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Abstract

Phase transition in compressible flows involves capillarity effects, described by the Euler-

Korteweg equations. Far from phase transition, the dispersion terms vanish and one should

recover the hyperbolic Euler equations of fluid dynamics. However, the solution of Euler-

Korteweg equations does not converge towards the solution of Euler equations when dispersion

tends towards zero while being non-null: it is a singular limit problem. To avoid this issue, a

Navier-Stokes-Korteweg model is considered, whose viscosity is chosen to counterbalance ex-

actly the dispersive terms. In the limit of small viscosity and small dispersion, the Euler model

is recovered. Numerically, an extended Lagrangian method is used to integrate the Navier-

Stokes-Korteweg equations so-obtained. Doing so allows to use classical numerical schemes

of Godunov type with source term. Numerical results for a Riemann problem illustrate the

convergence properties with vanishing dispersion.

Keywords: nonlinear dispersive waves, Euler-Korteweg equations, capillary effects, extended

Lagrangian method, hyperbolic systems

1. Introduction

The motivation of this work is to simulate the dynamics of a fluid near the critical point,

where the liquid-vapor phase transition occurs. This topic is of major interest in many applica-

tion, such as transport of cryogenic fluids in turbopumps, polymer solvent-mixture, expansion

during pipe breaks under pressure for CO2, etc.

Near the critical point, it is important to account for the capillary forces. In lines with

Korteweg theory and the kinetic theory [1, 2, 3, 4], an interfacial energy is added to the

energy of the Euler model. This additional term depends on the density gradient ρx and on

a capillarity coefficient K(ρ). Away from the phase transition, the interfacial energy vanishes.

However, the solution of Euler-Korteweg equations does not converge towards the solution of
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the Euler equations when dispersion tends towards zero (but is non null).

Such a singular limit problem is usual with nonlinear dispersive waves, and is induced by

the high-order spatial derivatives involved by dispersion [5, 6]. This issue can be highlighted

in the case of a Riemann problem with very small dispersion: the intermediate state differs

from the one of the Euler equations, which results in large errors of shock speeds. The main

objective of this article is to fix this issue.

For this purpose, the proposed strategy is to introduce optimally an artificial viscosity µ(ρ)

in the low-dispersion regime. The viscosity of this Navier-Stokes-Korteweg model is chosen

to counterbalance exactly the dispersion effects. This choice is driven by a linear dispersion

analysis and by the study of travelling waves. In the limit of small dispersion and small viscosity,

the solution of Euler model is recovered [7].

However, the mixed hyperbolic-elliptic structure of a Navier-Stokes-Korteweg model raises

new numerical difficulties [8]. To overcome them, an extended Lagrangian method is used

[9, 10, 11, 12, 13]. In brief, the Lagrangian of Navier-Stokes-Korteweg model is modified by a

penalisation term (through a parameter λ), and by an inertia term (through a parameter β).

Governing equations are then derived using Hamilton’s principle [14]. In this formulation, no

high-order terms are introduced, so that the solution of the extended model recovers formally

the solution of the original model when (λ, β)→ (+∞, 0).

The sketch of the article is then as follows. Section 2 illustrates the singular limit prob-

lem identified in [15]. Differences between the structure of the dispersive waves and of the

hyperbolic waves are established. Section 3 deals with the influence of the viscosity on the

dispersion analysis and on the travelling wave. The choice of the viscosity is motivated and ar-

gumented. Section 4 presents the extended Lagrangian formulation of Navier-Stokes-Korteweg

model, leading to a hyperbolic system with source term. Dispersion analysis of the extended

model is given. In Section 5, the numerical strategy is shortly presented, based on splitting

and on a second-order finite-volume scheme for hyperbolic systems. Numerical examples of

Riemann problems show the evolution of the solution with the viscosity. When the optimal vis-

cosity is chosen, convergence towards the solution of Euler equations is observed with vanishing

viscosity.

2. Singular limit problem for vanishing dispersion

2.1. Euler-Korteweg model

We consider the 1D Euler-Korteweg (EK) model of capillary fluid. In this model, the total

energy depends on the density and on the gradient of the density. The volumic Lagrangian

writes:

L =
1

2
ρu2 − ρ eh(ρ)−K(ρ)

(ερx)
2

2
,

where u2/2 is the specific kinetic energy, eh(ρ) is the specific hydrodynamic energy, K(ρ) is

the capillarity coefficient [16], and ε is a parameter controlling the magnitude of dispersion.
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Hamilton’s principle of stationary action yields the EK system:

EK :


ρt + (ρu)x = 0, (1a)

(ρu)t +

(
ρu2 + ρ2e′h − ε2

[
(ρK′ −K)

ρx
2

2
+ ρK ρxx

])
x

= 0. (1b)

Depending on ε, eh, and K, the EK system recovers various known systems (Table 1). When

ε = 0, one obtains non-dispersive systems, notably the Euler equations of compressible flows

with a convex hydrodynamic energy eh: the relation between the thermodynamic pressure

ρ2eh
′(ρ) and the specific volume 1/ρ is a convex function. Particular values of eh and γ lead to

the system S0 of shallow water equations.

