
HAL Id: hal-04611004
https://hal.science/hal-04611004v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New functionalities of Versions 4.1 and 4.2 of the
TFEL/MFront project and Version 2.0, 2.1 of the MGIS

project
Thomas Helfer, Maxence Wangermez, Salem Khellal, Yushan Wang, Raphaël

Prat, Lionel Gelebart, Guillaume Latu

To cite this version:
Thomas Helfer, Maxence Wangermez, Salem Khellal, Yushan Wang, Raphaël Prat, et al.. New func-
tionalities of Versions 4.1 and 4.2 of the TFEL/MFront project and Version 2.0, 2.1 of the MGIS
project. 16ème Colloque National en Calcul de Structures (CSMA 2024), CNRS; CSMA; ENS Paris-
Saclay; CentraleSupélec, May 2024, Hyères, France. �hal-04611004�

https://hal.science/hal-04611004v1
https://hal.archives-ouvertes.fr

CSMA 2024
16ème Colloque National en Calcul des

Structures
13-17 Mai 2024, Presqu’île de Giens (Var)

New functionalities of Versions 4.1 and 4.2 of the
TFEL/MFront project and Version 2.0, 2.1 of the MGIS
project

Thomas Helfer(1), Maxence Wangermez (1), Salem Khellal (2), Yushan Wang (2), Raphaël
Prat (3), Lionel Gélébart (4), Guillaume Latu (3)

(1) CEA, DES/IRESNE/DEC/SESC/LMCP, Département d’Études des Combustibles, Cadarache, France
(2) CEA, DRF//UGP-MS, Saclay, France
(3) CEA, DES/ISAS/DRMP/SRMA/LC2M, Saclay, France
(4) CEA, DES/IRESNE/DEC/SESC/LDOP, Département d’Études des Combustibles, Cadarache, France

Abstract — MFront is an open-source tool which allows easy implementation of arbitrarly
complex mechanical behaviours in an efficient way. Those implementations are portable between
various finite element solvers and FFT solvers. MFront is part of the open-source TFEL project.

The purpose of this paper is to highlight a selected set of features introduced in Versions 4.1 and
4.2 the TFEL project. The paper also covers the MFrontGenericInterfaceSupport project which
allows to integrate MFront behaviours in existing open-source or commercial solvers.

Contents
Introduction 1

1 Overview of TFEL, MFront, MTest and MGIS 2
1.1 The TFEL/Math library . 2
1.2 The TFEL/Material library . 2
1.3 The MFront code generator . 3
1.4 The generic interface and the MFrontGenericInterfaceSupport project 3

2 Improvements introduced in TFEL/MFront since Version 4.0 4
2.1 Extensions of the StandardElastoViscoPlasticity brick 4
2.2 Miscellaneous improvements . 4

2.2.1 Initialize functions for behaviours . 4
2.2.2 Post-processings of behaviours . 4
2.2.3 Better control of code generation . 5

3 Porting to GPUs 5
3.1 GPU support in the TFEL/Math and TFEL/Material libraries 6
3.2 Early results . 6

Conclusions and future works 6

References 7

Introduction
The projects TFEL/MFront and MGIS have been actively developped since the talk given at (1)
where the version 4.0 of TFEL/MFront and Version 1.2 of MGIS were presented. Indeed, some

1

https://thelfer.github.io/tfel/web/index.html
https://thelfer.github.io/mgis/web/index.html

developpments have been made by a large community of academic and industrial users as demon-
strated by the various talks at the MFront user days 1 and the list of publications using MFront 2.

TFEL/MFront is available on a large number of platforms, including LinuX, macOS, Windows, FreeBSD
with various C++ compilers (gcc, clang and intel). TFEL/MFront can be installed in several popular
package managers, including spack, conda and homebrew. Moreover, it is distributed with the
Cast3M and code_aster solvers.

