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Résumé — In this work, we study the construction of reduced order basis in the presence of non
parametric geometrical variabilities. We present a new morphing algorithm that is adapted to the task
of model order reduction. This is done by finding the morphing optimally in the sense that the relative
energy contained in an arbitrary number of eigenvalues of the correlation matrix is maximal. In addition,
the morphing could be integrated in non intrusive model order reduction techniques.
Mots clés — model order reduction, mesh morphing, data compression.

1 Introduction

Very often in physical science and engineering, we are required to solve a parametric partial differen-
tial equation (PDE) for numerous value of the parameter µ, such as in the context of design, optimization
and inverse problems. The parameter µ ∈ P could represent initial and boundary values, physical proper-
ties of the domain Ω0 where the solution is defined, or in a more interesting case, geometrical parameters
of the domain. When the solution of the PDE is expensive to evaluate, we can resort to model order
reduction techniques to accelerate the computation of the solutions while maintaining a good accuracy.
The solution manifold is defined as M = {uµ|µ ∈ P}. The reduced-order basis method [1] consists in
the construction of a low dimensional approximation space Zr = span{ξ1, · · · ,ξr} of the solution ma-
nifold, where we can calculate the solution more rapidly. The use of these methods starts usually by
the construction of the reduced-order basis Zr by an approximation algorithm such as the singular va-
lue decomposition (SVD) or the proper orthogonal decomposition (POD). However, when using these
construction methods, it is required that all the snapshots are defined on the same domain Ω0.

Context

Let n ∈N∗ and Ω1, . . . ,Ωn ⊂Rd to be n distinct domain with d = 2,3. We suppose that no parametri-
zation is known for the domains. Suppose also that ∀i, there exists a scalar field ui defined on Ωi. These
fields are solutions to a PDE for a given parameter value µ. In the following study, we will focus only
on the data compression step. Various techniques could then be used for the construction of the reduced
model such as Galerkin projection methods (POD-Galerkin) or by using Gaussian process regression
(GPR) where we construct a reduced order basis from the snapshots (ui)1≤i≤n using the snapshot-POD
algorithm, then we train a algorithm by taking the parameter µ as input and the coefficient of the reduced
basis as output.
Since each snapshot is defined on a different domain Ωi, we can resort to finding a morphing φi from
a reference domain Ω0 to the physical domain Ωi, where we can determine the reduced basis on the
parameter independent domain Ω0. Thus we seek to construct a family of morphings Φ = (φi)1≤i≤n

with :

φi : Ω0 → Ωi, 1 ≤ i ≤ n, (1)
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is a morphing from a reference domain Ω0 to Ωi. In this setting, the reduced order basis could now be
constructed from the mapped snapshots (ui ◦φi)1≤i≤n

1 defined now on Ω0.
In the same fashion, when dealing with non reducible problems which are characterized by a slowly de-
caying Kolmogorov N-width of the solution manifold, the use of linear model order reduction techniques
might not be sufficient. One approach in this case is to find morphings as in (1), such that the mapped
snapshots (ui ◦φi)1≤i≤n are more amenable to linear data compression. A special case is when Ωi = Ω0
∀i.
The problem of constructing reduced order models with shape variabilities is the subject of numerous
studies in the literature. Researchers relied on finding the morphings using free form deformation (FFD)
[2]-[3], radial basis function interpolation [4]-[5] or linear elasticity mesh morphing approaches [6]. In
these works, the geometries are assumed to be parameterized and the deformation of the boundary is
given. The problem of finding the morphing to a reference geometry for non parameterized geometries
proves to be more difficult, especially for problems in 3D. In [7], the authors construct a reduced order
model on a reference geometry and then transport the reduced basis to each physical domain. The mor-
phing is computed using the LDDMM method [8]. A similar approach is employed in [9] for inverse
problems, where the authors construct a dictionary based reduced order model. In [10], the snapshot-
POD is coupled with Gaussian process regression to solve the forward reduced order problem in the case
of non parameterized geometries. Data compression for non reducible problem is also studied heavily
in the literature (see [11] and references within). In this work, we aim to develop a new general mor-
phing technique that could be adopted to a wide range of problems, including the morphing between non
parameterized geometries. In addition, we aim to couple this morphing approach with an optimization
algorithm to improve the data compression for non reducible problems.
The rest of this paper is organized as follows. In section 2, we present the elastic shape matching algo-
rithm and our variation that is more adapted to our context. In section 3, we introduce the algorithm to
align the different snapshots on an arbitrary number of modes. We present some concluding remarks and
future work in section 4.