Table 1: Various forms of the Euler-Korteweg system. γ > 1 is the polytropic coeficient

dispersion eh K Name Abreviation

0 ργ−1/(2(γ − 1)) Euler equations

0 ρ/2 Shallow water (γ = 2) S0

ε ρ/2 1/(4ρ) Defocusing Nonlinear Schrödinger Sε

When ε 6= 0, dispersive systems are obtained, which are not hyperbolic in the sense of

Lax [17]. A particular form of K leads to the hydrodynamic form of the defocusing nonlinear

Schrödinger equation [18, 10, 19], denoted by Sε. This system is integrable, with known exact

solutions.

2.2. Illustration of the singular limit problem

The objective of this part is to highlight a singular limit problem of the system Sε when

ε→ 0. The two systems studied here are:

S0 :


ρt + (ρu)x = 0, (2a)

(ρu)t +

(
ρu2 +

ρ2

2

)
x

= 0, (2b)

and

Sε :


ρt + (ρu)x = 0, (3a)

(ρu)t +

(
ρu2 +

ρ2

2
− ε2ρ

4

(
ρx
ρ

)
x

)
x

= 0. (3b)

A Riemann problem (RP) is considered, with xc the position of the initial discontinuity and

ρL > ρR:

u(x, 0) = 0, ρ(x, 0) =

{
ρL, x < xc,

ρR, x > xc.
(4)
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Figure 1: RI curves and RH curve in the (ρ, u) plane. Intersections between the curves give the plateau values.

The black arrow shows the increasing gap between (ρ∗, u∗) and (ρ0, u0) when ρL increases.

Solution of system S0. The complete derivation of the analytical solution can be found in

many reference books [20, 21]. Here we only give the main results for completeness. For

t > 0, the initial discontinuity splits into a right-going shock wave (SW), a left-going centered

rarefaction wave and an intermediate plateau (ρ0, u0). The shock intensity and the shock speed

are determined by the Rankine-Hugoniot jump conditions:

JρKD = JρuK , (5)

JρuKD =

s
ρu2 +

ρ2

2

{
, (6)

where D is the shock speed and JfK = fR−f is the jump of a given f across the SW. Eliminating

D in (6) by using (5) gives the ”Right Rankine-Hugoniot Locus” (RH Right) in the (ρ, u) plane:

u = (ρ− ρR)

√
1

2

(
1

ρ
+

1

ρR

)
. (7)

In a left-going rarefaction wave, the Riemann invariant r = u+2
√
ρ is conserved. This equation

gives the ”Left Riemann invariant Locus” (RI Left) in the (ρ, u) plane:

u = 2 (
√
ρL −

√
ρ) . (8)

Intersection of (7) and (8) gives the plateau value (ρ0, u0):

2(
√
ρL −

√
ρ0)− (ρ0 − ρR)

√
1

2

(
1

ρ0
+

1

ρR

)
= 0, (9)

u0 = 2(
√
ρL −

√
ρ0), (10)

represented in Figure 1 for various values of ρL and ρR.
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Solution of system Sε. The RP problem for Sε is better known as a ”Gurevich-Pitaevskii prob-

lem” [22]. The exact solution has been constructed in [19]. The asymptotic solution in time is

composed of a left-going centered rarefaction wave (same as system S0), a right-going dispersive

shock wave (DSW) and a plateau (ρ∗, u∗). The DSW is a wave train modulated in amplitude

and wavenumber. Modulation theory gives its analytical expression and its Whitham envelope

[23, 19, 10]. The plateau is given by the intersection of a ”RI Left” and a ”RI Right” curve:

u = 2 (
√
ρL −

√
ρ) , u = 2 (

√
ρ−√ρR) , (11)

leading to:

u∗ =
√
ρL −

√
ρR, (12)

ρ∗ =
1

4
(
√
ρL +

√
ρR)2 . (13)

ρL

ρR

xc
t

0
x

t

x0
t

xt
t

xl
t

Whitham envelope

Dispersive system Sε

Hyperbolic system S0

ρ∗

ρ0

Figure 2: Exact solutions of S0 and Sε in x/t. The parameters are ρL = 5, ρR = 1. Particular points are: xt

the position of the trailing edge, xl the position of the leading edge, and x0 the position of the shock wave.

Comparison between both solutions. The solutions of S0 and Sε are compared in Figure 2. Three

main differences are observed. Firstly, the SW is a discontinuity at x0, whereas the DSW has

a finite length xt − xl. This length increases with time and is independent of ε [19]:

xt − xl =

(√
ρ∗ − 8ρ∗ − 8

√
ρ∗ρR + ρR

2
√
ρ∗ −√ρR

)
t.

