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Résumé — Recently, the so-called (model-free) data-driven computational mechanics (DDCM) has
established an alternative paradigm allowing to completely bypass explicit constitutive models. Such
method. The DDCM solver relies exclusively on a finite dataset of gradient-fluxes pairs and consists of
two steps : i) a continuous constrained minimisation problem and ii) a nearest neighbour search (of finite
nature). In this work, we explore alternative choices to rephrase Problem i) into an unconstrained format
via Lagrange Multipliers, leading to different DDCM algorithms.
Mots clés — (Model-free) data-driven computational mechanics (DDCM) ; Mixed Finite Element ; Poisson
problem; Raviart-Thomas ; Brezzi-Douglas-Marini.

1 Introduction

Following the societal general trend, experimental data (in several forms) has become more widely
available to the computational mechanics community. Concerning data-driven techniques for dealing with
material behaviour, we can distinguish two families of approaches : i) the creation of surrogate models by
machine learning techniques (e.g [1, 2]), and ii) the complete bypass constitutive models by the exclusive
use of material dataset, such as the so-called data-driven computation mechanics (DDCM) paradigm [3]
or the manifold learning [4]. Given the sound mechanical formulation of DDCM and motivated by recent
extensions (e.g. finite strains [5], inelasticity [6], material identification [7], frequency domain [8], among
others), the present work focuses on revisiting and exploring alternative variational formulations for the
standard DDCM.

In a nutshell, DDCM proposes a generalisation at the governing field equation’s level. The generalised
formulation is such that it ensures relevant conservation principles, which are independent of material
behaviour, while the nearest neighbour search guarantees the interplay with experimental material data.
Hence, the DDCM solver is respectively composed of i) a constrained minimisation problem and ii) a
nearest neighbour search (of finite nature). The weakly enforcing of balance equations via Lagrange
Multipliers [9] allows the conversion of a constrained minimisation problem into an unconstrained one
(more tractable) . Such a procedure resembles mixed finite element formulations used for example in the
Darcy flow (analogous to the Poisson equation) context. Note that in the former case, there is a certain
flexibility in the variational formulation choice, i.e., different functional space combinations for the primal
and dual variables. In this work, we apply these choices in the context of DDCM to solve the Poisson
problem.

Remark 1 (Notice on notations) Let us consider the following conventions. As usual, the unit vectors
{ei}d

i=1 refer to the canonical basis for Rd . We also use the font convention a ∈ Rd , A ∈ Rd×d , A ∈
Rd×d×d×d to discern between vectors, second- and fourth-order tensors, respectively. Single dot (·) and
double dots (:) designate single or double contractions of the most internal indexes, e.g. a ·b = aibi,
A : B = Ai jBi j, etc. Standard matrix-vector and fourth-second-order tensor multiplication are assumed in
the absence of any sign, i.e., Ab := A ·b, AB :=A : B. Spaces Rd,d

sym and Rd,d
skw denote symmetric and skew

real-valued second-order tensors respectively, and the superscript (·)s (or (·)w) stands for the symmetric
(or (·)w) part of some given object. particularly we also have ∇(·) = [∇(·)]s, and ∇w(·) = [∇(·)]w.
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2 Mixed formulations for the Poisson problem

Let us introduce the physical problem we address. Consider a domain Ω ⊂ R2 and the partition of its
boundary ∂Ω = ∂ΩN ∪∂ΩD. For the sake of simplicity, we focus on an elliptic scalar PDE given by the
following Poisson problem : find u such that

−divK∇u = s in Ω,

u = ū on ∂ΩD,

−K∇u ·n = q̄ on ∂ΩN

, (1)

where u is the primal variable of the problem (pressure in the Darcy flow, temperature in the heat equation,
etc), K a positive define symmetric tensor, q̄ the normal flux along ∂ΩN , ū a Dirichlet boundary condition
along ∂ΩD, and s is a source term. Let us refer to the former problem as the primal formulation for the
Poisson problem, for the sake of differentiation from the mixed formulation described below.

Now, let us create the auxiliary variable q = K∇u, the so-called dual variable, which represents a flux.
The mixed equivalent problem now becomes : find u,q such that

−divq = s in Ω,

q = K∇u in Ω,

u = ū on ∂ΩD,

q ·n =−q̄ on ∂ΩN .

(2)

In the weak sense, we can derive two different (equivalent) variational formulations : M1 (Problem 1) and
M2 (Problem 2). We can state them as follows.

Problem 1 (M1) Find (u,q) ∈ U ×Q such that

a(q,τ )+b(τ ,u)+b(q,v) = f (τ )+g(v) ∀(v,τ ) ∈ V ×T (3)

with 

a(q,τ ) = (K−1q,τ )L2(Ω),

b(τ ,v) =−(τ ,∇v)L2(Ω),

f (τ ) = 0,
g(v) =−(s,v)L2(Ω)− (q̄,v)L2∂ΩN

,

Q = T = [L2(Ω)]2,

U =
{

w ∈ H1(Ω);w = ū on ∂ΩD
}
,

V =
{

w ∈ H1(Ω);w = 0 on ∂ΩD
}
.

