
HAL Id: hal-04611122
https://hal.science/hal-04611122v1

Submitted on 13 Jun 2024 (v1), last revised 24 Jun 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Renard: A Modular Pipeline for Extracting Character
Networks from Narrative Texts

Arthur Amalvy, Vincent Labatut, Richard Dufour

To cite this version:
Arthur Amalvy, Vincent Labatut, Richard Dufour. Renard: A Modular Pipeline for Extracting
Character Networks from Narrative Texts. Journal of Open Source Software, 2024, 9 (98), pp.6574.
�10.21105/joss.06574�. �hal-04611122v1�

https://hal.science/hal-04611122v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Renard: A Modular Pipeline for Extracting Character
Networks from Narrative Texts
Arthur Amalvy 1, Vincent Labatut 1, and Richard Dufour 2

1 Laboratoire Information d’Avignon 2 Laboratoire des Sciences du Numérique de Nantes
DOI: N/A

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: 01 January 1970

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Renard (Relationships Extraction from NARrative Documents) is a Python library that allows
to define modular natural language processing (NLP) pipelines to extract character networks
from narrative texts. Contrarily to the few existing tools, Renard can extract static as well as
dynamic networks. Renard pipelines are modular: the user can choose the implementation of
each NLP subtask needed to extract a character network. This allows to specialize pipelines to
particular types of texts and to study the impact of each subtask on the extracted network.

Statement of Need
Character networks (that is, graphs where nodes represent characters and edges represent
their relationships) extracted from narrative texts are useful in a number of applications, from
visualization to literary analysis (Labatut & Bost, 2019). There are different ways of modeling
relationships (co-occurrences, conversations, actions…), and networks can be static or dynamic,
which allows extracting different kinds of networks depending on the targeted applications.
While some authors extract these networks by relying on manually annotated data Park, Kim,
& Cho (2013), it is a time-costly endeavor, and the fully automatic extraction of these networks
is therefore of interest. Unfortunately, there are only a few existing software and tools that
can extract character networks (Marazzato & Sparavigna, 2014; Métrailler, 2023), and none
of these can output dynamic networks. Furthermore, automatically extracting a character
network requires solving several successive natural language processing tasks, such as named
entity recognition (NER) or coreference resolution, and algorithms carrying these tasks are
bound to make errors. To our knowledge, the cascading impact of these errors on the quality
of the extracted networks has yet to be studied extensively. This is an important issue since
knowing which tasks have more influence on the extracted networks would allow prioritizing
research efforts.

Renard is a fully configurable pipeline that can extract static and dynamic networks from
narrative texts. We design it so that it is as modular as possible, which allows the user to
select the implementation of each extraction step as needed. This has several advantages:

1. The pipeline can be specialized for a specific type of texts, allowing for better performance.
2. The pipeline can easily incorporate new advances in NLP, by simply implementing a new

step when necessary.
3. One can study the impact of the performance of each step on the quality of the extracted

networks.

Amalvy et al. (1970). Renard: A Modular Pipeline for Extracting Character Networks from Narrative Texts. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

1

https://orcid.org/0000-0003-4629-0923
https://orcid.org/0000-0002-2619-2835
https://orcid.org/0000-0003-1203-9108
https://doi.org/N/A
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/N/A


Design and Main Features
Renard is centered about the concept of pipeline. In Renard, a pipeline is a series of sequential
steps that are run one after the other in order to extract a character network from a text.
When using Renard, the user simply describes this pipeline in Python by specifying this series
of steps, and can apply it to different texts afterwards.

from renard.pipeline import Pipeline

from renard.pipeline.tokenization import NLTKTokenizer

from renard.pipeline.ner import NLTKNamedEntityRecognizer

from renard.pipeline.character_unification import GraphRulesCharacterUnifier

from renard.pipeline.graph_extraction import CoOccurrencesGraphExtractor

with open("./my_doc.txt") as f:

text = f.read()

pipeline = Pipeline(

[

NLTKTokenizer(),

NLTKNamedEntityRecognizer(),

GraphRulesCharacterUnifier(min_appearance=10),

CoOccurrencesGraphExtractor(co_occurrences_dist=25)

]

)

out = pipeline(text)

To allow for custom needs, Renard is designed to be very flexible. If a step is not available in
Renard, we encourage users to either:

• Externally perform the computation corresponding to the desired step, and inject the
results back into the pipeline,

• Integrate their custom processing into Renard by implementing their own step by
subclassing the existing PipelineStep class.