This paper is devoted to highlight a selected set of features introduced in versions 4.1 and 4.2
of the TFEL/MFront project and versions 2.0 and 2.1 of the MGIS project. The interested reader
may refer to the release notes of those versions for a comprehensive and detailled description:

— https://thelfer.github.io/tfel/web/release-notes-4.1.html
— https://thelfer.github.io/tfel/web/release-notes-4.2.html
— https://thelfer.github.io/tfel/mgis/release-notes-2.0.html
— https://thelfer.github.io/tfel/mgis/release-notes-2.1.html

This paper is organized a follows:

— Section 1 provides an overview of TFEL, MFront, MTest and MGIS
— Section 2 describes the main improvements to TFEL/MFront since Version 4.0.
— Section 3 describes some early results about porting TFEL/MFront to Graphical Processing

Units (GPUs).

1 Overview of TFEL, MFront, MTest and MGIS

The TFEL project provides mathematical libraries which are the basis of the MFront code gen-
erator and the MTest solver (2). It is an open-source collaborative development of the French
Alternative Energies and Atomic Energy Commission (CEA) and Électricité de France (EDF)
in the framework of the PLEIADES plateform (3).

1.1 The TFEL/Math library
The TFEL/Math library provides:

— A linear algebra engine with mathematical objects (tensors of arbitrary orders) and op-
erations on those objets required to express the constitutive equations in an efficient and
natural manner, i.e. as close as possible to the mathematical expressions common in the
engineering sciences. These mathematical objects can have units allowing the compiler
to perform dimensional analysis at compile-time.

— A framework to build non linear solvers for small sized problems. Efficient and robust
implementations of several classical non linear algorithms (Newton-Raphson, Broyden,
Levenberg-Marquart, etc.) are provided.

1.2 The TFEL/Material library
The TFEL/Material library provides implementations of:

— Various utility functions frequently required in constitutive modelling (computation of
the Lamé coefficients, computation of the Hill tensors).

— Various stress criteria and their derivatives with respect to the stress tensor (Hill
1948, Hosfort 1978, Gurson 1977, Gurson-Tvergaard-Needlman 1984, Barlat 2004,
Mohr-Coulomb, etc..).

2

https://github.com/thelfer/tfel-doc/tree/master/MFrontUserDays
https://thelfer.github.io/tfel/web/publications.html
https://spack.io/
https://docs.conda.io/en/latest/
https://brew.sh/
https://thelfer.github.io/tfel/web/release-notes-4.1.html
https://thelfer.github.io/tfel/web/release-notes-4.2.html
https://thelfer.github.io/tfel/mgis/release-notes-2.0.html
https://thelfer.github.io/tfel/mgis/release-notes-2.1.html
https://thelfer.github.io/tfel/web/tfel-math.html
https://thelfer.github.io/tfel/web/tfel-material.html

Fichiers C++ Cast3M
g++, clang, icpc

mfront --in
terface=umat

mfront --interface=aster

mfront --interface=generic
mfront --interface=....

Fichiers C++ Code-Aster
g++, clang, icpc

Fichiers C++ MGIS
g++, clang, icpc

Fichiers C++ ???
g++, clang, icpc

mfront --obuild

mfront --obuild

mfront --obuild

mfront --obuild

Plasticity.mfront

Figure 1 – Principle of MFront

1.3 The MFront code generator
MFront translates a set of closely related domain specific languages into plain C++ on top of the
TFEL libraries.

Those languages are meant to be easy to use and learn by researchers and engineers. They cover
three kinds of material knowledge: material properties (Young’s modulus, thermal conductivity,
etc.), mechanical behaviours 3 and simple point-wise models (such as material swelling under
irradiation used in fuel performance codes). Concerning behaviours, the following kinds of
behaviours are supported:

— small and finite strain mechanical behaviours.
— cohesive zone models.
— generalized behaviours, such as the one encountered in higher order theories, Cosserat

media, heat transfer, strongly coupled thermomecanical analysis, damage gradient models,
etc.