(4)

Problem 2 (M2) Find (u,q) ∈ U ×Q such that

a(q,τ )+b(τ ,u)+b(q,v) = f (τ )+g(v) ∀(v,τ ) ∈ V ×T (5)

with 

a(q,τ ) = (K−1q,τ )L2(Ω),

b(τ ,v) = (divτ ,v)L2(Ω),

f (τ ) = (ū,τ ·n)L2(∂ΩD),

g(v) =−(s,v)L2(Ω),

U = V = L2(Ω),

Q =
{

w ∈ H(div,Ω);w ·n =−q̄ on ∂ΩN
}
,

T =
{

w ∈ H(div,Ω);w ·n = 0 on ∂ΩN
}
.

(6)
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Note that M1 and M2 were obtained using the standard process of multiplying each side of strong
equations by adequate test function and after proceeding with the necessary integration by parts. While
in the infinite-dimensional setting both formulations are equivalent, when finite-dimensional subspaces
Uh ⊂ U and Qh ⊂ Q are taken (mixed finite element setting), M1 and M2 are different. In particular,
formulation M2 has the advantage of providing locally conservative fluxes (in each element). Moreover,
the approximation for the dual variable is privileged with respect to the primal variable. Such features
are the main motivations to apply M2 ti the DDCM (see Section 2.1). Hence, thereafter we focus on
formulation M2 since it provides better properties for the problem at hand.

2.1 Data-driven computational mechanics in mixed formulations

In this section, we briefly revisit the (model-free) data-driven mechanics formulation, originally
proposed in [3], but in the mixed formulations framework. Although DDCM has been originally proposed
in a solid mechanics context, its extension to other similar physics is straightforward (e.g. poroelasticity
[12], piezo-electricity [13], amoong others). Our formulation follows more closely the work of [9],
which is more suited for continuum problems in a variational (weak) format, allowing a straightforward
implementation using the finite element method.

In the DDCM framework, material information is given exclusively in the form of a dataset composed
of gradient-flux pairs, say D =

{
(ĝi, q̂i) ∈ Rd ×Rd for i = 1, . . . ,Nd

}
. We call Z= Rd ×Rd as the local

phase-space, whose elements are represented by ẑ=(ĝ, q̂) (with a hat). Accordingly, Z = L2(Ω;Z) denotes
the global phase-space such that z = (g,q) (hat-free) is a field in Ω. The notion of distance in Z is given by
the metric dist(z,z∗) =

(∫
Ω
∥z(x)− z∗(x)∥2

loc

)1/2, whilst ∥ẑ∥2
loc = Mẑ · ẑ defines a norm for Z, with M a

constant symmetric and positive definite second-order tensor. In practice, dist2(z,z∗) =∑
Ng
i=1 ωi∥ẑi− ẑ∗i ∥2

loc,
where Ng is the number of integration points and ωi its weight at point xi, both taken with respect to the
adopted finite element formulation and discretization. Finally, the DDCM problem amounts to seek

min
z∈ZE

min
z∗∈ZD

dist(z,z∗), (7)

where ZE ,ZD ⊂ Z are respectively the physically admissible manifold and D−compatible subset 1,
defined as

ZE =
{

z = (g := ∇u,q) ∈ Z; satisfying (2)}, (8a)

ZD = {z ∈ Z;z(xi) = ẑi ∈ D;xi ∈ Ω,∀i = 1, . . . ,Ng}. (8b)

Note that to extend the local notion of D to ZD ∈ Z, we should restrict the phase functions to have
point-valued images corresponding to data points at disposal in D. The unconstrained version of the
"data-to-equilibrium" subproblem yields as follows : given z∗ ∈ ZD, find

(u,q,η) = arg min
u′∈U

min
q′∈Q

max
η′∈W

L(u′,q′,η′), (9)

with the Lagrangian functional

L(u,q,η) =
1
2

dist2((g(u),q),z∗)+
1
2

a(q,q)+b(q,η)− f (q)−g(η), (10)

and U,W ,Q should be defined appropriately accordingly to variational formulation chosen. The original
DDCM formulation amounts for choosing all the ingredients as in formulation M1. On the other hand, if
we choose to use M2 as reference, we have to adjust some ingredients. First, we note that primal variable u
only appears in the first contribution for the Lagrangian (the distance to z∗), while in the remaining terms
it has been replaced by the Lagrange Multiplier η. Therefore U and W can be choosen independently.
In particular it is required to take gradients of u, so let us consider U =

{
w ∈ H1(Ω);w = ū on ∂ΩD

}
and V =

{
w ∈ H1(Ω);w = 0 on ∂ΩD

}
. Finally, as η should vanish on ∂ΩD, it yields that f (τ ) = 0. The

remaining ingredients are taken identical to M2. These choices are condesated in the problems below :

1. This notion is analogous to the so-called Data-functions space introduced in [9].
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Problem 3 (DDCM-M1 (standard formulation)) Let the ingredients as in Problem 1 and Mqg =Mgq =
0. Given z∗ ∈ ZD, and W = V , find (u,q,η) ∈ U ×Q ×V such that

(Mgg∇u,∇v) = (Mggg∗,∇v) ∀v ∈ V
(q,∇ξ) =−g(ξ) ∀ξ ∈ V ,

(Mqqq,τ )− (τ ,∇η) = (Mqqq∗,τ ) ∀τ ∈ T .