2 Elastic shape matching

The elastic shape matching is a morphing technique proposed in [12]. To map a domain Ω onto a
target domain Ω0, the authors solve a shape optimization problem to minimize the functional :

J(Ω) =
∫

Ω

dΩ0(x)dx,

where dΩ0 is the Euclidean signed distance function to the domain Ω0 defined as :

dΩ0(x) =

{ −d(x,∂Ω0) if x ∈ Ω0

d(x,∂Ω0) if x ∈ cΩ0
0 if x ∈ ∂Ω0

(2)

and d(x,∂Ω0) is the Euclidean distance from x to the boundary of Ω0. The functional J has its unique
global minimum for Ω = Ω0. Taking the shape derivative of J (see [13]), we get :

J′(Ω)(v) =
∫

∂Ω

dΩ0v ·nds.

To obtain a gradient descent direction, we chose v that satisfies the linear elasticity problem :∫
Ω

σ(uΩ) : ε(v)dx =−J′(Ω)(v) =−
∫

∂Ω

dΩ0v ·nds. (3)

The above problem is solved iteratively, until we reach the global minimum of J where Ω = Ω0. We thus
note Ω(m) the mapped domain after m iterations and we have Ω(M) = Ω0 with M being the final iteration.

1. This is called pullback transformation. The Piola transformation which conserves the flux of a tensor field across boun-
daries could also be used.
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We start from Ω(0) = Ω and u(0)
Ω

= id. Then at each iteration 1 ≤ m ≤ M, we calculate u(m)
Ω

, the solution
of :

∀v ∈ [H1(Ω(m))]d ,
∫

Ω(m)
σ(u(m)

Ω
) : ε(v)dx =−

∫
∂Ω(m)

dΩ0v ·nds,

that maps Ω(m) to Ω(m+1). The mapping φ(m) from Ω to Ω(m) is given by the induction :

∀x ∈ Ω, φ
(m)(x) = φ

(m−1)(x)+u(m)
Ω

◦φ
(m−1)(x) = (Id +u(m)

Ω
)◦φ

(m−1)(x).

A major advantage of this approach over other morphing techniques used in the same context, is that we
do not have to calculate explicitly the morphing of the boundary of the domain Ω0. This is extremely
useful especially for non parameterized geometries in a 3D settings.
For problem (3) to be well posed, we should impose Dirichlet boundary conditions, which can restrict
the displacement of some nodes. In addition, we would like to add the ability to map certain points, lines
and surfaces of interest in the reference domain to their correspondence in the target domain.

2.1 Vectorial distance formulation

We present here the variation of the elastic shape matching method we propose in this work in 2D.
The extension to 3D domains is straightforward. We will refer to the left hand side of (3) as the operator
term and the right hand side as the matching term.
Operator term variation : we add to the linear elasticity operator, a stiffness operator on ∂Ω defined as :

α

∫
∂Ω

uΩ ·n v ·ndx,

with α ∈R+. This term has the effect of imposing, in a penalized sense, the Dirichlet boundary condition
uΩ ·n = 0 on the boundary of Ω. In this case, all nodes are free to move in order to achieve the matching
between the two domains.

Matching term variation : In our context, we suppose that the boundary of Ω is partitioned as ∂Ω =
Γ1 ∪Γ2 . . .∪Γs, with additional tagged points of interest x∗1, · · · ,x∗npoints

on its boundary. In addition, for
each Γi (point x∗j), there exist its corresponding Γ̃i (point x̃∗j) on ∂Ω0. Define DΩ0 as :

DΩ0 : ∂Ω → R2

x → DΩ0(x) =
s

∑
i=1

(Π
Γ̃i
(x)− x)1Γi(x), (4)

with ΠA(x) is the projection of point x on set A, ΠA(x) = argminy∈A ||x−y||2, 1A is the indicator function
of set A, and Γ̃i ⊂ Ω0 is where we want Γi to be mapped.
We replace the matching term in (3) by :

β

npoints

∑
i=1

∫
∂Ω(x∗i )

(x̃∗i −x∗i ) · vds+ γ

∫
∂Ω

DΩ0 ·nv ·nds,

with β,γ ∈R+, and ∂Ω(x∗i ) is a small neighborhood of x∗i . These terms will force points x∗i to be mapped
to x̃∗i and each Γi to be mapped to Γ̃i.

Thus formulation (3) is replaced by :

∫
Ω

σ(uΩ) : ε(v)dx +α

∫
∂Ω

uΩ ·n v ·ndx = β

npoints

∑
i=1

∫
∂Ω(x∗i )

(x̃∗i −x∗i ) · vds+ γ

∫
∂Ω

DΩ0 ·nv ·nds. (5)
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FIGURE 1 – Visualisation of (4). For each point x ∈ Γi, DΩ0(x) is the vector that points from x to the
closest point (the projection) of x on Γ̃i

FIGURE 2 – The original domain and the morphed domain after a few iterations using (3).