Authors of MFront pay particular attention to the robustness, reliability and numerical efficiency
of the generated code, in particular for mechanical behaviours. Various benchmarks show that
MFront implementations are competitive with native implementations available in the Cast3M,
code_aster, Europlexus, Abaqus/Standard, Abaqus/Explicit (8) solvers and in the fuel perfor-
mance codes Cyrano3 (9) and Galileo (10).

Portability is also a very important issue: a behaviour written in MFront shall be usable in any
solver for which an interface exists. In addition to the aforementioned solvers, interfaces exist
for: Ansys, ZMat, CalculiX, DianaFEA.

1.4 The generic interface and the MFrontGenericInterfaceSupport project
To limit the number of interfaces supported by MFront, an interface called generic has been
introduced, along with the MFrontGenericInterfaceSupport project (MGIS) which provides to
solver developpers tools (functions, classes, bindings, etc…) to handle behaviours generated by
this generic interface.

The MFrontGenericInterfaceSupport project has already been integrated or tested in many
solvers (11), including code_aster, Manta (12), MFEM-MGIS, mgis.fenics, OpenGeoSys (13),
MFEF++, XPer (14), MOOSE, MoFEM, Disk++, Kratos Multiphysics, OOFEM, JuliaFEM, NSPFEM2D (15),
esys.escript, DUNE, etc.

1. https://github.com/thelfer/tfel-doc/tree/master/MFrontUserDays
2. https://thelfer.github.io/tfel/web/publications.html
3. Among the many projects aiming at easing the implementation of mechanical behaviours (see for example

(4–6)), MFront can be compared to the ZebFront code generator which is part of ZMat library. A comprehensive
comparison between these two solutions has been presented at the ZSet User Meeting (7).

3

http://www-cast3m.cea.fr/
http://www.code-aster.org
http://www-epx.cea.fr/index.php/what-is-epx
http://www.3ds.com/products-services/simulia/products/abaqus/
http://www.3ds.com/products-services/simulia/products/abaqus/
https://www.ansys.com/
http://www.zset-software.com/products/z-mat/
http://www.calculix.de/
https://dianafea.com/
https://thelfer.github.io/mgis/index.html
https://code-aster.org/spip.php?rubrique1
https://thelfer.github.io/mfem-mgis/web/index.html
https://thelfer.github.io/mgis/web/mgis_fenics.html
https://www.opengeosys.org/
https://giref.ulaval.ca/
https://github.com/mcacace/dolly
http://mofem.eng.gla.ac.uk/mofem/html/
https://github.com/wareHHOuse/diskpp
https://github.com/KratosMultiphysics/Kratos
http://www.oofem.org/
http://www.juliafem.org/
https://github.com/esys-escript/esys-escript.github.io/
https://github.com/thelfer/dune-mgis
https://github.com/thelfer/tfel-doc/tree/master/MFrontUserDays
https://thelfer.github.io/tfel/web/publications.html
http://www.zset-software.com/products/z-mat

MGIS

Manta

mgis.fenics

OpenGeoSys

MFEM-MGIS

MoFEM

MFront

Figure 2 – Principle of MGIS

2 Improvements introduced in TFEL/MFront since Version 4.0
2.1 Extensions of the StandardElastoViscoPlasticity brick
The StandardElastoViscoPlasticity brick is a very high-level way of describing a large class of
mechanical behaviours. This brick has been improved to:

— Let the user define an isotropic hardening rule by an arbitrary function of the equivalent
plastic strain.

— Let the user define an isotropic hardening rule by a set of experimental points.
— Let the user define the viscoplastic strain rate by an abitrary analytical function of the

selected norm of the effective stress and the equivalent viscoplastic strain.
— Introduce the Delobelle-Robinet-Schaffler kinematic hardening rule (16, 17).

