
HAL Id: hal-04611008
https://hal.science/hal-04611008v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical analysis of an enriched beam model
Mahshid Sharifi, Frédéric Daude, Claude Stolz

To cite this version:
Mahshid Sharifi, Frédéric Daude, Claude Stolz. Numerical analysis of an enriched beam model.
16ème Colloque National en Calcul de Structures (CSMA 2024), CNRS; CSMA; ENS Paris-Saclay;
CentraleSupélec, May 2024, Hyères, France. �hal-04611008�

https://hal.science/hal-04611008v1
https://hal.archives-ouvertes.fr


CSMA 2024
16ème Colloque National en Calcul des Structures

13-17 Mai 2024, Presqu’île de Giens (Var)

Numerical analysis of an enriched beam model

M. SHARIFI1, F. DAUDE1,2, C. STOLZ1

1,IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, F-91762 Palaiseau, France mahshid-externe.sharifi@edf.fr
2 EDF Lab Paris-Saclay, R&D, 7 Boulevard Gaspard Monge 91120 Palaiseau, France

Abstract — The finite element for a thin-walled tube developped in [1] is considered. A classical Euler-
Bernoulli beam element has been enriched in order to take into account the influence of the rotations
of the mid-surface on the local deformations of the tube cross-sections. The latter is a semi-analytical
model using a Fourier expansion based on the circumferential variable. A grid convergence study of the
enriched model is carried out for different mesh discretisations. Next, the stability of the explicit time
integration is studied using the lumped mass matrix and the critical time steps associated to the mass
matrix lumping are estimated.
Mots clés — Finite Element Method, Enriched Model, Stability Condition.

1 Introduction

Modelling of piping systems has become of a high importance in recent decades due to their wide use
in industry. Various numerical models have been employed to study the dynamic behavior of pipelines
but most studies are limited to either a beam or a shell model. The classical beam model does not al-
low the variations of the tube cross-section which have been proved to present significant deformations
under bending [3]. On the other hand, the shell models are capable of presenting the evolution of the
tube cross-section but lead to a high computational cost. As a result, computationally efficient models
have been developed allowing to take into account the variations of the tube cross-section as the hybrid
shell-beam model proposed in [1]. A thorough review of such models can be found in [4]. In extension
to the work presented in [1], further improvements on this hybrid shell-beam model are here achieved
while a special attention is given to its computational efficiency. As in [1], an explicit time integration is
employed where the mass matrix is replaced by a lumped mass matrix in order to enhance the computa-
tional cost of the numerical scheme. To further improve the latter, the impact of the rotational terms of
the lumped mass matrix on the critical time step value is analysed.

Five main sections are defined in this paper. First section briefly represents the theoretical model.
The second section details the numerical explicit finite-element solver and the corresponding lumped
matrix. The third section demonstrates the dependancy of the stability of the numerical scheme to the
coefficients of the rotational terms. The fourth section presents some of the results concerning a mesh
convergence and the study of the numerical stability. Finally, the last section draws some conclusions
over the presented work and a few perspectives.

2 Theoretical tube model

The model has been presented in details in [1]. A straight tube presented in figure 1, with a length L,
mean radius a and thickness e is considered. The kinematics of the tube are expressed by the classical
Eurler-Bernoulli beam theory enriched by a Kirchhoff-Love shell model. The beam motions are ex-
pressed in the (Ex,Ey,Ez) basis using the displacements U0(t,x), W0(t,x), V0(t,x) and rotations Ωx(t,x),
Ωy(t,x), Ωz(t,x) with respect to each axis. Displacements of the cross-section associated to the shell
kinematics are expressed in the (Ex,Er,Eθ) frame by u(t,x,θ,z), w(t,x,θ,z), v(t,x,θ,z), where t denotes
the time. It needs to be noted that the variation along Er is considered as −e

2 < z < e
2 .
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Figure 1: The scheme of the tube, the side view (on the left), the cross-section view (on the right)

The coordinates of the point M(x,θ,z) in the initial state can be expressed using the point on the
neutral axis M0(x):

M(x,θ,z) = M0(x)+(a+ z)Er = xEx +(a+ z)Er (1)

The coordinates of the point m(x,θ,z) in the deformed state using equation (1) reads:

m(x,θ,z) = M(x,θ,z)+U =

xEx +(a+ z)Er +U0Ex +W0Ey +V0Ez +uEx +wEr + vEθ+

(ΩxEx +ΩyEy +ΩzEz)∧ (uEx +(a+ z+w)Er + vEθ)

(2)
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Figure 2: The deformed tube, beam model (on the left), the shell cross-section (on the right)

The coordinates of the point in the deformed state can be expressed in the cylindrical basis (Ex,Er,Eθ):

m(x,θ,z) =(x+U0 +u+(a+ z)sinθΩy− (a+ z)cosθΩz)Ex+

(a+ z+w+W0 cosθ+V0 sinθ)Er+

(v+V0 cosθ−W0 sinθ+(a+ z)Ωx)Eθ

(3)

In (3) the non-linear terms of displacements have been neglected but are detailed in [1].