The flexibility of this approach introduces the possibility of creating invalid pipelines because
steps often require information computed by previously ran steps: for example, solving the
NER task requires a tokenized version of the input text. To counteract this issue, each step
therefore declares its requirements and the new information it produces, which allows Renard
to check whether a pipeline is valid, and to explain at runtime to the user why it may not be.

Task Step Supported Languages
Preprocessing CustomSubstitutionPreprocessorany
Tokenization NLTKTokenizer eng, ces, dan, nld, est, fin, fra, deu, ell, ita, nor, pol,

por, rus, slv, spa, swe, tur
Quote
Detection

QuoteDetector any

NER NLTKNamedEntityRecognizereng, rus
BertNamedEntityRecognizereng, fra

Coreference
Resolution

BertCoreferenceResolvereng

SpacyCorefereeCoreferenceResolvereng
Character
Unification

NaiveCharacterUnifierany

Character
Unification

GraphRulesCharacterUnifiereng, fra

Amalvy et al. (1970). Renard: A Modular Pipeline for Extracting Character Networks from Narrative Texts. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

2

https://doi.org/N/A


Task Step Supported Languages
Speaker
Attribution

BertSpeakerDetector

Graph
Extraction

CoOccurencesGraphExtractorany

ConversationalGraphExtractorany

Renard lets the user select the targeted language of its custom pipeline. A pipeline can be
configured to run in any language, as long as each of its steps supports it. Table shows the
supported languages for all the available steps in Renard.

References
Labatut, V., & Bost, X. (2019). Extraction and analysis of fictional character networks : A

survey. ACM Computing Surveys, 52, 89. https://doi.org/10.1145/3344548

Marazzato, R., & Sparavigna, A. C. (2014). Extracting networks of characters and places from
written works with CHAPLIN. arXiv, cs.CY, 1402.4259.

Métrailler, C. (2023). Charnetto. https://gitlab.com/maned_wolf/charnetto

Park, G., Kim, S., & Cho, H. (2013). Structural analysis on social network constructed from
characters in literature texts. Journal of Computers, 8. https://doi.org/10.4304/jcp.8.9.
2442-2447

Park, G., Kim, S., Hwang, H., & Cho, H. (2013). Complex system analysis of social networks
extracted from literary fictions. International Journal of Machine Learning and Computing,
107–111. https://doi.org/10.7763/IJMLC.2013.V3.282

Rochat, Yannick. (2014). Character networks and centrality [PhD thesis, Université de
Lausanne]. https://serval.unil.ch/resource/serval:BIB_663137B68131.P001/REF.pdf

Rochat, Y. (2015). Character network analysis of émile zola’s les rougon-macquart. Digital
Humanities 2015. https://infoscience.epfl.ch/record/210573?ln=en

Rochat, Y., & Triclot, M. (2017). Les réseaux de personnages de science-fiction : Échantillons
de lectures intermédiaires. ReS Futurae, 10, 1183. https://doi.org/10.4000/resf.1183

Amalvy et al. (1970). Renard: A Modular Pipeline for Extracting Character Networks from Narrative Texts. Journal of Open Source Software,
¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/N/A.

3

https://doi.org/10.1145/3344548
https://gitlab.com/maned_wolf/charnetto
https://doi.org/10.4304/jcp.8.9.2442-2447
https://doi.org/10.4304/jcp.8.9.2442-2447
https://doi.org/10.7763/IJMLC.2013.V3.282
https://serval.unil.ch/resource/serval:BIB_663137B68131.P001/REF.pdf
https://infoscience.epfl.ch/record/210573?ln=en
https://doi.org/10.4000/resf.1183
https://doi.org/N/A

	Summary
	Statement of Need
	Design and Main Features
	References