The only influence of ε is on the wavenumber k of the DSW:

k(m, ε) =
2π

J(m)

√
ρ1 − ρ3
ε

, m =
ρ2 − ρ3
ρ1 − ρ3

,

with m the modulation parameter, ρ1 > ρ2 > ρ3 modulated amplitudes, and J(m) the elliptic

integral of the first kind [19]. Secondly, the difference of plateau (ρ0, u0) and plateau (ρ∗, u∗)
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comes from the difference between (9) and (13), and it is highlighted in Figure 1. When ρL−ρR
is large, the gap between (ρ0, u0) (red dot) and (ρ∗, u∗) (blue dot) increases, as highlighted by

the black arrow in Figure 1. Moreover, (9) and (13) do not depend on ε. Therefore:

lim
ε→0

ρ∗ 6= ρ0, lim
ε→0

u∗ 6= u0.

To summarize this section, the solutions of S0 and Sε have different structures, induced by the

difference between SW and DSW. The solutions are self-similar with respect to the change of

variable (x, t)→ (x/ε, t/ε). Consequently, the differences between SW and DSW never vanish

when ε→ 0.

3. Strategy to fix the singular limit problem

3.1. Navier-Stokes-Korteweg model

To by-pass this singular limit problem, introduction of an optimal viscosity τµ(ρ) is consid-

ered. The parameter τ controls the effect of viscosity and will be compared to the dispersive

parameter ε. EK system (1) becomes the Navier-Stokes-Korteweg (NSK) system:

NSK :


ρt + (ρu)x = 0, (14a)

(ρu)t +

(
ρu2 + ρ2eh

′ − ε2
[
(ρK′ −K)

ρx
2

2
+ ρK ρxx

]
− τµ ux

)
x

= 0. (14b)

The idea is to find the functions τ := τ̂ and µ := µ̂ which cancel the dispersion introduced by

K and ε (the hat refers to the optimal value, to be found). Those functions are obtained in two

ways: performing the dispersion analysis, and exhibiting a travelling wave solution. It will be

the subject of the two next subsections.

3.2. Dispersion analysis

Here, we prove by a dispersion analysis that a particular choice of τ̂ µ̂ can lead to dispersive-

less properties: wave’s speed of propagation can be rendered independent of the wavenumber κ

whatever ε. Galilean invariance of NSK system (14) allows to choose a uniform state (ρ, ū = 0).

Linearization of the NSK around this uniform states leads to:
ρ̃t + ρũx = 0, (15a)

ρũt + c2ρ̃x − ε2ρK(ρ)ρ̃xxx − τµ(ρ)ũxx = 0, (15b)

where (ρ̃, ũ) are fluctuations around the uniform state, and c =
√

(ρ2e′)′ is the sound speed

of the uniform state. Assuming harmonic solution of the form exp(i(ωt− κx)), where ω is the

angular frequency, the phase velocity cp = ω/κ is:

cp(κ) = i τκ
µ(ρ)

2ρ
±
√
c2 + κ2

(
ε2ρK(ρ)− τ 2µ(ρ)2

4ρ2

)
. (16)
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The real part of (16) depends on κ, which is the signature of a dispersive wave. If we choose

τ := τ̂ = ε, (17)

µ := µ̂ = 2 ρ
√
ρK(ρ), (18)

then (16) degenerates into

ĉp(κ) = i εκ
√
ρK(ρ)± c. (19)

The real part of the phase velocity no longer depends on κ, and thus dispersion is canceled. In

line with the ”viscosity method” [24, 25, 26], the solutions of NSK tend towards the solutions

of the Euler equations when viscosity vanishes: no singular limit problem occurs. It leads to

conjecture that the solution of NSK tends towards the solution of the Euler equations when

ε→ 0. Numerical simulations will confirm this hypothesis.

3.3. Travelling wave

In this section, τ := τ̂ = ε and µ is arbitrary. Using the change of variables (x, t) → ξ =

(x−D t)/ε, (14a) becomes:

q = ρ (u−D), (20)

where q is the constant flow rate of fluid across the wave and is chosen to be negative. Integration

of (14b) and use of (20) gives

q2

ρ
+ ρ2eh

′(ρ) + µ(ρ)
q

ρ2

(
dρ

dξ

)
− ρ2

[(K
ρ

)′
1

2

(
dρ

dξ

)2

+
K
ρ

(
d2ρ

dξ2

)]
= C1, (21)

where C1 describes the constant right-state R at infinity:

C1 =
q2

ρR
+ ρR

2eh
′(ρR).