(11)

For appropriate choices for Qh = Th ⊂ Q = T and Mqq = M−1
gg , we get

(Mgg∇u,∇v) = (Mggg∗,∇v) ∀v ∈ V
(Mgg∇η,∇ξ) = g(ξ)− (q∗,∇ξ) ∀ξ ∈ V ,

q = q∗+Mgg∇η.

(12)

Problem 4 (DDCM-M2) Let the ingredients as in Problem 2 and Mqg = Mgq = 0. Given z∗ ∈ ZD, find
(u,q,η) ∈ U ×Q ×W such that

(Mgg∇u,∇v) = (Mggg∗,∇v) ∀v ∈ V
(divq,ξ) = g(ξ) ∀ξ ∈ W ,

(Mqqq,τ )+(divτ ,η) = (Mqqq∗,τ ) ∀τ ∈ T .

(13)

It is worth noticing that classical finite-dimensional choices for DDCM-M2 Wh ⊂ W are constant
by part functions or Lagrangian basis discontinuous between elements, while for Qh ⊂ Q (same for Th)
Raviart-Thomas [10] or BDM [11] spaces are the most common choices. Stability conditions require the
latter to have polynomials of one order higher than the former space.

3 Numerical Results

We have considered an unitary square Ω = [0,1]2 ⊂ R2 (we have used dimensionless quantities). Let
us denote ∂ΩL

N and ∂ΩT
N the left and top boundary respectively, and ∂ΩD the remaining of the boudary.

As boundary conditions, we have imposed the normal fluxes qL = 100 and qT = 10 on ∂ΩL
N and ∂ΩT

N ,
respectively, and homogeneous conditions for the primal variable on ∂ΩD (ū = 0). The source term was
chosen as s = c3 senc1xcosc2y, with c1 = 6,c2 = 3,c3 = 500. We have used a nonlinear flux constitutive
law

q = α0(1+β∥g∥2)g, (14)

with α0 = 1000.0 and β = 1e2. The reference solution was obtained in a 20× 20 homogeneous mesh
with alternated triangles using standard (primal) finite elements with linear constinous lagragian shape
functions.

Concerning the DDCM, firstly a material dataset with Nd = 1000 points was generated using the
same nonlinear flux law sampled uniformly on the gradient parameter space [−0.09,−0.05]× [0.05,0.15]
(these ranges were found a posteriori to correspond aproximatively to those attained by the reference
solution). The solutions obtained by DDCM-M1 and DDCM-M2 are shown in form of scatter plots in
figures 1 and 2, respectively. Errors are reported in Table 1. We can that both approaches reproduced the
reference test, DDCM-M1 leading to more accurate results than DDCM-M2.

Formulations ∥uDDCM −uFE∥ ∥qDDCM −qFE∥
DDCM-M1 4.623696e-02 2.179316e-02
DDCM-M2 1.241739e-01 9.391753e-02

TABLE 1 – Comparisons with the reference solution (non-DDCM with a known constitutive law).
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FIGURE 1 – Scatter plots of numerical results on DDCM-M1 phase-space (legend : ZE (black cross), ZD

(blue bullets), D (gray bullets)).

FIGURE 2 – Scatter plots of numerical results on DDCM-M2 phase-space (legend : ZE (black cross), ZD

(blue bullets), D (gray bullets)).

4 Concluding Remarks

In this work we have explored different mixed formulations for the DDCM method applied to the
Poisson equation. In the DDCM-M2, Lagrange Multiplier is able to enforce locally conservative fluxes.
Also, fluxes live in richer space the Lagrange Multiplier, which is coherent with the physical importance
of the variables. These are strong advantages of this method if compared to DDCM-M1. The drawback
is that a larger linear system needs to be solved given the impossibility of statically condensate fluxes.
This drawback can be minimised since the same left-hand-side factorisation can be reused in all DDCM
iterations. In terms of numerical errors with reference solution, we have noticed that DDCM-M1 has
performed better than DDCM-M2. This might be linked with the form of the reference solution which was
obtained by the standand primal formulation, so it might be biased to privilege the DDCM-M1 accuracy.
More tests are being perfomed to assess in more scrutinity such differences.
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