2.2 Miscellaneous improvements
2.2.1 Initialize functions for behaviours

The @InitializeFunction keyword introduces a code block that can be used to initialize internal
state variables at the very beginning of the computation. Initalize functions may have user
so-called initialize funtion variables.

Example of usage The following code defines a function which initializes the elastic strain
from the value of stress:
@InitializeFunction ElasticStrainFromInitialStress{

const auto K = 2 / (3 * (1 - 2 * nu));
const auto pr = trace(sig) / 3;
const auto s = deviator(sig);
eel = eval((pr / K) * Stensor::Id() + s / mu);

}

2.2.2 Post-processings of behaviours

The @PostProcessing keyword introduces a code block that can be used to perform computations
independently of the behaviour integration. The outputs of post-processings are stored in so-
called post-processing variables.

Post-processings are typically meant to be called at the end of a time step, when the equilibrium
has been reached.

Example of usage The following code defines a post-processing computing the principal
strain at the end of the time step:

4

//! principal strains
@PostProcessingVariable tvector<3u,strain> εᵖ;
εᵖ.setEntryName("PrincipalStrain");
//! compute the principal strain
@PostProcessing PrincipalStrain {

εᵖ = eto.computeEigenValues();
}

2.2.3 Better control of code generation

Several options were added to modify at compile-time the code generated by MFront. Some
options are related to quality assurance, such as specifying a build identifier, disabling the
initialization of parameters from text file, specifying the default out of bounds policy, disabling
the ability to change the out of bounds policy at runtime time or treating parameters as static
variables (in this case, the parameters can’t be changed at runtime).

Other options are related to performances. In particular, one can specify that some variables
(material properties or external state variables) shall be overriden by parameters with known
default values. If parameters are treated as static variables, this allows many optimisations of
the generated code and reduces data transfered to the behaviour.

Such optimisations however requires to have access to information specific to the simulation
considered and is thus only useful if the behaviours are compiled “Just-In-Time.”

2.2.3.1 Example of usage The following code generates an optimised version of a behaviour
were the temperature is fixed and the parameters are treated as static variables:
$ mfront --obuild --interface=generic \

--behaviour-dsl-option='overriding_parameters:{T: 293.15, dT: 0}' \
--behaviour-dsl-option='parameters_as_static_variables:true' \
Plasticity.mfront

3 Porting to GPUs
GPUs are now commonly used to build most supercomputers for exascale simulations. Porting
mechanical behaviours to GPUs is challenging: the behaviour integration step is a natural
candidate to be a kernel as computations on each integration points are independent, but the
following concerns need to be tackled:

— The amount of logics used in complex mechanical behaviours and very unbalanced work-
load (localized damaged or plasticity) is problematic on GPUs devices.

— The amount of data processed can be important, leading to many memory accesses
from/to caches and global memory of the device.

— Data transfers between CPU and GPUs can hinder any performance boost gained by
using GPUs.

— The number of local variables used may require a huge number of registers which are very
limited on GPUs.

— The usual flexibility of mechanical behaviours allowing the use of uniform or spatially
variable material properties (Young’s modulus for instance) or external state variables
(temperature for instance) is not compatible with GPUs.

— Many programming models, including CUDA, HIP, SYCL or Kokkos requires to modify the
sources to distinguish host (CPU) and device (GPU) code.

5

https://developer.nvidia.com/cuda-toolkit
https://github.com/ROCm-Developer-Tools/HIP
https://kokkos.github.io/kokkos-core-wiki/
https://kokkos.github.io/kokkos-core-wiki/

3.1 GPU support in the TFEL/Math and TFEL/Material libraries
Being massively based on, generally constexpr, template functions, porting the TFEL/Math and
TFEL/Material libraries, described in Sections 1.1 and 1.2 was quite direct, although explictely
marking every functions as usable on both CPUs and GPUs is a tedious task.

Two major issues are worth noticing:

— The first one is related to the fact that error reporting through exceptions is not supported,
or badly supported on GPUs. Removing exceptions usage required some deep refactoring
in MFront to maintain backward compatibility.