Equation (21) is divided by ρ2 and then integrated, yielding a Lyapounov function E

E

(
ρ,
dρ

dξ

)
=

1

2

K(ρ)

ρ

(
dρ

dξ

)2

− eh(ρ)− C1

ρ
+

q2

2ρ2
,

which decreases along trajectories of the system in the phase space:

dE

dξ
= q

µ(ρ)

ρ4

(
dρ

dξ

)2

< 0. (22)

The local extrema ρc of E verify the following conditions:

dρ

dξ

∣∣∣∣
ρc

= 0,
q2

ρR
+ ρR

2eh
′(ρR) = ρc

2eh
′(ρc) +

q2

ρc
. (23)

Additional details about the extrema are given in Appendix Appendix A. Setting c =
√

(ρ2 eh′)′

7
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Figure 3: Left: the phase portrait and one solution for ε = 0.5. Right: density for various ε.
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the sound speed and M = (u −D)/c the Mach number, the linearized version of (21) around

the extrema is:

d2∆ρ

dξ2
− 2θ

ccMc√
ρcKc

d∆ρ

dξ
+
cc

2(Mc
2 − 1)

ρcKc
∆ρ = 0, θ =

µc
2ρc
√
ρcKc

, (24)

where ∆ρ = ρ− ρc. The analysis is reduced to the study of a damped harmonic oscillator with

θ the damping ratio. Eigenwavenumbers are:

kc =
ccMc√
ρcKc

[
θ ±

√
(θ2 − 1) +

1

Mc
2

]
. (25)

Non-oscillating solutions of (24) correspond to real-valued eigenwavenumber. Assuming that

cc is a real-valued function, we have to choose θ ≥ 1. This condition is also known as the tame

capillarity condition [7]. The choice θ2 = 1− 1/Mc
2 is not adequate since θ is complex-valued

in region where Mc
2 < 1.

Numerical simulations of the ODE (21) is considered. Initial conditions are:

IC :


ρ(0) = ρ0 − 10−5, (26a)

dρ

dξ

∣∣∣∣
ξ=0

= 0. (26b)

Figure 3 illustrates various regimes obtained for different values of θ. The red dot corresponds

to the state ρ0 and the purple dot to the state ρR. The numerical simulations are obtained by

the RK4 method. Numerical results in Figure 3-(b,c) confirm our choice for θ. Comparing the

solution at ε = 0.5 confirms that the thickness of the wave is large when θ is large (θ � 1). As

a consequence, θ = 1 will be the choice in forthcoming numerical simulations.

4. Extended Lagrangian formulation

4.1. Principle

Numerical scheme for NSK-type systems are not classical due to the ”mixed hyperbolic-

elliptic” structure of the system [8]. One way is to solve a discrete elliptic/parabolic operator

on the whole computational domain and to solve the hyperbolic part locally. An example

of such of scheme is given in [27] for the Serre-Green-Naghdi model. This method provides

good results but at a high computational cost. To overcome this issue, a extended Lagrangian

formulation was proposed in [9]. The original system, named the master system, is replaced by

an approximate hyperbolic system, named the extended system, composed of a new variable η

close to ρ. The extended solution recovers the behavior of the master solution in some limit.

This formulation was successfully applied to a wide list of nonlinear wave phenomena, to

cite a few: DNS equation in quantum mechanics [10], thin films down an inclined plane [11],

Ericksen bar model in solid mechanics [12], and BBM equations [13]. The detailed description

of this formulation can be found in the aforementioned articles and is shortly presented in the

next subsection.
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4.2. Extended Euler-Korteweg model

We recall the master Lagrangian of the EK system (1)

L =
1

2
ρ u2 −

(
ρ eh(ρ) +K(ρ)

(ερx)
2

2

)
.

This Lagrangian is extended by adding new terms:

• a penalisation term: λ
ρ

2

(
η

ρ
− 1

)2

, where η is a new variable;

• a kinetic energy term:
1

2
ρ β

(
dη

dt

)2

, analogous to a term involved in bubbly flows [14].

The parameter λ (resp. β) controls the penalisation (resp. the inertia) term. Replacing ρx by

ηx and setting new variables p = ηx and w = dη/dt, the extended Lagrangian Le writes:

Le =
1

2
ρ β w2 +

1

2
ρ u2 −

(
ρ eh(ρ) +K(ρ)

(εp)2

2
+ λ

ρ

2

(
η

ρ
− 1

)2
)
.

By applying twice a variational principle (see the methodology in the appendix of [10]) and

adding evolution equations for η,w and p, we obtain the extended EK system:

EKe :



ρt + (ρu)x = 0, (27a)

(ρu)t +

(
ρu2 + ρ2 e′ + ε2

p2

2
(ρK′ +K) + λη

(
1− η

ρ

))
x

= 0, (27b)

(ρη)t + (ρuη)x = ρw, (27c)

(ρw)t +

(
ρuw − ε2Kp

β

)
x

=
λ

β

(
1− η

ρ

)
, (27d)

pt + (pu− w)x = 0. (27e)

We expect that η = ρ+O (β/λ), so that the extended EK system recovers the master system

(1) when λ → +∞ and β → 0. This property has been justified rigorously in [28] in the case

of Serre-Green-Naghdi model with β = 1, and we suppose it to be valid here. Injecting (27d)

into (27b) leads to:

