue in423

Fig. 4. This period concludes when the cracks start to localize and facets form. As facet formation commences, the crack surface424

increases more rapidly with lower Poisson’s ratios.425

As suggested by Pham and Ravi-Chandar (2017), without imposing boundary conditions, the critical loading can only be426

assessed through a threshold in the newly formed crack surface. In this paper, to discuss critical loading in phase-field simulations,427

we will employ various threshold values in the relative crack advancement ∆a = S
L as a measure. For example, in Fig. 15 the428

red dashed line shows the normalized threshold of ∆a
lc

∣∣∣
th

= 10, where the normalized critical loading is KIII/kIIIc = 2.4.429
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3.4. Contrast in modeling approaches430

In contrast to initial phase-field models that lacked the formulation of Miehe et al. (2010a), our work distinguished between431

crack opening and closure through an energy decomposition scheme. This enabled the generation of facets in pure antiplane432

shear, in contrast to predictions of horizontal propagation by Pons and Karma (2010) and Chen et al. (2015).433

Moreover, unlike the model presented by Pham and Ravi-Chandar (2017), our study reveals that without perturbation, the434

crack formed concentrically around the mother crack’s front, extending beyond the initial crack plane. We employed a linear435

crack representation function (AT1 model) instead of the quadratic scheme and ensured damage irreversibility using Lagrange436

multipliers, deviating from Pham and Ravi-Chandar’s approach. Additionally, we implemented an automatic time integration437

algorithm to control the time step, a detail not discussed in their paper. Furthermore, our study found no precise details about438

the energy decomposition scheme or the initial crack definition in the work of Pham and Ravi-Chandar (2017), which may439

explain the inability to initiate facets without significant defects.440

3.5. Phase-field discussion and summary441

In this section, we have demonstrated the proficiency of the phase-field approach in capturing the continuous formation of442

facets in pure antiplane shear. This accomplishment hinges on two key factors: (i) local toughness fluctuation and (ii) the spectral443

energy decomposition scheme. Notably, we showed that for a large range of reasonably small values of the Gaussian random field,444

the statistical results are independent of perturbations. This allows us to establish a link between the characteristic initiation445

distance between neighboring facets and the regularization scale of the phase-field model. Our study revealed that the initiation446

distance between facets is not influenced by the ratio gmat/(Elc) but is proportional to the internal length-scale of the phase-field447

regularization and a Poisson’s ratio-dependent function: Λ = Λ̃PF(ν)lc, with Λ̃PF given in eq. (9). Furthermore, we emphasized448

the significance of positive and negative energy decomposition in inducing facets, suggesting that in fatigue experiments (Chen449

et al., 2015), potential contact and friction may play a crucial role in facet formation.450

In our simulations we observed a gradual increase in the tilt angle of the facets as loading progressed. Detectable cracks451

initiated at around 5-10◦ and gradually propagated until reaching a maximum angle of 50-58◦. During this process, the facets452

Figure 15: Normalized relative crack advancement as a function of the normalized loading. The period, where facets start to localize is highlighted in
blue. The results for the case with no energy decomposition is displayed with the black dashed curve.
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coarsened, and smaller ones stopped growing at angles below 50◦. Similar trends were observed for different cases with varying453

Poisson’s ratios, where the facets still initiated at a smaller angle and gradually increased towards 50◦. Interestingly, this finding454

challenges the constant nature of the prediction made by Pollard et al. (1982). The discrepancy arises from the fact that Pollard455

et al. (1982) defines this angle based on the direction of the maximum opening stress, rather than on energetic considerations,456

as is the case with phase-field functions. It is worth noting that the finite size of the model, the limited distance between large457

facets and the boundary could potentially impact the facet angle on the plateau.458

