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Résumé — This abstract describes a transformation from a heterogeneous scalar (classical) wave equa-
tion to a Schrödinger equation with heterogeneous potential, which allows to extend the localization
landscape technique to classical wave equations in 3D for a larger class of fluctuating parameters. That
transformation is based on a coordinate mapping, dependent on the fluctuating velocity, and on a simila-
rity transformation. The heterogeneous potential in the Schrödinger equation is an analytical function of
the impedance of the acoustic equation. The use of this transformation to design a localization landscape
technique for the acoustic wave equation is detailed.
Mots clés — Helmholtz equation ; Schrödinger equation ; Conformal mapping.

1 Introduction

This abstract describes a transformation from a heterogeneous Helmholtz equation to a Schrödin-
ger equation with heterogeneous potential. Its objective is to help understand the precise similarities
and differences between the classical wave equation and the Schrödinger equation. This transformation
has already been used in 1D in various contexts. For instance in [4] under the name of point-canonical
transformation, to transform a Schrödinger equation with position-dependent mass (akin to a heteroge-
neous Helmholtz equation) into a Schrödinger equation with position-independent mass (the "classical"
Schrödinger equation). In [3], under the name of Liouville transformation, it helps to derive analytical
solutions of Schrödinger equations in complex cases. Similarly, in 3D, it allows in [5] to derive analytical
Green’s functions for Helmholtz equation in heterogeneous media, to be used in the Boundary Element
Method. In Section 2, we introduce a change of coordinates that will be useful for our transformation,
and the impact this change has on the gradients appearing in Helmholtz equation. Section 3 describes
the transformation from a Helmholtz equation with heterogeneous coefficients to a Schrödinger equation
with heterogeneous potential, as well as the formula for that potential as a function of the coefficients
of the Helmholtz equation. Finally, Section 4 discusses the extension of the localization landscape me-
thod from Schrödinger equation to classical wave equations. It is an extension of our previous paper [1],
where the localization landscape method for acoustic waves was presented in 1D, and for density equal
to compressibility, in which case the transformation introduced in Section 3 is not necessary.

2 Preliminary : change of coordinates in the Helmholtz equation

2.1 Setting

Consider a scalar potential ψ governed by the Helmholtz equation and homogeneous Dirichlet boun-
dary conditions in a bounded medium Ω ⊂ Rd , with 1 ≤ d ≤ 3, characterized by the position-dependent
and bounded compressibility modulus κ(x)≥ κ0 > 0 and mass density ρ(x)≥ ρ0 > 0, i.e.div

(
κ(x)∇ψ(x)

)
=−ρ(x)ω2

ψ(x) ∀x ∈ Ω

ψ(x) = 0 ∀x ∈ ∂Ω,
(1)
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where ω is a circular frequency. To be used later on, we also introduce the position-dependent impedance
z(x) as

z(x) =
√

κ(x)ρ(x), (2)

and c0 a reference homogeneous wavespeed.

We consider an invertible vector-valued transformation g, with inverse F , which maps the coordi-
nates x ∈ Ω to X ∈ Ωg, where Ωg is a transformed domain, as

X = g(x) = F−1(x), (3)

and whose gradient is the second-order tensor G=∇g(x) = ∂X/∂x, the Jacobian matrix of the trans-
formation. In addition, we define J =G−1, so that J = ∂x/∂X , and denote J (X) = detJ(X). Lastly,
we use lowercase (resp. uppercase) letters hereafter to denote quantities expressed on Ω (resp. Ωg), with

ψ(x) = ψ(F (X)) = Ψ(X), (4)

and likewise for K, P and Z relatively to κ, ρ and z, respectively.

2.2 Transformation laws

To transfer the problem (1) on the transformed domain Ωg, we rewrite it in weak form as∫
Ω

κ(x)∇ψ(x) ·∇φ(x)dVx =
∫

Ω

ρ(x)ω2
ψ(x)φ(x)dVx (5)

for all sufficiently smooth test function φ such that φ(x) = 0 on ∂Ω.
We observe that

∇ψ(x) = J−T (X) ·∇X Ψ(X) (6)

with ∇X being the gradient operator relatively to the variable X , and similarly for the divergence operator
divX to be used hereafter. Using that dVx = J (X)dVX , operating a change of coordinates in (5), observing
that, for any pair of matrices A and B, (J−T (X) ·A) ·(J−T (X) ·B) = (J−1(X)J−T (X) ·A) ·B, and
integrating by parts eventually yields that Ψ satisfies the following transformed wave equation in Ωg :divX

(
Kg(X) ·∇X Ψ(X)

)
=−Pg(X)ω2

Ψ(X) ∀X ∈ Ωg

Ψ(X) = 0 ∀X ∈ ∂Ωg,
(7)

where the transformed compressibility modulus and mass density read

Kg(X) = J (X)K(X)J−1(X) ·J−T (X) and Pg(X) = J (X)P(X). (8)

We can notice that the obtained mass density Pg remains a scalar, while the compressibility Kg is poten-
tially anisotropic, with symmetry KT

g =Kg.

3 From (Hermann von) Helmholtz to (Erwin) Schrödinger equation

3.1 Mapping of the coordinates

3.1.1 Wavespeed-related metric

We now consider expanding the transformed Helmholtz equation (7) and using the symmetry of Kg

to rewrite the former as

P−1
g (X)Kg(X) : ∇X∇X Ψ(X)+P−1

g (X)
(

divX Kg(X)
)
·∇X Ψ(X) =−ω

2
Ψ(X). (9)

Following Peña, Morales et al., the objective is to find a mapping (3) such that

P−1
g (X)Kg(X) : ∇X∇X Ψ(X) = c2

0∆X Ψ(X),
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where the reference wavespeed c0 is introduced here for dimensional consistency. A sufficient condition
for the above is

P−1
g (X)Kg(X) = c2

0I i.e. J−1(X) ·J−T (X) =
P(X)

K(X)
c2

0I (10)

with I being the identity tensor. This condition implies that :
– the transformed medium is isotropic, as Kg(X) = Kg(X)I with Kg a scalar field,
– the wavespeed Cg(X) =

√
Kg(X)/Pg(X) is uniform and equal to c0.