(ρu)t +

(
ρu2 + ρ2 e′ + βρ η

dw

dt
− ε2

[
((2η − ρ)K′ −K)

p2

2
+ ηKpx

])
x

= 0,

where dw/dt = wt + uwx. When (λ, β)→ (∞, 0), and assuming that η → ρ and p→ ρx, then

one recovers (14b) of the EK system.
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4.3. Extended Navier-Stokes-Korteweg model

As proposed in [12], the viscosity is introduced as an additional source term in (27d). This

leads to:

NSKe :



ρt + (ρu)x = 0, (28a)

(ρu)t +

(
ρu2 + ρ2 e′ + ε2

p2

2
(ρK′ +K) + λ η

(
1− η

ρ

))
x

= 0, (28b)

(ρη)t + (ρuη)x = ρw, (28c)

(ρw)t +

(
ρuw − ε2Kp

β

)
x

=
λ

β

(
1− η

ρ

)
− τ µ(ρ)

β ρ2
w, (28d)

pt + (pu− w)x = 0. (28e)

Injecting (28d) into (28b) and using (28a), we recover NSK model when λ→∞ and β → 0.

4.4. Characteristic speeds

NSKe system (28) can be put in a quasi-linear form:

Wt + AWx = B(W)

where A is a 5×5 matrix given in Appendix Appendix B and W = (ρ, u, η, w, p)> is the vector

of primitive (non-conservative) variable and B(W) a vector that contains the source term. The

five eigenvalues/characteristic speeds αi of the system are:

α1 = u, α2,3 = u± c1, α4,5 = u± c2, (29)

with c1 and c2 given in Appendix Appendix B. In general, the hyperbolicity for such a general

case is not proven. If we consider the case of the extended DNS system (Table 1), hyperbolicity

has been proved in [10] when λ ≥ 0 and β > 0. The five eigenvalues are then:

α1 = u, α2,3 = u±
√
ρ+ λ

η2

ρ2
, α4,5 = u±

√
ε2

4 β ρ2
. (30)

These eigenvalues will be useful for the numerical method detailed in Section 5.1.

4.5. Choice of (λ, β)

When using the extended Lagrangian method, it is a important to estimate the error of this

formulation. To do so, a dispersion analysis of the linearized extended system is usually carried

out [9, 10, 12, 11, 13]. We provide a similar analysis here for the NSKe system in the case of

DNS (eh(ρ) = ρ/2 and K(ρ) = 1/(4ρ)). Using the same notation as in Section 3.2, we obtain a

quartic expression for the phase velocity cp:

(cp)
4+(cp)

3 iµ̄τ

βρ̄3κ
−(cp)

2

(
λ

βρ̄2κ2
+ λ+ c̄2 +

ε2

4βρ̄2

)
−(cp)

iµ̄τ(λ+ c̄2)

βρ̄3κ
+(λ+c̄2)

ε2

4βρ̄2
+

λc̄2

βρ̄2κ2
= 0,
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Figure 4: Dispersion curve of the linearized NSKe system, with λ = 200, β = 0.003, µ̄ = 0.1, ε = τ = 3, ρ̄ = 1.

where the uniform state is (ρ̄, ū = 0, η̄ = ρ̄, p̄ = 0, w̄ = 0). Assuming a positive phase velocity,

this equation have two solutions namely the slow wave cp
− and the fast wave cp

+. Comparison

with the phase speed of the master wave (Section 3.2) is given in Figure 4. The slow wave

is related to the master wave since it shares the same limit when κ → 0. The fast wave is a

spurious wave induced by the modification of the Lagrangian. The limits of the slow wave and

of the fast wave when κ→∞ are:

lim
k→+∞

<{cp(+)} = max

(√
ρ̄+ λ,

√
ε2

4 β ρ̄2

)
, lim

k→+∞
<{cp(−)} = min

(√
ρ̄+ λ,

√
ε2

4 β ρ̄2

)
.

(31)

In the inviscid case (µ = 0), one condition has to be fulfilled to ensure that the slow wave mimics

the master wave [12]. This condition is due to the dispersive nature of the master system. In

the case of DNS, the dispersion is positive [19, 15, 29]: cp increases with κ. Therefore, the

following condition has to be fulfilled by ρ̄:

min

(
ρ̄+ λ,

ε2

4 β ρ̄2

)
> ρ̄. (32)

From (16), the dispersion is still positive when µ ≤ µ̂. Consequently, we suppose that the

condition (32) holds in this case. Figure 5 shows the behavior of the slow wave for variable λ

and a given β. As λ increases, the slow wave mimics the master wave. For a critical value of

λ, the slow wave is bounded by the limit of the fast wave (see the slow wave for λ = 104 in

Figure 5) , as described by (31)). To avoid this bound, β has to be decreased. The case where

