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Summary
Renard (Relationships Extraction from NARrative Documents) is a Python library that allows
to define modular natural language processing (NLP) pipelines to extract character networks
from narrative texts. Contrarily to the few existing tools, Renard can extract static as well as
dynamic networks. Renard pipelines are modular: the user can choose the implementation of
each NLP subtask needed to extract a character network. This allows to specialize pipelines to
particular types of texts and to study the impact of each subtask on the extracted network.

Statement of Need
Character networks (that is, graphs where nodes represent characters and edges represent
their relationships) extracted from narrative texts are useful in a number of applications, from
visualization to literary analysis (Labatut & Bost, 2019). There are different ways of modeling
relationships (co-occurrences, conversations, actions…), and networks can be static or dynamic,
which allows extracting different kinds of networks depending on the targeted applications.
While some authors extract these networks by relying on manually annotated data Park, Kim,
& Cho (2013), it is a time-costly endeavor, and the fully automatic extraction of these networks
is therefore of interest. Unfortunately, there are only a few existing software and tools that
can extract character networks (Marazzato & Sparavigna, 2014; Métrailler, 2023), and none
of these can output dynamic networks. Furthermore, automatically extracting a character
network requires solving several successive natural language processing tasks, such as named
entity recognition (NER) or coreference resolution, and algorithms carrying these tasks are
bound to make errors. To our knowledge, the cascading impact of these errors on the quality
of the extracted networks has yet to be studied extensively. This is an important issue since
knowing which tasks have more influence on the extracted networks would allow prioritizing
research efforts.

Renard is a fully configurable pipeline that can extract static and dynamic networks from
narrative texts. We design it so that it is as modular as possible, which allows the user to
select the implementation of each extraction step as needed. This has several advantages:

1. The pipeline can be specialized for a specific type of texts, allowing for better performance.
2. The pipeline can easily incorporate new advances in NLP, by simply implementing a new

step when necessary.
3. One can study the impact of the performance of each step on the quality of the extracted

networks.
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Design and Main Features
Renard is centered about the concept of pipeline. In Renard, a pipeline is a series of sequential
steps that are run one after the other in order to extract a character network from a text.
When using Renard, the user simply describes this pipeline in Python by specifying this series
of steps, and can apply it to different texts afterwards.

from renard.pipeline import Pipeline

from renard.pipeline.tokenization import NLTKTokenizer

from renard.pipeline.ner import NLTKNamedEntityRecognizer

from renard.pipeline.character_unification import GraphRulesCharacterUnifier

from renard.pipeline.graph_extraction import CoOccurrencesGraphExtractor

with open("./my_doc.txt") as f:

text = f.read()

pipeline = Pipeline(

[

NLTKTokenizer(),

NLTKNamedEntityRecognizer(),

GraphRulesCharacterUnifier(min_appearance=10),

CoOccurrencesGraphExtractor(co_occurrences_dist=25)

]

)

out = pipeline(text)

To allow for custom needs, Renard is designed to be very flexible. If a step is not available in
Renard, we encourage users to either:

• Externally perform the computation corresponding to the desired step, and inject the
results back into the pipeline,

• Integrate their custom processing into Renard by implementing their own step by
subclassing the existing PipelineStep class.

The flexibility of this approach introduces the possibility of creating invalid pipelines because
steps often require information computed by previously ran steps: for example, solving the
NER task requires a tokenized version of the input text. To counteract this issue, each step
therefore declares its requirements and the new information it produces, which allows Renard
to check whether a pipeline is valid, and to explain at runtime to the user why it may not be.

Task Step Supported Languages
Preprocessing CustomSubstitutionPreprocessorany
Tokenization NLTKTokenizer eng, ces, dan, nld, est, fin, fra, deu, ell, ita, nor, pol,

por, rus, slv, spa, swe, tur
Quote
Detection

QuoteDetector any

NER NLTKNamedEntityRecognizereng, rus
BertNamedEntityRecognizereng, fra

Coreference
Resolution

BertCoreferenceResolvereng

SpacyCorefereeCoreferenceResolvereng
Character
Unification

NaiveCharacterUnifierany

Character
Unification

GraphRulesCharacterUnifiereng, fra
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Task Step Supported Languages
Speaker
Attribution

BertSpeakerDetector

Graph
Extraction

CoOccurencesGraphExtractorany

ConversationalGraphExtractorany

Renard lets the user select the targeted language of its custom pipeline. A pipeline can be
configured to run in any language, as long as each of its steps supports it. Table shows the
supported languages for all the available steps in Renard.
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