— The second issue is related to the memory access pattern from the global memory on the
device: one shall flavor structure of arrays rather than arrays of structures, as usually
done one CPUs.

— The third issue is about registers usage. The default strategy of the TFEL/Math library is
to allocate objects on the stack which is a very efficient strategy on CPUs but tends to
saturate registers usage on GPUs.

3.2 Early results

10 2 10 1 100 101 102 103

Arithmetic Intensity [FLOP/byte]

10 2

10 1

100

101

102

Pe
rfo

rm
an

ce
 [F

LO
P/

s]
 (1

 =
 1

E+
12

)

Floating Point Operations Roofline
Roofline
Optimized memory access
Unoptimized memory access

Figure 3 – Roofline obtained for an isotropic plastic behaviour with nonlinear isotropic hardening
implemented using the CUDA programming model on a NVIDIA A100 GPU as provided by
NVIDIA Nsight Compute.

Figure 3 shows that the GPU kernel obtained for an isotropic plastic behaviour with nonlinear
isotropic hardening is fairly decent. This implementation is based on the code generated by
MFront using the generic interface used by MGIS with some minor modifications.

This figure shows that the access pattern to global memory plays a crucial role on performance
for simple behaviours, up to a factor 3. This access pattern can be transparently handled during
the code generation phase.

Work are currently underway to optimize the kernels associated with more complex behaviours,
notably by reducing the number of registers used.

Conclusions and future works
TFEL 4.2 is the latest minor release of the 4.x series. This series will be supported for years to
come and several bug fix versions will be released.

6

In parallel, the development of 5.x series starts with a major overhaul of the TFEL/Math an
TFEL/Material libraries. The aim of this overhaul is to reduce the complexity of the code and
increase conformity with the C++-23 standard.

The 5.x series will focus on:

— Support of Just In Time compilation for improved performances, notably on GPUs. See
Section 2.2.3 for details.

— Increasing the number of specific DSLs with highly optimised integration scheme (18).

Acknowledgements The authors are grateful to the many contributors to the TFEL/MFront project.
This research was conducted in the framework of the PLEIADES project, which was supported
financially by the CEA (Commissariat à l’Énergie Atomique et aux Énergies Alternatives), EDF
(Électricité de France) and Framatome. Porting MFront to GPUs is supported financially by
the CEA PTC-SIMU program through the INCOME project.

References
1. Helfer, Thomas, Hure, Jérémy, Shokeir, Mohamed, Olivier, Fandeur, Mathieu

Jean-Philippe an Raude Simon, Jamond Olivier an, Dominique, Geoffroy, Jérémy,
Bleyer, Thomas, Nagel and Guillaume, Latu. New functionalities of Versions 3.3, 3.4
and 4.0 of the TFEL/MFront project and Version 1.0, 1.1 and 1.2 of the MGIS project.
In : Actes du 15e Colloque National en Calcul des Structures. Giens, France, 2022.

2. Helfer, Thomas, Michel, Bruno, Proix, Jean-Michel, Salvo, Maxime, Sercombe,
Jérôme and Casella, Michel. Introducing the open-source mfront code generator:
Application to mechanical behaviours and material knowledge management within the
PLEIADES fuel element modelling platform. Computers & Mathematics with Applica-
tions. September 2015. Vol. 70, no. 5, p. 994–1023. DOI 10.1016/j.camwa.2015.06.027.
Available from: http://www.sciencedirect.com/science/article/pii/S0898122115003132

3. Marelle, Vincent, Goldbronn, Patrick, Bernaud, Stéphane, Castelier, Étienne,
Julien, Jérôme, Nkonga, Katherine, Noirot, Laurence and Ramière, Isabelle. New
developments in ALCYONE 2.0 fuel performance code. In : Top fuel. Boise, USA, 2016.