µ̄ = µ̂(ρ̄) is shown in Figure 6. The master wave speed is constant and equal to the local sound

speed. From the zoom, it is clear that λ has no influence on the behavior of the slow wave when

12
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Figure 5: Dispersion curve of the linearized NSKe system for various λ. Parameters: β = 0.003, µ̄ = 0.1,

ε = τ = 3, ρ̄ = 1.
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Figure 6: Dispersion curve of the linearized NSKe system for various λ when µ̄ = µ̂(ρ̄). Parameters: β = 0.003,

ε = τ = 0.1, ρ̄ = 1.
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ε→ 0. The relevant parameter is then β, and it can be chosen properly. Indeed, the condition

(32) becomes:
ε2

4β ρ̄2
≥ ρ̄ ⇐⇒ β ≤ ε2

4 ρ̄3
. (33)

To summarize, the slow wave mimics the behavior of the master wave for a limited range of

wavenumbers, when λ → ∞ and β → 0. In the case where µ = µ̂(ρ̄) and ε → 0, β has to

satisfy (33).

5. Numerical results

5.1. Numerical methods

The NSKe system can be recast as:

Ut + F(U)x = S(U), (34)

with U = (ρ, ρu, ρη, ρw, p)> the vector of conserved quantities, F(U) a vector of physical fluxes

and S(U) a vector that contains the source term. To simulate numerically (34), we apply a

Godunov splitting [21, 20]:

Step 1 : compute U∗ :

{
PDE : Ut + F(U)x = 0, (35a)

IC : Un. (35b)

Step 2 : compute Un+1 :

{
ODE : Ut = S(U), (36a)

IC : U∗. (36b)

The spatial domain [0, L] is discretized into N cells. The volume of each cells is ∆x = L
N

and

the central position of a cell i is set at xi. The time step is ∆t = tn+1 − tn. We define by Un
i

the average of U over a cell at tn and Fi± 1
2

the numerical fluxes at the boundary of a cell. At

the beginning of Step 1, characteristics speed αi
1,αi

2, ... ,αi
p are computed based on Un

i . The

time step is obtained from the Courant-Friedrichs-Lewy condition:

CFL =
αmax ∆t

∆x
≤ 1, αmax = max

i,p
(|αpi |),

where αmax is the maximum of all the characteristic speeds over the spatial domain. The

second-order TVD MUSCL-Hancock method [21] applied on Un
i gives boundary extrapolated

values UL,R
i based on limited slopes; the MINMOD limiter is used for this purpose. Numerical

fluxes Fi+ 1
2

are estimated using Rusanov flux:

Fi+ 1
2

=
1

2

(
F(UL

i+1) + F(UR
i )
)
− αi+ 1

2

(
UL
i+1 −UR

i

)
, αi+ 1

2
= max

p
(|αip|, |αi+1

p|),

where αi+ 1
2

is the maximum of the characteristic speeds between the cell i and cell i+ 1. The

time derivative is approximated by a first-order Euler method. Averaging (35a) over a cell

volume gives:

U∗i = Un
i +

∆t

∆x

(
Fi− 1

2
− Fi+ 1

2

)
.
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Step 2 corresponds to the following system:

dρ

dt
= 0,

dρu

dt
= 0,

dp

dt
= 0, (37a)

dρη

dt
= ρw, (37b)

dρw

dt
=
λ

β

(
1− η

ρ

)
− τµ(ρ)

βρ2
w. (37c)

This system has exact solutions given in Appendix Appendix C. For numerical implementation,

the solutions are discretized in space between the time tn and tn+1. Since the source term is

solved exactly, no numerical issues are encountered for low value of β. This might not be the

same with an approximate solver. From condition (33), the ratio τ/β →∞ as ε→ 0.

5.2. Numerical set-up

The RP problem of Section 2 is considered. The extended system of DNS with viscosity

(vDNSe) is compared with the hyperbolic system S0. Initial conditions for the vDNSe are:

ρ|t=0 = η|t=0 =

{
ρL, x < xc

ρR, x > xc
, u|t=0 = w|t=0 = 0, p|t=0 =

ρR − ρL
2

δ(x− xc).

The initial total energy of vDNSe is:

Ee|t=0 =
(ρ|t=0)

2

2
+

1

4 ρ|t=0

(ε p|t=0)
2

2
.

This energy is initially unbounded at x = xc because p does not belong to L2. This will yield

a localised spurious solution.

The spatial domain x is [0; 500]. The parameters are ρL = 5, ρR = 1, xc = 250, CFL = 0.9.

From Section 3.3, the viscosity function is µ = 2ρ
√
ρK. The parameters of the extended

Lagrangian (λ, β) are chosen in accordance with Section 4.5.

5.3. Numerical convergence

Figure 7 shows convergence results of the numerical scheme when λ = 500, β = 10−7 and

τ = ε = 10−2. The parameters are the same as those used in forthcoming Figure 10 (d), where

no dispersion occurs. Doing so allows to focus purely on the properties of the numerical scheme.