Furthermore, the findings indicated that crack initiation occurs at a loading level higher that which is associated with459

horizontal propagation. Interestingly, by increasing Poisson’s ratio the load at which damage initiates decrease. In this aspect,460

facet formation aligns with Irwin’s predictions used for horizontal propagation. Initially, homogeneous damage formed around461

the crack tip, followed by localization and facet formation. Finally, facet formation led to a more rapid increase in crack surface462

with lower Poisson’s ratios.463

The numerical experiments presented here are novel as they showcase facet initiation in a nearly pristine sample without464

any initial major defects or perturbations affecting the crack pattern. This discovery supports the idea that the emerging crack465

pattern is of physical significance, and its statistical properties are independent of the perturbations used. Consequently, the466

need for a regularization length is crucial because, for a vanishing lc, the facet distance reduces to zero as well. Therefore, the467

experimental existence of facets suggests the existence of regularization as well.468

Nevertheless, we encountered challenges in extracting a discrete quantity such as the characteristic initiation distance from469

phase-field models. This is due to the gradual branching of the mother crack into daughter cracks and the diffuse nature of470

the phase-field as a damage model. The initially regularized crack front obscures an eventual discrete transition, rendering it471

challenging to determine the precise facet distance at the point of initiation. In order to address these concerns, we proceed with472

our analysis using the coupled criterion. Unlike the phase-field model, re-initiation in the coupled criterion is discrete, and the473

facet distance becomes evident and independent of the size of the model. Building upon our previous successful comparison of474

2D cases (Molnár et al., 2020a), we now extend our comparisons to 3D cases. Specifically, we aim to investigate the relationship475

between the regularization length used in phase-field models and the tensile strength in the 3D scenario.476

4. Coupled criterion477

The coupled criterion (Leguillon, 2002) is a widely used tool that combines an energy condition with a stress-based comparison.478

This combination naturally leads to the emergence of a characteristic length. Essentially, the theory states that for a crack to479

propagate, both energy and stress criteria must be satisfied at the same increment surface. In most cases, kinetic dissipation is480

neglected, and quasi-static conditions are assumed.481

The energy criterion is based on the incremental energy release rate. which is determined by balancing the states before and482

after a finite size crack formation and was calculated as follows:483
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G(S0 + ∆S, P ) = −Πint(S0 + ∆S, P )−Πint(S0, P )−∆Πext (P )

∆S
. (10)

In this equation, Πint represents the elastic strain energy, ∆Πext is the external work and P refers to the applied Dirichlet484

or Neumann boundary conditions. The term S0 denotes the initial size of the crack surface, and ∆S is the unknown crack485

increment. The criterion asserts that a crack can open if the energy released from the elastic body exceeds the critical energy486

(gmat) required to open the specific finite crack surface:487

G(S0 + ∆S, P ) ≥ gmat. (11)

The stress criterion, on the other hand, is the second requirement for crack propagation. It states that the stress perpendicular488

to the crack’s opening direction along the expected crack path exceeds the material’s tensile strength (σc) from a certain point489

onward:490

σθ (S0 + s, P ) ≥ σc,∀ 0 ≤ s ≤ ∆S. (12)

While the energy criterion sets a minimum crack surface increment for crack initiation (assuming thatG increases monotonously),491

the stress criterion establishes a maximum value due to the singular stress field at the crack tip. To satisfy both criteria simulta-492

neously, the load is increased until the initiation increment provided by the energy criterion decreases and matches the increment493

along the crack path on which the stress criterion is satisfied. The main conclusion of the coupled criterion is that a finite crack494

increment ∆S is abruptly created at initiation to satisfy both the strength and energy requirements.495

As a consequence, the coupled criterion enables us to investigate only the unstable cases where the incremental energy release496

rate increases with crack opening, while it reverts to Griffith’s original solution in stable cases and the finite crack increment497

vanishes.498

The coupled criterion is employed in this context to ascertain the initiation of planar facets, as illustrated in Fig. 2c. Once499

the shape of the daughter cracks is delineated, it is characterized by three parameters: (i) spacing (Λ), (ii) extent (∆S), and (iii)500

rotation angle (φ). The coupled criterion, however, provides only two of the three necessary equations. Consequently, a decision501

was made to set the inclination angle at a fixed value of φ = 45◦, as it yields a shape closest to experimental observations. The502

focus will then be on determining Λ and ∆S at the onset of facet formation.503

4.1. Stress criterion and proposed crack shape504

The main challenge in implementing the coupled criterion is to identify an appropriate parameter space that accurately505

describes the crack opening and satisfies both the energy and stress criteria.506