4. Stainier, Laurent. Introduction to MatLib: Founding concepts. 2010.

5. Japan Association for Nonlinear CAE. Unified material model driver for plasticity.
2018. Available from: https://www.jancae.org/annex/annexUMMDe/index.html

6. Portillo, David, Pozo, Daniel del, Rodríguez-Galán, Daniel, Segurado, Javier and
Romero, Ignacio. MUESLI - a material UnivErSal LIbrary. Advances in Engineering
Software. March 2017. Vol. 105, p. 1–8. DOI 10.1016/j.advengsoft.2017.01.007. Available
from: http://www.sciencedirect.com/science/article/pii/S0965997816301430

7. Helfer, Thomas, Fandeur, Olivier, De Soza, Thomas, Deloison, Dominique and
Toulemonde, Charles. Material knowledge management with the MFront code genera-
tor. Description of the ZMAT interface. Centre de l’Onéra, Chatillon, 2017. Available
from: https://github.com/thelfer/tfel-doc/blob/master/Talks/ZSetUserDays2017/mfr
ont-zset.pdf

8. Deloison, Dominique and Congourdeau, Fabrice. Testing and validation of the
MFRONT interface for ABAQUS. EDF Lab Sacaly, 2016. Available from: https:
//github.com/thelfer/tfel-doc/blob/master/MFrontUserDays/SecondUserDay/deloison-
abaqus.pdf

7

https://doi.org/10.1016/j.camwa.2015.06.027
http://www.sciencedirect.com/science/article/pii/S0898122115003132
https://www.jancae.org/annex/annexUMMDe/index.html
https://doi.org/10.1016/j.advengsoft.2017.01.007
http://www.sciencedirect.com/science/article/pii/S0965997816301430
https://github.com/thelfer/tfel-doc/blob/master/Talks/ZSetUserDays2017/mfront-zset.pdf
https://github.com/thelfer/tfel-doc/blob/master/Talks/ZSetUserDays2017/mfront-zset.pdf
https://github.com/thelfer/tfel-doc/blob/master/MFrontUserDays/SecondUserDay/deloison-abaqus.pdf
https://github.com/thelfer/tfel-doc/blob/master/MFrontUserDays/SecondUserDay/deloison-abaqus.pdf
https://github.com/thelfer/tfel-doc/blob/master/MFrontUserDays/SecondUserDay/deloison-abaqus.pdf

9. Petry, Charles and Helfer, Thomas. Advanced mechanical resolution in CYRANO3
fuel performance code using MFront generation tool. In : LWR fuel performance meet-
ing/TopFuel/WRFPM. Zurich, Switzerland, July 2015.

10. Vioujard, N., Bessiron, V., Garnier, Christophe, Georget, V., Mailhé, P., Bar-
bier, B., Deuble, D., Landskron, H., Bellanger, P. and Arimescu, V. I. GALILEO,
AREVA’s advanced fuel rod performance code and associated realistic methodology. In :
Proceedings of the TOPFUEL 2012 conference. Manchester UK, 2010.

11. Helfer, Thomas, Bleyer, Jeremy, Frondelius, Tero, Yashchuk, Ivan, Nagel,
Thomas and Naumov, Dmitri. The ‘MFrontGenericInterfaceSupport‘ project. Jour-
nal of Open Source Software. 2020. Vol. 5, no. 48, p. 2003. DOI 10.21105/joss.02003.
Available from: https://doi.org/10.21105/joss.02003

12. Jamond, Olivier, Lelong, Nicolas, Fourmont, Axel, Bluthé, Joffrey, Breuze,
Matthieu, Bouda, Pascal, Brooking, Guillaume, Drui, Florence, Epalle, Alexan-
dre, Fandeur, Olivier, Folzan, Gauthier, Helfer, Thomas, Kloss, Francis, Latu,
Guillaume, Motte, Antoine, Nahed, Christopher, Picard, Alexis, Prat, Raphael,
Ramière, Isabelle, Steins, Morgane and Prabel, Benoit. MANTA : Un code HPC
généraliste pour la simulation de problèmes complexes en mécanique. In : CSMA 2022
15ème colloque national en calcul des structures. Giens, France, May 2022. Available
from: https://hal.archives-ouvertes.fr/hal-03688160

