
HAL Id: hal-04610968
https://hal.science/hal-04610968v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MANTA: an industrial-strength open-source high
performance explicit and implicit multi-physics solver

Olivier Jamond, Nicolas Lelong, Guillaume Brooking, Thomas Helfer, Benoit
Prabel, Raphael Prat, Adrien Jaccon

To cite this version:
Olivier Jamond, Nicolas Lelong, Guillaume Brooking, Thomas Helfer, Benoit Prabel, et al.. MANTA:
an industrial-strength open-source high performance explicit and implicit multi-physics solver. CSMA
2024 - 16ème Colloque National en Calcul de Structures, CNRS; CSMA; ENS Paris-Saclay; Centrale
Supélec, May 2024, Giens, France. �hal-04610968�

https://hal.science/hal-04610968v1
https://hal.archives-ouvertes.fr

CSMA 2024
16ème Colloque National en Calcul des

Structures
13-17 Mai 2024, Presqu’île de Giens (Var)

MANTA: an industrial-strength open-source high performance
explicit and implicit multi-physics solver

Olivier Jamond(2), Nicolas Lelong(2), Guillaume Brooking(2), Thomas Helfer(1), Benoit
Prabel(2), Raphaël Prat(1), Adrien Jaccon(2)

(1) CEA, DES/IRESNE/DEC/SESC/LMCP, Département d’Études des Combustibles, Cadarache, France (2) Université
Paris-Saclay, CEA, Département de Modélisation des Systèmes et Structures, 91191, Gif-sur-Yvette, France

Abstract — MANTA (Mechanical Numerical Toolbox for advanced Application) is an open-source
effort from the French Alternative Energies and Atomic Energy Commission (CEA) to develop a
multiphysics solver for quasi-static and fast-transient simulations of fluids and solids. MANTA aims
to replace the 40 years-old Cast3M and Europlexus solvers and provide larger physical modeling
abilities using up to date technologies.

Introduction
MANTA (Mechanical Numerical Toolbox for advanced Application) is an open-source effort from
the French Alternative Energies and Atomic Energy Commission (CEA) to develop a multiphysics
solver for quasi-static and fast-transient simulations in fluids and solids (1). MANTA aims to
replace the 40 years-old Cast3M and EUROPLEXUS solvers and provide larger physical modeling
abilities using up to date technologies.

The project has been designed to meet the following objectives:

• quality assurance, robustness and reliability compatible with safety-critical studies in the
nuclear industry,

• high performance computing,
• maintainability over decades,
• ease of use for mechanical engineers or researchers,
• extensibility for rapid prototyping of new physical models and boundary conditions,
• generic and flexible to be used by researchers in the field of numerical methods,
• clean and simple Application Programming Interface (API) in C++ and python for coupling

with external codes or integration with domain specific numerical platforms.

MANTA targets two main kinds of users:

• The mechanical engineers or researchers which exploit the output of numerical simulations
to design or analyse physical system of interest. In view of such a user, MANTA provides
a so-called end-user layer which offers a clean and easy API (both in C++ and python).
Most numerical details are hidden by default. Also, a very important point is that its API
is meant to be very stable in time.

• The researcher in the field of numerical methods which would like to implement and test
various algorithms. The MANTA so-called core-layer provides a generic and flexible way to
implement a new unstructured-mesh-based numerical method dealing with a given set of
Partial Differential Equations (PDE).

This paper is organized as follows:

1

https://www-cast3m.cea.fr/
http://www-epx.cea.fr/

• Section 1 illustrates some abilities of the current version of MANTA in solid and fluid
mechanics.

• Section 2 provides an overview of MANTA’s architecture.

1 Overview of MANTA abilities
The figure 1 gives an overview of some MANTA’s available functionalities. A few applications are
detailed thereafter in order to highlight the modeling abilities and the numerical performances of
MANTA.

Figure 1: Some illustrations of MANTA’s functionalities

1.1 Solid mechanics

MANTA gathers both implicit and explicit mechanics for deformable structures and their interactions
(mainly with compressible fluids). A wide range of applications are concerned from the quasi-static
to the fast transient dynamics, embracing also seismic and vibrations domains.

1.1.1 Representative Volume Element of Combustible Mixed Oxides for Nuclear
Applications

This simulation represents an RVE of MOx (Mixed Oxide) material under uniform macroscopic
deformation. The mesh used is a periodic mesh containing 50 spheres/inclusions, representing a
volume fraction of 17%1.

The applied strain tensor is defined as follows

ε=

−t ε̇0/2 0 0
0 −t ε̇0/2 0
0 0 t ε̇0

with a strain rate ε̇0 = 0.012 and t being the time.