2.2 Numerical results

We apply the original elastic shape matching to the geometry shown in Figure 2. On the left, we have
a mesh of the reference geometry and the boundary of the target geometry in black. On the right, we see
the results of the morphing using (3). By using the original elastic shape matching algorithm, we do not
specify any constraint on the mapping of the boundary. In this particular example, the algorithm fails to
converge .
In Figure 3, we specify that the corners and the semi circles in the reference domain should be mapped
to their correspondence in the target domain using our method with the vectorial distance formulation as
in (5).

3 Optimal Morphing

Define Ti as the space of bijective morphings from Ω0 to Ωi and T = T1 ×T2 ×·· ·×Tn. The corre-
lation matrix will be defined as :

C : T → Mn(R)
Φ 7→C[Φ] := (Ci j[Φ])1≤i, j≤n (6)

with Ci j[Φ] = ⟨ui ◦φi,u j ◦φ j⟩L2(Ω0) =
∫

Ω0

ui ◦φi(x)u j ◦φ j(x)dx, for Φ = (φi)1≤i≤n.
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FIGURE 3 – The result of the morphing using the vectorial distance formulation (5)

For a given Φ ∈ T, we designate λΦ
1 ≥ λΦ

2 ≥ ·· · ≥ λΦ
n as the eigenvalues of C[Φ] , and ζΦ

1 ,ζ
Φ
2 , · · · ,ζΦ

n as
the corresponding eigenvectors. Finally define the functional :

J : T → R

Φ 7→ J[Φ] :=

r

∑
j=1

λ
Φ
j

Tr(C[Φ])
, (7)

which represents the cumulative energy in the first r modes. We seek to solve the following maximization
problem :

find Φ
∗ ∈ argmax

Φ∈T
J[Φ]

Differential of J

Let Φ = (φi)1≤i≤n ∈ T, Ψ = (ψi)1≤i≤n a small variation around Φ and ε ∈R,ε << 1. To evaluate the
differential of J at a point Φ, we evaluate J at Φ̄ := Φ+ εΨ and calculate :

δJ[Φ][Ψ] = lim
ε→0

J(Φ+ εΨ)− J(Φ)

ε
. (8)

There holds

∀1 ≤ i ≤ n, ui ◦ (φi + εψi)(x) = ui(φi(x)+ εψi(x))

≃ ui(φi(x))+ ε⃗∇ui(φi(x)) ·ψi(x),

where we neglect higher order terms. Now we evaluate :

Ci j[Φ+ εΨ] = ⟨ui ◦ (φi + εψi),u j ◦ (φ j + εψ j)⟩L2(Ω0)

=
∫

Ω0

ui ◦ (φi + εψi)(x)u j ◦ (φ j + εψ j)(x)dx

=
∫

Ω0

ui ◦φi(x)u j ◦φ j(x)dx+ ε

∫
Ω0

ui ◦φi(x)⃗∇u j(φ j(x)) ·ψ j(x)dx (9)

+ ε

∫
Ω0

∇⃗ui(φi(x)) ·ψi(x)u j ◦φ j(x)dx+ ε
2
∫

Ω0

∇⃗ui(φi(x))ψi(x)⃗∇u j(φ j(x))ψ j(x)dx

≃Ci j[Φ]+ εδCi j[Φ][Ψ]+o(ε),
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and

Tr(C[Φ+ εΨ]) =
n

∑
i=1

Cii[Φ+ εΨ]

= Tr(C[Φ])+2ε

n

∑
i=1

∫
Ω0

ui ◦φi(x)⃗∇ui(φi(x)) ·ψi(x)dx+ ε
2

n

∑
i=1

∫
Ω0

[⃗∇ui(φi(x)) ·ψi(x)]2dx

≃ Tr(C[Φ])+ εTr(δC[Φ][Ψ]),

with δCi j[Φ][Ψ] =
∫

Ω0

ui ◦φi(x)⃗∇u j(φ j(x)) ·ψ j(x)dx+
∫

Ω0

∇⃗ui(φi(x)) ·ψi(x)u j ◦φ j(x)dx and δC[Φ][Ψ] =

(δCi j[Φ][Ψ])1≤i, j≤n.

Next we evaluate δλΦ
i [Ψ]. There holds

∀1 ≤ i ≤ n, ||ζΦ
i ||2 = 1,

By computing the differential :

⟨δζ
Φ
i [Ψ],ζΦ

i ⟩= 0, (10)

using the fact that C[Φ]ζΦ
i = λΦ

i ζΦ
i , and computing again the differential :

δC[Φ][Ψ]ζΦ
i +C[Φ]δζ

Φ
i [Ψ] = δλ

Φ
i [Ψ]ζΦ

i +λ
Φ
i δζ

Φ
i [Ψ].