As suggested by previous studies (Leguillon, 2014; Doitrand and Leguillon, 2018a), the crack path can be determined by507

analyzing the stress isocontours around the mother crack in the absence of segments, which establishes a lower bound for surface508
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opening. To calculate the tensile stress at a specific point in infinite space, we utilized the analytic, singular solution derived509

from an elastic body (Westergaard, 1939) with a large mother crack: r � a0 (where a0 is the initial length of the mother crack):510

σθ (r, θ, φ) =
KIII√
2πr

cos

(
θ

2

)
sin (2φ) , (13)

where the stress is characterized in a polar coordinate system, utilizing the parameters of distance (r), angle (θ), and511

inclination (φ) of the crack plane, as illustrated in Fig. 164. Cracks are likely to form in regions where σθ ≥ σc. This domain512

can be represented by an isosurface, which outlines a specific region in space where crack opening becomes possible.513

To maintain consistency with the fundamental assumption of the coupled criterion and for simplicity, we assume the instanta-514

neous formation of a planar crack. Therefore, we need to define a two-dimensional surface within the envelope of the isosurface.515

To achieve this, we choose the intersection of the isosurface σθ = σc and a plane inclined around the x axis by an angle of516

φ = 45◦, where the tensile opening stress is maximum. This intersection defines a contour, as depicted in Fig. 16, where σθ ≥ σc.517

We will refer to this surface as our idealized representation of crack opening. The area of this surface can be represented in a518

dimensionless form using the following equation:519

KIII

σc
4
√

∆S
= c(φ). (14)

Here, the value of c, calculated numerically for φ = 45◦, is found to be approximately 2.207.520

From a qualitative point of view, this shape is similar to that observed experimentally by Pham and Ravi-Chandar (2016)521

and it is close to the ones shown by phase-field simulations. Therefore, it seemed a reasonable choice.522

The above crack shape enables us to characterize the opening of the crack using two variables: (i) the surface area of the523

crack (∆S), and (ii) the distance between adjacent crack segments (Λ).524

4.2. Incremental energy release rate525

For mode III loading, the stress field is already available, but the incremental energy release rate for the specified crack526

opening needs to be determined as a function of the crack parameters (∆S, Λ). For this, a series of linear calculations were527

4Note, that r, θ and φ are not spherical coordinates in our case.

Figure 16: Idealized crack shape illustrating the coupled criterion, with the applied coordinate system.
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carried out using the finite element method. To minimize the size effect, in order to be close to the problem of the infinite domain528

(see Fig. 2), the radius of the model was set to R = 20xmax, where xmax represents the largest extent of the newly opened crack529

in the x direction. We choose hCC = xmax/50 the smallest element size. It is worth noting that increasing the ratio by a factor of530

two between the smallest finite element size and the model size led to a difference of less than 1% in the energy release rate. The531

extent of the model in the z direction, and thus the characteristic spacing Λ was set to 100hCC. To model periodic overlapping532

crack fronts, the sides of the model were tilted by φ, as previously suggested (Doitrand and Leguillon, 2018b; Lazarus et al.,533

2020; Doitrand et al., 2023). The finite element mesh was uniformly refined in the circular zone where the crack was present,534

using a linear hexahedral mesh. The displacement boundary conditions were set to match those used in the phase-field study535

(see eq. 6).536

To calculate the energy release rate G, we computed the potential energy values while gradually increasing the crack opening537

∆S. To minimize the effects of mesh fluctuations, the same finite element mesh was used consistently, regardless of the crack size.538