As a result of the first-order shear deformation shell theory, the displacement field reads:

w = w0, v = v0 + zv1, u = u0− zu1

with u1 and v1 the rotation angles of the mid-surface of transverse normal Er in the (Ex, Er) and (Er, Eθ)
planes, respectively.

Due to the thin-shell hypothesis, the term
1

a+ z
can be approximated as:

1
a+ z

=
1
a
− z

a2 +o
( z

a2

)
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Finally, using the displacements expressed in equation (3), the Euler-Bernoulli condition for the beam
contributions and the Kirchhoff-Love Theory for the shell contributions, the strain tensor is obtained [1].
The strain tensor is a sum of membrane term, εm and a linear term in z representing the local curvature
k, ε = εm + zk. 

ε
m
xx =

∂Uo

∂x
−asinθ

∂2V0

∂x2 −acosθ
∂2W0

∂x2 +
∂u0

∂x

ε
m
θθ =

1
a

(
∂v0

∂θ
+w0

)
2ε

m
xθ =

1
a

∂u0

∂θ
+

∂v0

∂x
+a

∂Ωx

∂x

kxx =−sinθ
∂2V0

∂x2 − cosθ
∂2W0

∂x2 −
∂2w0

∂x2

kθθ =−
1
a2

(
∂2w0

∂θ2 +w0

)
2kxθ =−

1
a
(2

∂2w0

∂x∂θ
+

1
a

∂u0

∂θ
− ∂v0

∂x
)+

∂Ωx

∂x
The constraint tensor can thus be expressed using the strain tensor, the Young modulus, E and the

Poisson coefficient ν: σ = σ
m + zσ

k

σ =
E

1−ν
((1−ν)ε+ν trac(ε) I)

A Fourier expansion is employed to express the shell displacement field in terms of the tangential
variable θ. It needs to be noted that the rigid-body motions in the shell kinematics are set equal to zero in
order to avoid any redundancy with the beam body motion (uc

o = 0, uc
1 = 0, us

1 = 0, vc
0 = 0). In addition,

vc
1 =−ws

1 and vs
1 = wc

1 to produce a vanishing rigid-body displacement of the cross-section in the Ez and
Ey directions, respectively. Moreover, an inextensibility condition is taken into account (εm

θθ
= 0 for i≥ 2

Fourier modes greater than 2).

Finally, the Fourier expansion of the shell displacements reads:

uo(t,x,θ) =
N f

∑
i=2

(uc
i (t,x)cos(iθ)+us

i (t,x)sin(iθ))

vo(t,x,θ) = −ws
1(t,x)cosθ+wc

1(t,x)sinθ+
N f

∑
i=2

(
1
i
ws

i (t,x)cos(iθ)− 1
i
wc

i (t,x)sin(iθ)
)

wo(t,x,θ) = wc
o(t,x) +wc

1(t,x)cosθ+ws
1(t,x)sinθ+

N f

∑
i=2

(wc
i (t,x)cos(iθ)+ws

i (t,x)sin(iθ))

where N f represents the number of Fourier modes considered in the expansion. The index c and s repre-
sent the coefficients in cosine and sine of the Fourier expansion, respectively.

As a results of this expansion, the Kirchhoff-Love conditions are expressed as:

u1 =
∂wo

∂x
and v1 =−

1
a

(
2ws

1 cosθ−2wc
1 sinθ+

N f

∑
i=2

i2−1
i

(ws
i cos(iθ)−wc

i sin(iθ))

)
Finally, the virtual power principle is employed to obtain the tube equation of motion:

Pa = Pe +Pi
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with Pa , Pe and Pi the power of inertia, external and internal forces, respectively.

Each of the powers can be written using the elements defined previously:

Pa =
∫

Ω
ρ

∂2U
∂t2 .δU dV Pe =

∫
δΩ

T .δU dS Pi =−
∫

Ω
σ : δε dV

where ρ is the solid density, Ω the current volume,
∂2U
∂t2 the acceleration vector, δU the virtual displace-

ment, T the vector of applied forces on the boundaries, σ the Cauchy stress tensor and δε the virtual
strain tensor.

3 Numerical Solver

The Finite Element Method (FEM) has been employed to approximate the equation of motion expressed
in the previous section. For this purpose, the tube model has been discretised in multiple elements of
equal size, `e. The displacement field is approximated over each element using shape functions which
are considered as linear for the displacements along Ex (for both beam and shell contributions) and cubic
for the other degrees of freedom:

de = (U0, W0, V0, Ωx, Ωz, Ωy, wc
0, u1, ws

1, dws
1, uc

2, duc
2, wc

2, dwc
2, . . .)