The inclusions is assumed linear elastic. The matrix obey an elasto-viscoplastic law. The material
parameters are summarized in the following table:

1The mesh was generated using the open-source software MEROPE in combination with GMSH mesh generator.

2

https://github.com/MarcJos/Merope
https://gmsh.info/

Material
Young Modulus
(Pa) Poisson Ratio

Stress Threshold
(Pa)

Norton Exponent
(n)

Matrix 8.182e9 0.364 100.0e6 3.333333
Inclusions 16.364e9 0.364 - -

Figure 2: Visualization of a MOX with 17% inclusions, using an elasto-viscoplastic behavior law
with color representation based on the magnitude of displacement

The figure 2 illustrates this simulation, involving approximately 135 million Degrees Of Freedom
(DOF), conducted over a total simulation time of 5 seconds across 80 time steps (∆ t= 0.0625s).

A Newton algorithm is applied during each time step, converging within 2 to 4 Newton iter-
ations for a tolerance 10−6. The solver used with PETSc is GMRES and the preconditioner is
HypreBoomerAMG. This simulation was performed using 4,096 MPI processes on the CCRT/Irene
HPC platform, resulting in an execution time of 10 hours and 33 minutes.

1.1.2 Brittle fracture with phasefield approaches

A phase-field model for fracture has been implemented within MANTA. For the moment, a very
straightforward implementation based on Miehe’s approach (2) has been used: a phase-field
model solved in a staggered fashion where irreversibility is driven by the introduction of a
non-decreasing History field. Additionally, in order to consider unilateral effects in the case of
closing cracks, multiple splits of the mechanical energy term have been tested within MANTA,
taking advantage of the existing phase-field behaviours in the MFront library.

3

https://petsc.org/
https://www.top500.org/system/180014
https://www.top500.org/system/180014

Considering the flexibility of MANTA’s framework, namely the fact that it can treat explicit
or implicit problems with similar tools, means that several kinds of fracture simulation cases
can already be performed. On one hand, one can consider the case of brittle fracture in a
quasi-static framework, neglecting inertial effects, and thus solving for the displacement and
damage successively, within an implicit resolution scheme. On the other hand, one can study
dynamic fracture cases using an explicit staggered resolution scheme that is also setup within
MANTA.

Furthermore, several extensions of this popular approach are also available within MANTA. For
instance, one can use fatigue extension of the phase-field model as put forward in Alessi et al.
(3) and Carrara et al. (4), effectively providing a platform to study fatigue crack nucleation and
propagation. Moreover, multiple dynamic phase-field formulations were implemented to provide
the users with a choice in the explicit time integration scheme. For instance, we can cite the
regularization of the dynamic formulation as proposed in Kamensky et al. (5) that enables to
treat the coupled phase-field problem in a fully explicit manner.

Multiple usual benchmarks of the phase-field literature were reproduced in MANTA, and notably
this Charpy-like test. A notched beam set on two sliding contact support is impacted in the
middle yielding the illustrated damage field. This simulation is based on a 67 million cells mesh,
solved in multiple parallelized configurations in order to show the scalability performance of the
code.

Figure 3: Charpy specimen fracture using an explicit phasefield approach

Figure 4: Strong scaling for the Charpy specimen calculation

1.2 Fluid mechanics

1.2.1 Overview

Fluid mechanic applications in MANTA mainly cover compressible flows, as Europlexus does. For
incompressible flows, the CEA develops the TrioCFD software. MANTA is able to simulate both
fast transient computations for accidental conditions using explicit time schemes, and nominal
quasi-steady states with implicit time schemes. If desired, MANTA is able to chain the computation
of an initial steady-state flow and a transient regime, by perturbation of the steady-state. In

4

https://triocfd.cea.fr/

most cases, the flow is considered as inviscid and is mathematically represented by the Euler
conservation equations. The spatial discretization of the Euler equations is presently implemented
with the Finite Volumes Method. The conservative property of this method allows for an accurate
representation of the velocity and amplitude of shock waves.

Industrial applications for the CEA gather many nominal or accidental situations in nuclear
power plants. They also include a broad range of safety-related applications. Fluid flows are
often computed to evaluate the loadings applied on the structures (pressure waves, vibrations,
drag forces,. . .) and many cases imply couplings to handle fluid-structure interaction.