Fig. 17 presents the normalized incremental energy release rate as a function of the normalized crack surface. The normalization539

was made with the energy release rate value associated with rectilinear propagation and the load KIII:540

G0 =
KIII

2(1 + ν)

E
. (15)

Considering dimensional considerations, G̃ = G/G0 is exclusively dependent on ν and the normalized crack surface:541

∆S̃ = ∆S/Λ2, (16)

given the infinite nature of the modeled domain.542

Fig. 17 reveals that G̃ initially increases until it reaches a local maximum, denoted by G̃max, which occurs at a normalized543

crack surface of ∆S̃max, before decreasing thereafter. G̃max and ∆S̃max corresponds to the normalized state when the facet544

nucleates.545

We observed that the maximum value of the normalized energy release rate (G̃max) is significantly lower than 1, facets releases546

only 13.5 % of the relative energy compared to horizontal propagation. This is consistent with previous findings of Mittelman547

and Yosibash (2015).548

Finding a smaller G compared to horizontal propagation is interesting as it explains the difference in the apparent toughness549

observed as a function of energy decomposition splits in phase-field fracture (see Fig. 15). Because G, when facets nucleate,550

is lower, the crack propagation starts at a higher KIII. This observation is in good correspondence to mixed-mode I+III551

experiments (Hattali et al., 2021) too.552

In order to compare our results with those obtained from the phase-field study, we present in Fig. 18 the maximum energy553

release rate and the corresponding surface opening as a function of Poisson’s ratio. As shown in the figure, we observe a gradual554

decrease in G̃max as the Poisson’s ratio increases. The position where the maximum G̃max is observed appears to peak around555
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ν = 0.35.556

4.3. Results of the coupled criterion557

The main objective of this section is to determine the characteristic initiation distance between neighboring facets, Λ and558

the critical loading (Kcr
III), for a given set of parameters. Since G̃max is independent of the initiation distance, we can use it to559

determine the critical load for a given Poisson’s ratio. The energy release rate at the facet initiation can be obtained from the560

following equation:561

G = G0G̃max (ν) =
K2

III(1 + ν)

E
G̃max (ν) . (17)

By equating G to the materials fracture toughness, gmat, we obtain the critical loading:562

Kcr
III =

√
Egmat

Ĝmax (ν) (1 + ν)
. (18)

Substituting the critical loading into eq. (14), we get the surface area where the stress criterion for initiation is satisfied,563

which we denote as ∆Scrσ (Kcr
III, σc), and where σθ ≥ σc. Finally, utilizing the position of the normalized crack surface ∆S̃max (ν)564

from equation (16), we can determine the characteristic facet distance:565

Λ =

√
∆Scrσ (Kcr

III, σc)

∆S̃max (ν)
. (19)

The primary objective is to identify material parameters that affect the initiation distance. By combining eq. (14), (18), and566

(19), we establish a correlation where E, gmat, σc, and ν are the principal variables. From this equation, lmat (as seen in eq. 2)567

can be extracted, leading to the following correlation for pure antiplane shear:568

Figure 17: Normalized incremental energy release rate as a function of normalized crack opening for ν = 0.37. The arrow points to the maximum value
G̃max at the normalized surface opening ∆S̃max.
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Figure 18: Maximum of the normalized energy release rate and the related normalized surface opening as a function of Poisson’s ratio for φ = 45◦.
The curves are guide to the eye.

Λ

lmat
=

1

(1 + ν)G̃max (ν)c2
√

∆S̃max (ν)
≡ Λ̃CC (ν) , (20)

where G̃max, and ∆S̃max are dimensionless constants only influenced by Poisson’s ratio and c is a coefficient linking the loading569

and σc to the newly opened surface (see eq. 14). Based on these findings, it becomes evident that the characteristic initiation570

distance between facets is linked to the material’s intrinsic length and affected solely by Poisson’s coefficient. Interestingly, the571

finding that the initiation distance is unaffected by gmat/(Elmat) aligns remarkably well with the phase-field results.572