The shape function tensor for each element (subscribe e) contains the tensors corresponding to nodes
at each end of the element:

Ne =
(
N1

e N2
e
)

Using the definition of the power of inertia and the approximation of the displacement field by the
shape functions, the consistent mass matrix can be evaluated:

Me =

(
M11

e M12
e

M21
e M22

e

)
with Mi j

e =
∫

Ve
ρ
(
Ni

e
)T TT TN j

e dV

Each sub-matrix (M11
e ,M22

e ,M12
e ) has a beam (b) and a shell (s) contribution. The non-diagonal terms

are denoted as (bs) and the number specifying the Fourier mode of the shell degree of freedom. Matrix
M11

e is thus expressed as:

M11
e =


M11,b

e 0 M11,bs1
e 0 · · · 0

0 M11,s0
e 0 0 · · · 0

(M11,bs1
e )T 0 M11,s1

e 0 · · · 0
0 0 0 M11,s2

e · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · M11,si

e



M11,b
e = ρS`e



1
3 0 0 0 0 0
0 13

35 +
6
5

Iy
S`e

0 0 0 − 11`e
210 −

1
10

Iy
S`e

0 0 13
35 +

6
5

Iy
S`e

0 − 11`e
210 −

1
10

Iy
S`e

0
0 0 0 1

3
J
S 0 0

0 0 − 11`e
210 −

1
10

Iy
S`e

0 `2
e

105 +
2
15

Iy
S 0

0 − 11`e
210 −

1
10

Iy
S`e

0 0 0 `2
e

105 +
2
15

Iy
S



M11,s0
e = ρS`e

(
13
35 +

6
5

e2

12`2
e
− 11`e

210 −
1
10

e2

12`e

− 11`e
210 −

1
10

e2

12`e

`2
e

105 +
2
15

e2

12

)
M11,s1

e = ρS`e

(
13
35 Mw1 +

1
2

6
5

e2

12`2
e
− 11

210`eMw1 −
1
20

e2

12`e

− 11
210`eMw1 −

1
20

e2

12`e

`2
e

105 Mw1 +
1
2

2
15

e2

12

)

M11,si
e = ρS`e


1
6 0 0
0 13

35 Mwi +
1
2

6
5

e2

12`2
e
− 11

210`eMwi − 1
20

e2

12`e

0 − 11
210`eMwi − 1

20
e2

12`e

`2
e

105 Mwi +
1
2

2
15

e2

12

 M11,bs1
e = ρS`e


0 0
0 0
e2

20`2
e
− e2

240`e
0 0

− e2

240`e
e2

180
0 0


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with Mw1 = (1+2 e2

12a2 ) and for i≥ 2 Mwi =
1
2(

i2+1
i2 + (i2−1)2

i2
e2

12a2 ).

The other sub-matrices have similar shapes and terms while the coefficients of M12
e are different

compared to the other two matrices and can be found in the work of [1]. The beam part of the latter
reads:

M12,b
e = ρS`e



1
6 0 0 0 0 0
0 9

70 −
6
5

Iy
S`e

0 0 0 − 13`e
420 + 1

10
Iy

S`e

0 0 9
70 −

6
5

Iy
S`e

0 − 13`e
420 −

1
10

Iy
S`e

0
0 0 0 1

6
J
S 0 0

0 0 − 13`e
420 + 1

10
Iy

S`e
0 − `2

e
140 −

1
30

Iy
S 0

0 13`e
420 −

1
10

Iy
S`e

0 0 0 − `2
e

140 −
1
30

Iy
S


It needs to be noted that M12

e = (M21
e )T .

Due to the use of an explicit time integration in the resolution of dynamic problems, the consistent
mass matrix is replaced by a lumped mass matrix in order to enhance the computational cost of the
explicit scheme. The lumped matrix is calculated by the row-sum of the translational terms while the
rotational terms are obtained by the scaling of the intertia in the diagonal term. The diagonal blocks of
the lumped mass matrix are presented in the following:

M̃11
e = M̃22

e = ρS`ediag
(

1
2
,

1
2
,

1
2
, γb, γb, γb,

1
2
, γs,

1
2
, γs,

1
2
, γs,

1
2
,

1
2
, (

i2 +1
i2

+
(i2−1)2

i2
)γs

)
The γ coefficients are the rotational terms, which are treated similarly between the beam Iy

S terms and
shell e2

12 terms, the i coefficients represent the Fourier mode. It needs to be noted that the three beam
rotational terms need to be equal in order to keep the matrix independant of the local or the global basis
in the FEM calculations. As a consequence, the torsional term is taken to be equal to the flexural one.