13. Bilke, Lars, Flemisch, Bernd, Kalbacher, Thomas, Kolditz, Olaf, Helmig, Rainer
and Nagel, Thomas. Development of open-source porous media simulators: Principles
and experiences. Transport in Porous Media. 1 October 2019. Vol. 130, no. 1, p. 337–361.
DOI 10.1007/s11242-019-01310-1. Available from: https://doi.org/10.1007/s11242-019-
01310-1

14. Perales, Frederic, Socie, Adrien, Nkoumbou Kaptchouang, Noé Brice, Dubois,
Frederic, Monerie, Yann, Mozul, Remy, Vincent, Pierre Guy and Babik, Fabrice.
XPER : Une plateforme pour la simulation numérique distribuée d’interactions multi-
physiques entre corps. 2022. Available from: https://hal.science/hal-03704427

15. Guo, N. and Yang, Z. X. NSPFEM2D: A lightweight 2D node-based smoothed particle
finite element method code for modeling large deformation. Computers and Geotechnics.
1 December 2021. Vol. 140, p. 104484. DOI 10.1016/j.compgeo.2021.104484. Available
from: https://www.sciencedirect.com/science/article/pii/S0266352X21004699

16. Delobelle, P., Robinet, P., Geyer, P. and Bouffioux, P. A model to describe
the anisotropic viscoplastic behaviour of zircaloy-4 tubes. Journal of Nuclear Materials.
1 November 1996. Vol. 238, no. 2, p. 135–162. DOI 10.1016/S0022-3115(96)00450-3.
Available from: https://www.sciencedirect.com/science/article/pii/S0022311596004503

17. Schäffler, I., Geyer, P., Bouffioux, P. and Delobelle, P. Thermomechanical
behavior and modeling between 350°c and 400°c of zircaloy-4 cladding tubes from an
unirradiated state to high fluence. Journal of Engineering Materials and Technology.
6 July 1999. Vol. 122, no. 2, p. 168–176. DOI 10.1115/1.482783. Available from:
https://doi.org/10.1115/1.482783

18. Chaboche, J. L. and Cailletaud, G. Integration methods for complex plastic constitu-
tive equations. Computer method in applied mechanics and engineering. 1996. Vol. 133,
p. 125–155.

8

https://doi.org/10.21105/joss.02003
https://doi.org/10.21105/joss.02003
https://hal.archives-ouvertes.fr/hal-03688160
https://doi.org/10.1007/s11242-019-01310-1
https://doi.org/10.1007/s11242-019-01310-1
https://doi.org/10.1007/s11242-019-01310-1
https://hal.science/hal-03704427
https://doi.org/10.1016/j.compgeo.2021.104484
https://www.sciencedirect.com/science/article/pii/S0266352X21004699
https://doi.org/10.1016/S0022-3115(96)00450-3
https://www.sciencedirect.com/science/article/pii/S0022311596004503
https://doi.org/10.1115/1.482783
https://doi.org/10.1115/1.482783

	Introduction
	Overview of TFEL, MFront, MTest and MGIS
	The TFEL/Math library
	The TFEL/Material library
	The MFront code generator
	The generic interface and the MFrontGenericInterfaceSupport project

	Improvements introduced in TFEL/MFront since Version 4.0
	Extensions of the StandardElastoViscoPlasticity brick
	Miscellaneous improvements
	Initialize functions for behaviours
	Post-processings of behaviours
	Better control of code generation

	Porting to GPUs
	GPU support in the TFEL/Math and TFEL/Material libraries
	Early results

	Conclusions and future works
	References