Furthermore, similarly to phase-field simulations (as shown in Fig. 15), the critical loading can be normalized using Irwin’s573

prediction for horizontal propagation (see eq. 1), to obtain the following dimensionless form:574

Kcr
III

kIIIc
=

1√
G̃max (ν)

. (21)

5. Discussion575

In Griffith’s original theory, the ratio gmat/E also delineates a characteristic length. However, through our comprehensive576

analysis employing both methodologies, we have demonstrated that the initiation distance between facets remains unaffected by577

this ratio. As elucidated in our recent investigation of mode I and II cracking (Molnár et al., 2020a), the influence of the gmat/E578

ratio becomes pronounced when a finite mother crack length (a0) is introduced, particularly as a0 approaches the characteristic579

material length (lmat) or the phase-field length (lc). Conversely, when a0 significantly surpasses these material lengths, their580

impact becomes negligible.581

In the present study, the effect of gmat/E remains invisible due to boundary conditions reflecting cases where a0 is infinitely582

greater than both the model size and the material’s characteristic lengths. However, we anticipate that simulations modeling583
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cases where a0 is comparable to lc would unveil discernible effects of gmat and E.584

Furthermore, our investigation has shown that both the coupled criterion and the phase-field method are effective in analyzing585

crack front segmentation in pure antiplane shear. Both methods indicate that the characteristic distance between daughter cracks586

is proportional to the internal length and depends only on ν. Therefore, for a meaningful comparison of results from these two587

methods, it is crucial to establish a correlation between lc and lmat:588

lc = η2lmat. (22)

In our recent publications (Molnár et al., 2020a; Molnár et al., 2022), we have demonstrated that the η parameter can be589

obtained from the homogeneous phase-field solution by comparing the maximum tensile stress to the tensile strength of the590

material:591

η = ηhomo

(
σ2

σ1
,
σ3

σ1
, ν

)
, (23)

where ηhomo is a scalar variable that takes into account the effect of the stress state. More precisely, the application of the592

phase-field technique and the coupled criterion to a 3D domain uniformly stressed by σ1, σ2, and σ3 (representing the principal593

stresses) enables us to establish a link between the two length scales. For example, in a pure shear where all stress components594

except τyz are zero, the ratios of principal stresses are σ2

σ1
= 0 and σ3

σ1
= −1. This yields η = 0.51 for ν = 0.45 for the AT1595

phase-field model. The value of η can be calculated using an iterative algorithm for other stress states and Poisson’s ratios using596

the method explained by Molnár et al. (2020a) and Molnár et al. (2022).597

In the first step (in Section 5.1), we selected η = ηhomo and compared the results to the experiments presented by Knauss598

(1970). Subsequently, in the second step (in Section 5.2), we explored the possibility of redefining η to align the values of Λ599

obtained by the phase-field simulations and the coupled criterion.600

5.1. Characteristic initiation distance between facets in Solithane601

Since the length scale is represented differently in both methods, we will compare the results for a specific material with602

which experiments were conducted. Unfortunately, pure mode III experiments are scarce and the crack pattern might be affected603

by the finite size of the specimen. Nevertheless, this comparison will provide a qualitative validation of the method. In one of604

the earliest experimental papers studying mode III fracture (Knauss, 1970), Solithane 113 (50/50) was used. This transparent605

polymer is easy to work with, with a relatively small Young’s modulus that varies between E = 3.00 − 4.14 MPa (Hearne and606

Kubitza, 1969) and a Poisson’s ratio close to incompressibility. We will approximate the Poisson’s ratio as ν = 0.45 based on607

the study published by Hearne and Kubitza (1969). The critical energy release rate at ambient temperature was found to be608

between gmat = 67.8 − 113.0 J/m2 (Mueller and Knauss, 1971), and the tensile strength was σc = 2.85 MPa. In this study, we609

will consider the material to be linearly elastic and ideally brittle.610
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Figure 19: Characteristic initiation distance between neighboring facets as a function of tensile strength in double logarithmic scale. The numerical
results are shown for a range of material properties (E = 3.00 − 4.14 MPa, ν = 0.45, gmat = 67.8 − 113.0 J/m2). Experimental results shown in the
inset are taken from Knauss (1970). The error bars represent 95% percentiles.