We multiply the last equation by ζΦ
i and we use (10) to get :

(ζΦ
i )

T
δC[Φ][Ψ]ζΦ

i +0 = δλ
Φ
i [Ψ]+0.

Thus we have finally :

λ
Φ+εΨ

i ≃ λ
Φ
i +(ζΦ

i )
T

δC[Φ][Ψ]ζΦ
i ,∀1 ≤ i ≤ n. (11)

Taking the sum over the first r eigenvalues, we obtain :
r

∑
j=1

λ
Φ+εΨ

j ≃
r

∑
j=1

λ
Φ
j + εTr((ZΦ

r )
T

δC[Φ][Ψ]ZΦ
r ), (12)

with ZΦ
r = (ζΦ

1 ,ζ
Φ
2 , · · · ,ζΦ

r )
T . Now we can evaluate (8) to obtain :

δJ[Φ][Ψ] =
Tr((ZΦ

r )
T δC[Φ][Ψ]ZΦ

r )

Tr(C[Φ])
−

r

∑
k=1

λ
Φ
k

Tr(C[Φ])2 ×Tr(δC[Φ][Ψ]), (13)

which can be written explicitly as :

δJ[Φ][Ψ] =
2

Tr(C[Φ])

n

∑
i=1

n

∑
j=1

r

∑
k=1

ζ
Φ
k,iζ

Φ
k, j

∫
Ω0

u j ◦φ j(x)⃗∇ui(φi(x)) ·ψi(x)dx

−
2

r

∑
k=1

λ
Φ
k

Tr(C[Φ])2

n

∑
i=1

∫
Ω0

u j ◦φ j(x)⃗∇ui(φi(x)) ·ψi(x)dx

=
n

∑
i=1

δJi[Φ][ψi],

with :

δJi[Φ][ψi] =
r

∑
k=1

( 2ζΦ
k,i

2

Tr(C[Φ])
− 2λ

Φ
k

Tr(C[Φ])2

)∫
Ω0

ui ◦φi(x)⃗∇ui(φi(x)) ·ψi(x)dx

+
n

∑
j=1
j ̸=i

r

∑
k=1

2ζΦ
k,iζ

Φ
k, j

Tr(C[Φ])

∫
Ω0

u j ◦φ j(x)⃗∇ui(φi(x)) ·ψi(x)dx. (14)
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Gradient direction

To get a gradient direction of equation (7), we will determine Ψ by solving the n linear elasticity
problems : ∫

Ω0

σ(ψi) : ε(v)dx+α

∫
∂Ω0

ψi ·n v ·ndx = δJi[Φ][v] , 1 ≤ i ≤ n. (15)

The above set of equations is solved iteratively, where at each step m we determine Ψ(m) = (ψ
(m)
i )1≤i≤n

by solving : ∫
Ω0

σ(ψ
(m)
i ) : ε(v)dx+α

∫
∂Ω0

ψ
(m)
i ·n v ·ndx = δJi[Φ

(m)][v] , 1 ≤ i ≤ n. (16)

and then we set Φ(m+1) = Φ(m)+ εΨ(m) .

Notes

1. For 1 ≤ i ≤ n, we start by determining the initial morphing φ
(0)
i that will map Ω0 to Ωi. This could

be done using elastic shape matching, RBF morphing or other morphing techniques.

2. Additionally, if Ωi = Ω0. We simply take φ
(0)
i = id.

3. The fields (ui)1≤i≤n could also be the coordinates fields used for the shape embedding as in [10].
This is useful to reduce the number of inputs in a POD-GPR model order reduction framework.

Numerical results

We test the above method on a dataset with n = 30 and ui(x,y) = exp−
(
(x0(x+1)− y)2

0.05

)
while

varying x0. In Figure 4, we see on the left two snapshot before optimization. We chose r = 1, that is we
seek to construct a reduced order basis of dimension 1. On the right, we see the two snapshots aligned
after the morphing.

FIGURE 4 – Two snapshots before and after optimization

(a) 1−J[Φ] for different values of r. Logarith-
mic scale

(b) The energy (7) before and after optimiza-
tion for different values of r.

FIGURE 5 – Comparison of the energy (7) before and after optimization. Notice how after the optimi-
zation, all the energy is now placed in the first mode. This means that after morphing, a reduced-order
basis of cardinal 1 is now accurate.
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4 Conclusion

In this work, we present a morphing technique based on the elastic shape matching that is suitable
to model order reduction with non parameterized geometries. In section 3, we present an algorithm that
maximizes data compression. Preliminary results show interesting gains. The algorithm is presented only
in the offline phase. Calculating this morphing in the online phase is yet to be determined. Future works
consist of extending the two methods to 3D cases, test the optimal morphing algorithm for the variable
geometries case, and integrating these morphing algorithms into online-efficient model-order reduction
framework.
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