The errors E1 and E2 are defined by:

E1 = ∆x
N∑
i=0

|ui − ue,i| ≈
∫ L

0

|u(x)− ue(x)| dx,

E2 =

√√√√∆x
N∑
i=0

(ui − ue,i)2 ≈
√∫ L

0

(u(x)− ue(x))2dx,
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Figure 7: Global error E as a function of ∆x. N ∈ {27; 28; ...; 217}. Parameters: λ = 500, β = 10−7 and

τ = ε = 10−2 at t = 40.

where ui is the numerical solution at xi and ue,i is the reference solution at xi. The latter is

the numerical solution for N = 218. Almost second-order accuracy is obtained in L1 norm, and

first-order accuracy is obtained in L2 norm. From now on, N = 215 grid points are used.

5.4. Influence of the viscosity

Case τ = 0. Figure 8 shows the numerical solution of the extended DNS when λ = 500,

β = 10−3 and ε = 3. The main features of the exact dispersive solution of Sε, shown in Figure

2, are recovered: the dispersive shock lies inside the Whitham envelope, the plateau value ρ∗

and the rarefaction wave are well captured.

Compared with Figure 2, additional features are observed. First, oscillations exist at the

leading edge of the rarefaction wave. These oscillations decays when t increases [10]. Second, a

spurious solution is localized at x ≈ 300. It is induced by the discontinuous initial data (Section

5.2). As seen further, the optimal choice of τ will cancel this spurious solution.

Case τ 6= 0. Figure 9 illustrates the effect of the viscosity on the solution of vDNSe with the

parameters of the previous case. For small viscosity, the amplitude of oscillations and the

plateau value decrease. When the viscosity is even stronger that of the dispersion (d), that is

when τ = ε, the dispersive nature of the solution is removed. Indeed, the amplitude of the

oscillations is null and the plateau value is close to the one of the hyperbolic system S0. This

result validates the analytical predictions of Section 3. The parasite solution is still present due

to the dispersion parameter ε 6= 0.
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(a)

Figure 8: Comparison between the exact solution of S0 and the solution of vDNSe with λ = 500, β = 10−3,

ε = 3 and τ = 0.

Case τ = ε → 0. Figure 10 illustrates the evolution of the solution of vDNSe when ε → 0,

while keeping the equality τ = ε and respecting (33) for β. The viscous nature of the solution

is removed when ε→ 0. The solution of the hyperbolic system is recovered in (c) and (d). The

spurious solution has also disappeared. The only differences, around the edges of the rarefaction

wave and around the shock, are due to the numerical dissipation of the scheme.

6. Conclusion

This work was focused on a singular limit problem issued from Euler-Korteweg model.

Based on the dispersion analysis and on the study of a travelling wave, an optimal viscosity

µ(ρ) is introduced in the model. Doing so allows to recover the solutions of an Euler model

in the limit of small dispersion and small viscosity. Numerical results, through the extended

Lagrangian method, confirm the analysis. Classical shock waves and rarefaction waves are then

recovered with vanishing dispersion.

The theoretical part of this work was essentially formal and based on: linear dispersion anal-

ysis and construction of travelling wave. More sophisticated mathematical tools are required

to prove the convergence of NSK solution towards the solution of EK with vanishing dispersion

and the optimal viscosity. Another mathematical analysis is required to prove the convergence

of the extended Lagrangian method, in lines with [28]. Lastly, a natural extension of this work

concerns the case of nonconvex equation of state.

Acknowledgements. The authors are very grateful to Sergey Gavrilyuk for many advices and
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Figure 9: Effect of the viscosity on the solution of vDNSe. τ ∈ {0.001; 0.01; 0.1; 3} with λ = 500, β = 0.001.
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Figure 10: Small dispersion limit and small viscosity limit of the solution of vDNSe. τ = ε → 0 with λ = 500
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Appendix A. Travelling wave: additional details

When eh = ρ/2, the conditions (23) recover (5) and (6) for S0 (Table 1): thus (23) amount

to the Rankine-Hugoniot conditions. Therefore, we consider the RP problem (4) for which

ρR and ρ0 automatically verify (23) with D the shock wave’s speed. The structure of the

travelling wave is related to the structure of the extrema (e.g. stable foci). Those information

are obtained by solving an eigenvalue problem for the linearized version of the nonlinear ODE

(21) and by looking at second derivatives of E. Setting c =
√

(ρ2 eh′)′ the local sound speed

and M = (u − D)/c the Mach number, the second derivative of E with respect to ρ at the

extrema is:
∂2E

∂ρ2

∣∣∣∣
ρc

=
cc

2

ρc2
(
M2

c − 1
)
. (A.1)

The thermodynamic pressure ρ2eh
′ is assumed to be a convex function of 1/ρ. Therefore, c2 is

always positive. From (A.1), the state R corresponds to the supersonic region (|MR| > 1) and