For Solithane 113 (50/50), the regularization phase-field length is not known experimentally. Therefore, we will approximate611

this quantity using the combination of equations (2) and (22), suggesting that the internal length, and hence the characteristic612

localization distance, can be approximated by the following equation:613

ΛPF ≈ Λ̃PF (ν) lc = Λ̃PF (ν) η2
homo

Egmat

σ2
c

. (24)

where Λ̃PF (ν) can be obtained from eq. (9), and ηhomo is discussed in eq. (23).614

We recall that the initiation distance between neighboring facets in the coupled criterion can also be determined from Irwin’s615

length in eq. (2) and the dimensionless parameters presented in Fig. 18:616

ΛCC = Λ̃CC (ν) lmat = Λ̃CC (ν)
Egmat

σ2
c

. (25)

For comparison, Fig. 19 demonstrates the variation of the characteristic initiation distance as a function of σc for the given617

range of material parameters. The gray area represents the phase-field prediction based on eq. (24), while the red area represents618

the results of the coupled criterion (see eq. 25). This graph provides valuable insights into the relationship between σc and the619

characteristic initiation distance.In Fig. 19, we have highlighted the experimental measurements of Knauss (1970), where we620

counted all the small ridges present in their results shown in Fig. 2 of the aforementioned paper. Based on our analysis, we621

made the assumption that the smallest localization distance corresponds to the initial series of facets. These facets subsequently622

merge together, forming a second series of cracks, as emphasized in the paper. It is worth noting that, similar to the phase-field623

simulations, determining the precise initiation distance between daughter cracks in experiments is a challenging task; one could624

argue that the first localization corresponds to the larger, fin-like shapes.625

Despite the inherent difficulty in defining the initiation distance in experiments, our findings indicate an average distance626
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Figure 20: (a) Normalized initiation distance; (b) correlation constant ηi; and (c) critical loading as a function of Poisson’s ratio.

between neighboring facets at initiation of 0.19 mm, which exhibits a remarkable correlation with the predictions of both methods.627

While the phase-field prediction aligns more closely with the range of experimental measurements, the coupled criterion also628

yields a comparable set of results.629

5.2. Influence of Poisson’s ratio630

To evaluate the influence of Poisson’s ratio on the initiation distance between facets, we presented functions (9) and (20) in631

Fig. 20a. The figure illustrates that both results exhibit similar trends. Both methods predict a minimum within the range of632

ν = [0; 0.1], followed by a monotonous increase. However, the exact values differ by an order of magnitude, attributed to the633

utilization of different normalization length scales.634

In equation (22), we established the correlation between lc and lmat based on the maximum tensile stress in the homogeneous635

solution. This correlation can also be established based on the facet distance:636

ηIII =

√
Λ̃CC

Λ̃PF

. (26)

Fig. 20b displays the correlation constants as a function of Poisson’s ratio. The values exhibit a similar trend, decreasing as637

Poisson’s ratio increases. There seems to be a consistently maintained difference of approximately ηIII = 0.55ηhomo between the638

two definitions. Notably, the correlation presented in eq. (22) exhibited slightly better performance for mode I and II loading639

cases. This variation in values is likely attributed to the fact that, in mode I and II, the crack path remained consistent. While,640

in mode III, the form of the newly formed fracture was slightly different since in the phase-field model the crack developed in a641

continuous fashion, whereas in the coupled criterion we assumed an discrete opening. Nonetheless, it is intriguing that a single642

correlation can be established for a complex loading case based on only three material parameters. This result suggests that, by643

conducting mode III fragmentation experiments, the value of lc for a given material can be confidently estimated by counting644

the facets at initiation.645
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In Fig. 20c, the critical loading is presented as a function of Poisson’s ratio. The red dashed curve was obtained using eq. (18).646