This amounts to redefine the space metric so as to transform the original non-uniform wavespeed field
to a homogeneous one. Owing to (8) and the definition of the Jacobian, then (10) leads to the following
equation for the gradient of the transformation :

G(x) ·GT (x) =
ρ(x)

κ(x)
c2

0I. (11)

Eq. 11 is equivalent to stating that the transformation we are looking for is such that

G(x) =∇g(x) = c0

√
ρ(x)

κ(x)
R. (12)

where R is a rotation matrix, which in turn is equivalent to stating that

∂gx

∂ξ
=

∂gy

∂η
= c0

√
ρ(x)

κ(x)
,

∂gx

∂η
=

∂gy

∂ξ
= 0, (13)

where (ξ,η) is the set of coordinates corresponding to (x,y) in the rotation R. This corresponds to
Cauchy-Riemann equations for the complex function gx + igy. Hence, a transformation corresponding
to ρ(x)c2

0/κ(x) can only be found if the latter function is the modulus squared of an analytic function.
Through the maximum modulus principle, this in turn implies that ρ(x)c2

0/κ(x) cannot display local
maxima.

3.2 Similarity transformation

Provided that the mapping g satisfies the condition obtained in the previous section then (10) implies
that

P−1
g (X)

(
divX Kg(X)

)
= c2

0P−1
g (X)∇X Pg(X) = c2

0∇X ln
(
Pg(X)

)
.

Upon calculating the determinant of (10) we get that

J (X) =
1
c0

√
K(X)

P(X)
,

so that, according to (8), the gradient of Pg(X) above can be recast into a following symmetric form in
K, P as

∇X ln
(
Pg(X)

)
=∇X ln

(√
K(X)P(X)

)
=∇X lnZ(X) (14)

in terms of the transformed impedance map Z(X). Using these identities back in (9) leads to

∆X Ψ(X)+
∇X Z(X)

Z(X)
·∇X Ψ(X) =−ω2

c2
0

Ψ(X). (15)

Now, we define the field Ψ̃(X) through the similarity transformation

Ψ̃(X) = Ψ(X)
√

Z(X), (16)

which leads, after some calculs, to a Schrödinger equation for Ψ̃ that writes as

−∆X Ψ̃(X)+Veff(X)Ψ̃(X) =
ω2

c2
0

Ψ̃(X), (17)

where Veff is a scalar effective potential defined locally as

Veff(X) =
1
4

(
2

∆X Z(X)

Z(X)
− |∇X Z(X)|2

Z(X)2

)
= ∆X ln

√
Z(X)+

∣∣∣∇X ln
√

Z(X)
∣∣∣2 .
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4 Localization landscape for 3D acoustic waves

Anderson localization is a universal interference phenomenon occurring when a wave evolves through
a random medium and it has been observed in a great variety of physical systems, either quantum or clas-
sical. A recently developed localization landscape theory [2] offers a computationally affordable way to
obtain useful information on the localized modes, such as their location or size. It was shown recently
that this theory was not directly useful for acoustic waves, because the lowest eigenmodes (for largest
1/ω2

n) are delocalized (opposite behavior from Schrödinger equation), and an extension was proposed in
1D [1] in the particular case ρ = κ. We propose here an extension in 3D and for ρ(x) ̸= κ(x). In that
case, the transformation presented in the previous chapter is necessary.

Starting from Eq. (1), which an eigenvalue problem, and hence numerically expensive, the localiza-
tion landscape consists in rather solving the following boundary value problem, much cheaper numeri-
cally : div

(
κ(x)∇u(x)

)
=− ρ(x)√

z(x)
∀x ∈ Ω

u(x) = 0 ∀x ∈ ∂Ω,

(18)

Of course, the result is less rich because we do not have the knowledge of the eigenfrequencies nor the
eigenvectors. But the so-called landscape is expected to contain a lot of information on the support Sn of
the different eigenmodes (labelled by n ≥ 0) through the relation

Sn ≈
{
x ∈ Ω : u(x)≥ 1

ω2
n

}
. (19)

This relation has been proved only for Schrödinger so it is necessary to transform the acoustic wave
equation (1) into Schrödinger, using the transformation of the previous section, in order to derive it.
Although the results is correct, examples show that it does not bring useful insight for classical wave
equations. Indeed, the lowest eigenmodes (for largest 1/ω2

n) are delocalized, which in turn means that
the landscape is way above all eigenmodes, bringing no insight into localized modes.

In line with our previous paper [1], interesting insight can be retrieved by considering a series of
shifted problems, indexed by the frequency shift ω2

s :div
(

κ(x)∇u(x,ω2
s )
)
−ω

2
s

ρ(x)√
z(x)

u(x,ω2
s ) =− ρ(x)√

z(x)
∀x ∈ Ω

u(x) = 0 ∀x ∈ ∂Ω,

(20)

and defining a optimized localization landscape function in the original space

u⋆(x) =

(
max

ω2
s

{
1

u(x;ω2
s )
√

z(x)
−ω

2
s

})−1

. (21)

Eventually, we retrieve the desired property Eq. (19), but with u⋆(x) instead of u(x). This is coherent
with the formulas derived in [1] when z(x) = ρ(x) = κ(x).
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