E admits a local minimum at this state. The state 0 is the subsonic region (|M0| < 1) and

E admits a local maximum at this state. In the interval I = ]ρm; ρ0[, where ρm has to verify

E0 = E(ρm, 0), E admits a unique minimum at ρR ∈ I (Figure A.11-(a)). If ρ ∈ I at ξ = 0

ρ

E(ρ, 0)

ρm ρR ρ0

E0

ER

(a) E(ρ, 0)

ρ

−M

ρR ρ0

−M0

1

−MR

(b) −M(ρ)

Figure A.11: Function E(ρ, 0) and −M(ρ), when e(ρ) = ρ/2, ρR = 1, ρL = 5.

and condition (22) is satisfied, the value ρ(ξ) for any ξ 6= 0 remains in I. Therefore, ρ(ξ)→ ρR

when ξ →∞. The point ρR is asymptotically stable.
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Appendix B. Matrix A and characteristic speeds

The NSKe system in primitive variable is:
ρ

u

η

w

p


t

+


u ρ 0 0 0

a u b 0 d

0 0 u 0 0

e 0 0 u h

0 p 0 −1 u




ρ

u

η

w

p


x

=


0

0

w
λ
βρ

(
1− η

ρ

)
− τ µ(ρ)

βρ3
w

0

 , (B.1)

with

A =


u ρ 0 0 0

a u b 0 d

0 0 u 0 0

e 0 0 u h

0 p 0 −1 u

 .

The coefficients are

a = 2eh
′ + ρeh

′′ + ε2p2
(K′
ρ

+
1

2
K′′
)

+ λ
η2

ρ3
, b =

λ

ρ

(
1− 2η

ρ

)
, e = −ε

2pK′
βρ

,

h = −ε
2K
ρβ

, d =
p ε2

ρ
(K + ρK′) .

The characteristic equation is:

(u− α)
[
(u− α)4 + (h− aρ− pd) (u− α)2 + ρ(ed− ha)

]
= 0.

The characteristic speeds are:

α1 = u, α2,3 = u± c1, α4,5 = u± c2,

with

c1 =

√√√√1

2

(
ce +

√
(cs)2 + 4

d2

β

)
,

c2 =

√√√√1

2

(
ce −

√
(cs)2 + 4

d2

β

)
,

ce = (ρ2eh
′)′ + ε2p2

(K
ρ

+ 2K′ + 1

2
ρK′′

)
+
ε2K
ρβ

+ λ

(
η

ρ

)2

,

cs = (ρ2eh
′)′ + ε2p2

(K
ρ

+ 2K′ + 1

2
ρK′′

)
− ε2K

ρβ
+ λ

(
η

ρ

)2

.
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Appendix C. Exact solution for the relaxation step of the splitting

From equations (37a), it follows ρ = ρ∗, u = u∗, p = p∗. Equations (37b) and (37c) are

equivalent to the second-order ODE:

d2η

dt2
+

τµ∗

βρ∗3
dη

dt
+

λ

βρ∗2
η =

λ

βρ∗
,

where µ∗ = µ(ρ∗). One can distinguish three regimes:

• Overdamped solution if

(
τµ∗

βρ∗2
> 2

√
λ

β

)
:

r1,2 =

− τµ∗

2βρ∗3
± 1

2

√(
τµ∗

βρ∗3

)2

− 4λ

βρ∗2

 ≤ 0, (C.1)

η(t) = ρ∗ + (η∗ − ρ∗)r2e
r1t − r1er2t
r2 − r1

+ w∗
er2t − er1t
r2 − r1

, (C.2)

w(t) = (η∗ − ρ∗)r1r2(e
r1t − er2t)

r2 − r1
+ w∗

r2e
r2t − r1er1t
r2 − r1

. (C.3)

• Critically damped solution if

(
τµ∗

βρ∗2
= 2

√
λ

β

)
:

r0 = − τµ∗

2βρ∗3
≤ 0, (C.4)

η(t) = ρ∗ + (η∗ − ρ∗)(1− r0t)er0t + w∗ter0t, (C.5)

w(t) = w∗(1 + r0t)e
r0t − r0(η∗ − ρ∗)r0ter0t. (C.6)

• Underdamped solution if

(
τµ∗

βρ∗2
< 2

√
λ

β

)
:

rc = − τµ∗

2βρ∗3
≤ 0, ωc =

1

2

√
4λ

βρ∗2
−
(
τµ∗

βρ∗3

)2

, (C.7)

η(t) = ρ∗ + (η∗ − ρ∗)
(

cos(ωct)−
rc
ωc

sin(ωct)

)
erct +

w∗

ωc
sin(ωct)e

rct, (C.8)

w(t) = −ωc(η∗ − ρ∗)
(

1 +

(
rc
ωc

)2
)

sin(ωct)e
rct + w∗

(
cos(ωct) +

rc
ωc

sin(ωct)

)
erct.

(C.9)
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