Results from the coupled criterion show an increase as the parameter ν rises. In the phase-field calculations, two distinct stages647

are evident: the loading when the crack starts to propagate and when the facets appear, as illustrated in Fig. 15. Therefore,648

different threshold values of ∆ath were used to study the critical loading. The smaller value corresponds to the point where649

facets start to form, while the higher one corresponds to when facets are clearly visible. Beyond ∆ath = 20, the phase-field650

results exhibit similar tendencies to the coupled criterion. This is not surprising, as the coupled criterion promptly considers651

larger facets when the interaction between facets becomes significant. Nevertheless, the critical loading values obtained from652

both techniques are relatively close between the two methods.653

6. Conclusion654

The paper offers a comprehensive numerical analysis of daughter crack formation in pure antiplane shear. We developed655

innovative phase-field models that induced an instability by the spatial variations of the critical energy release rate. This656

was achieved through a semi-periodic Gaussian random field. We thoroughly examined the impact of numerical and material657

parameters on the newly formed daughter cracks’ shape and spacing. Additionally, we conducted an investigation based on the658

coupled criterion to explain the observed phenomena. By considering the initiations’ angle, we determined the fin-shaped crack659

surface based on opening stresses. Employing both techniques, we probed the material parameters’ effect on the critical loading660

and characteristic spacing between facets.661

Traditionally, in phase-field studies, the length scale parameter has been regarded as a trade-off that could potentially662

distort the mechanical behavior of fracture problems while enabling variational approaches. However, in this paper, with both663

techniques, we linked the initiation distance between neighboring facets to the material’s internal length scales. This challenges664

the traditional assumption, as without a length scale, finite facet formation is not feasible. Consequently, we have demonstrated665

that the inclusion of a length scale parameter helps us to model more complex fracture phenomena.666

In the phase-field study, we discovered that localization is achieved through the deviatoric component of the asymmetric667

energy decomposition. While experimenting with Poisson’s ratio, we observed a significant alteration in the crack form and668

spacing. When reducing Poisson’s ratio, the facet spacing reduced. Furthermore, the crack pattern remained relatively constant669

as we tinkered with the Gaussian random field. Astonishingly, neither the mean fracture toughness nor Young’s modulus bore670

any significant impact. Our results revealed that the facets initiate at a small angle and deviate from the horizontal mother671

crack gradually. We found that facets coarsen until they reach approximately 50◦.672

In order to elucidate the phenomenon of localization evident in the phase-field model, we approached the problem through673

the lens of the coupled criterion. Employing finite element calculations, we were able to observe a progressive increase in the674

energy release rate until reaching a peak, after which a gradual decline was detected.675

Upon comparing the results of the two methods, we noted similar initiation distances between daughter cracks to experimental676

measurements of Knauss (1970). We have shown that the tendencies as a function of tensile strength are identical between the677

32



two methods. We found that in both methods, the effect of Poisson’s ratio was similar. This finding aligns well with our678

previous conclusions (Molnár et al., 2020a). Additionally, we demonstrate that the measurement of facet spacing in antiplane679

shear provides a potential estimate of the regularization length scale used in phase-field simulations.680

Notwithstanding their significance, the findings presented in this paper prompt several inquiries that warrant further inves-681

tigation. Foremost, it is crucial to develop a reliable experimental method to measure initiation angles and track the continuous682

formation of cracks under pure mode III loading conditions. Moreover, an enhanced model for the coupled criterion, inspired683

by the phase-field regularization, incorporating a non-singular, regularized stress field is essential. This approach would enable684

the coupled criterion to address stable initiation cases and provide the third equation necessary to determine the initiation685

angle accurately. Additionally, phase-field simulations and coupled criterion models should be employed to test mixed mode686