4 Stability condition

The explicit time integration scheme of an undamped system with the central difference operator, requires
a stability condition that can be defined as [5]:

∆tn = C∆tn
crit with ∆tn

crit =
2

ωn
max

(4)

where 0 < C ≤ 1 is the Courant number, ∆tn
crit the critical time step and ωn

max the maximum eigenvalue
of the system which is bounded by the maximum eigenvalue of each element ωn

e,max:

ω
n
max ≥max

e

(
ω

n
e,max

)
The eigenvalue problem of each tube element needs to be solved in order to obtain the maximum

value required for the calculation of the time step in equation (4). In contrast to [1] where the natural
frequencies of beams (for both axial and flexural beam motions) and cylindrical shells given in [2] are
considered, the maximum frequency of each element satisfies det(K−ω2M̃) = 0. Obviously, the rota-
tional terms γb and γs in the lumped mass matrix have an important impact on the value of the eigenvalues
and thus on the critical time step.

In this work, the rotational coefficients taken into account are obtained by scaling of the inertia terms
for both beam and shell contributions (terms with Iy

S or e2

12 ):

γb =
`2

e

105
+

Iy

S
and γs =

`2
e

105
+

e2

12

5



5 Results

A case study, previously used in the work of [1] to validate the tube model is chosen. The latter consists
on applying a uniform vertical force over a small section of the tube presented in figure 3. The case
considered is a clamped tube on both ends with a uniform force applied in the middle for 0.4L < x < 0.6L
and π

2 −θp < θ < π

2 +θp with θp =
π

100 .

L

0.4L 0.2L 0.4L

Fz

Ex

Ez
Ey

Figure 3: The test case of the tube with the applied uniform force.

First, a mesh convergence study has been conducted over the discretisation of the tube to assess the
numerical model. Once the numerical solution is independant of the grid refinement, a stability analysis
is performed.

5.1 Mesh convergence

The vertical displacement of the beam contribution V0 has been computed in the middle of the tube
x = 0.5L for all three mesh discretisations with 10, 20 and 40 elements.

a) b)

Figure 4: Mesh convergence of the vertical displacement V0 at x = 0.5L: a) the total calculation, b) a
zoom over the final stable part.

Figure 4 represents the results of this study for all three meshes. The forces are gradually imposed
over time to ensure the numerical stability. A good agreement is observed between the results obtain
from the 20 element mesh and the 40 element mesh.

Similar study has been conducted for the cross-section deformation and longitudinal constraint at
x = 0.5L presented in figure 5. The latter confirms the agreement between the results obtained by the
20 and 40 element discretisations over the shell degrees of freedom. It can be concluded that given the
computational cost and the precision of the 20 element discretisation, it is the reasonable choice for the
remaining test.
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a) b)

Figure 5: Mesh convergence: a) cross-section deformation and b) longitudinal stress component σm
xx at

x = 0.5L.

5.2 Stability analysis

Once the convergence study is conducted, an investigation over the impact of the lumped mass matrix co-
efficients over the critical time step can be carried out. Using the 20 element discretisation, the time steps
of the axial contribution for both beam and shell kinematics, flexural, radial expansion and ovalisation
contributions of the tube model are calculated for the considered lumping.

∆t(s) axialb ∆t(s) flexural ∆t(s) axials ∆t(s) expansion ∆t(s) ovalisation
9.419×10−5 1.864×10−5 1.402×10−4 1.038×10−4 2.276×10−4

Table 1: Time steps corresponding to various tube contributions.

Table 1 sums up all the critical time steps obtained with the lumped mass matrix. It can be observed
that the beam flexural time step is smaller than other contributions. On the other hand, the latter depends
on the choice of the coefficient of the lumped mass matrix. This coefficient can thus be optimised in
order to increase the value of the flexural time step and thus reduce the total computational cost while
ensuring an adequate precision of the numerical model. This type of work has been done particularly, in
the work of [6] for the beam elements.

6 Conclusion and perspectives

A linear hybrid shell-beam model has been developed in the work of [1] to represent the kinematics of a
straight tube. In this work, first the analytical model was explained for both beam and shell kinematics.
The numerical model was then presented in which a lumped mass matrix was employed to reduce the
computational cost of the explicit time integration. A convergence study of the mesh discretisation was
then carried out to furher validate the numerical model. Finally, the stability of the numerical scheme
and the minimum time step required for the latter is evaluated for the considered mass matrix lumping.

As observed during the stability analysis, the rotational terms of the lumped mass matrix depend on
the γ coefficients of both beam and shell contributions. The latter can be varried in order to optimise the
time steps corresponding to each contribution and most importantly, the flexural time step. To increase
the accuracy of the enriched beam model, the non-linear coupling terms between the beam and shell
contributions need to be taken into account. In order to tackle fluid-structure interaction problems, the
present hybrid beam-shell model has to be coupled with a quasi 1D fluid model with varying cross-
sections.
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