I+III conditions, consider realistic boundary conditions, assess the impact of crack tip radius, and investigate the effects of a687

realistically inhomogeneous material. Furthermore, a detailed analysis utilizing configurational forces (Yan et al., 2023) could688

potentially shed light on the physical interpretation of the regularization length and elucidate the interaction between facets.689
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Ronsin, O., Caroli, C., Baumberger, T., 2014. Crack front échelon instability in mixed mode fracture of a strongly nonlinear830

elastic solid. Europhysics Letters 105 (3), 34001.831

Shi, F., Wang, D., Yang, Q., 2022. An XFEM-based numerical strategy to model three-dimensional fracture propagation regarding832

crack front segmentation. Theoretical and Applied Fracture Mechanics 118, 103250.833

Sommer, E., 1969. Formation of fracture ‘lances’ in glass. Engineering Fracture Mechanics 1 (3), 539–546.834
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Appendix A. Effect of phase-field model parameters855

We conducted additional experiments to investigate the impact of model parameters on crack patterns. Fig. A.21 presents the856

results of varying σG and its gradual effect on the crack pattern. Notably, we observed that decreasing σG delays the localization857

of the cracks. However, upon closer inspection, we found that even when σG = 10−7gc, the facets still localized at the same858

position. Based on our observations, we concluded that the magnitude of σG does not affect the distance between facets.859

We also conducted additional tests by generating the Gaussian random field using different random seeds. The results are860

presented in Fig. A.22, which clearly shows that the facets localize at different positions for each seed, but the characteristic861

distance between the facets remained similar across all examples.862

Fig. A.23 depicts the effect of the radius of the finite element model on the crack pattern formation. Our observations indicate863

that when the radius was sufficiently large (R ≤ 20lc), the localization of the facets was not affected. However, if the radius864

was smaller, we obtain a homogeneous, phenomenological-like response without any localization. Conversely, if the radius was865

larger, we observed that the initial localization around the mother crack tip was reduced, and the facets became more visible.866

Fig. A.24 demonstrates the influence of the finite element size on both the crack pattern and the characteristic distance. Our867

observation led us to conclude that the effect is relatively insignificant. Specifically, we found that the characteristic initiation868

distance remained unchanged. The only noticeable distinction was that the facet, which arrested the most rapidly at the left869

boundary, exhibited a slightly greater propagation before coming to a halt.870
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Figure A.21: Effect of variation in fracture toughness (σG) on the crack pattern for the same loading.

Figure A.22: Effect of different random gc distributions on the crack pattern.
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Figure A.23: Effect of model size R on the crack pattern.

Figure A.24: Effect of finite element mesh size on the crack pattern.

41



Figure A.25: Impact of load step control on (a) crack pattern and (b) load step. The inset displays the iterations required to achieve KIII/kIIIc = 2.54.

The load increments were determined by an automated algorithm governing the local crack driving energy density increment,871

as detailed in previous work of Molnár et al. (2020a) and Molnár et al. (2022):872

max(dψ+
0 ) = ξ

3gc
8lc

, (A.1)

Here, ξ served as a scalar parameter dictating the calculations precision. Smaller values resulted in finer load steps and a873

more precise iteration. Fig. A.25a illustrates the crack surface evolution with loading for different ξ values. Initial localizations874

were discernible at ξ = 100%, while they became well-defined at ξ = 50%.875

Additionally, Fig. A.25b portrays the load step evolution during the calculation for varying ξ values. The load step consistently876

diminishes with decreasing ξ and increasing loading. Minor fluctuations stem from the automatic step control inherent in the877

software employed.878

Appendix B. Supplementary Material879

The supplementary material includes two files: ”CrackCoarsening.mp4” and ”MODE3.zip”. The file ”CrackCoarsening.mp4”880

is a video showcasing the initiation, propagation, and arrest of crack facets in a large-scale model with parameters R = 40lc,881

L = 200lc, and ν = 0.882

On the other hand, the file ”MODE3.zip” contains a small working example of our model. To launch the example, the883

following command should be used:884

abaqus job=MODE3 input=MODE3.inp user=MODE3.f interactive885
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