We can cite, for example:

• Solid explosions (e.g. TNT) in air or water
• Combustion models for reactive flows (H2 explosion)
• Pipe modeling (pipe whip, water hammer,. . .)
• Loss Of Coolant Accident : rarefaction wave propagation after pipe break in the primary

circuit of a Pressurized Water Reactor
• Tank perforation
• Prompt bursts in Molten Salt Reactors
• Welding

The following sections show two examples, one steady-state and one transient, showing various
functionalities available in the fluid modeling layer of MANTA

1.2.2 Steady-state computation with an implicit time scheme

This 2D simulation represents a Mach 3 supersonic flow of an inviscid perfect gas, with a heat
capacity ratio γ = 1.4, over a circular bump. The x-axis of the reference frame is parallel to the
top boundary. All quantities are dimensionless. The lower and upper boundaries are slip walls.
The left boundary condition is a supersonic inflow, where all variables are prescribed:

ρ
ux

uy

p

 =

1.4
3
0
1

The initial condition is a uniform state over the domain equal to the supersonic inflow state.
The mesh is an unstructured grid of 140,000 quadrangular cells. The space scheme consists
of a HLLC Riemann solver combined with a constant reconstruction per cell an limiter. The
time scheme is an implicit first-order Backward Euler scheme. Each implicit time step is solved
using a monolithic Newton-Raphson iterative algorithm. To construct the Jacobian matrix of
the residual, the HLLC Riemann solver derivative, with respect to the left and right states of
each local Riemann problem, is computed using finite differences with a delta equal to 10−7. It
corresponds to the square root of the double floating point precision used in the computation.

The convergence of the simulation is monitored by computing the L∞ norm of the relative
residual, with respect to the initial residual. The norm of the relative residual is converged
below 10−14. Each time step is solved by performing only one iteration of a Newton-Raphson
algorithm. The corresponding linear system is solved using the MUMPS direct solver. The
CFL is increased from 1 to 106, by multiplying it by 1.5 after each time step. Steady-state is
reached in 20 iterations. The steady-state computed solution is represented on figure 5, and the
convergence history is represented on figure 6.

1.2.3 Transient simulation with an explicit time scheme

This simulation represents a Richtmyer-Metschkov Instability (figure 7), where a shock interacts
with an interface between fluids of different densities. The shape of the resulting interface and

5

Figure 5: Visualization of a 2D Mach 3 supersonic flow of a perfect gas with a heat capacity ratio
γ = 1.4 over a bump in a channel with color representation based on the dimensionless density

Figure 6: Convergence history of a 2D Mach 3 supersonic flow of a perfect gas with a heat
capacity ratio γ = 1.4 over a bump in a channel with the dimensionless L∞ norm of the relative
residual in red (squares), and the CFL number in black (disks)

6

the entire flow field show a very non-conventional behavior. The test is initially proposed by
Saurel, Petitpas & Berry (6) where the phenomenon is computed with a six-equations model,
considering the cavitation effects. The left part of the computational domain is filled with pure
water while the right part with pure gas. They are initially separated by a curved interface. It is
a portion of circle with a 0.6 m radius centered at x = 1.2 m, y = 0.5 m. The physical domain
is 3 m long and 1 m high. The unstructured mesh contains 360 000 cells. Both water and gas
have an initial velocity of – 200 m/s. Top, bottom and left boundaries are treated as solid walls.
Fluids are modeled with the stiffened gas equation of state. The initial parameters for the liquid
and gas are:

• Water: ρ1 = 1000kg/m3,P∞1 = 6.108bar,γ1 = 4.4
• Gas: ρ2 = 100kg/m3,P∞2 = 0bar,γ2 = 1.8

In the models presented in the work the cavitation effects are not considered. Therefore, we need
to impose the minimum pressure for the liquid.

Figure 7: Visualization of a 2D Richtmyer-Metschkov Instability: Density at t=7.9ms

This case features are:

• Euler equations
• Explicit time integration, CFL= 0.5
• Finite Volume Method, 2nd order in space and time (MUSCL-Hancock)
• multi-component flow with the 5-equations (one pressure / one velocity) model (7)
• HLLC Riemann solver

2 Overview of MANTA architecture

2.1 Application Programming Interface (API)

MANTA targets different kinds of users and so provides several APIs, tailored for each kind. The
two main levels of APIs are called the “end-user” one and the “expert” one. The “expert” API
is available only in C++. It offers the maximum genericity and fine tuning possibility, but it
does not guarantee to be stable in time (it may evolve quite often). It mainly targets students
or researchers in the field of numerical methods, or development teams wanting to build their
application on top of MANTA’s core functionalities.

The “end-user” API, available in C++ and python, targets engineers or researchers interested in
simulating physical system of interest, domain-specific platforms, and code coupling through the

7

ICoCo interface of the Salome platform. This API is meant to be extremely stable in time to
address industrial applications. It focuses on the physics to be treated. To do so, the names of
manipulated functions and objects use an expressive semantic field, regarding physical numerical
simulation: coupling scheme, model, loadings, etc. Most numerical details are hidden by default.

The user can seamlessly use all material properties, mechanical behaviours and models generated
by the MFront code generator (8).

More than an API, the “end-user layer” provides some advanced algorithms to ease the onset of
coupled problems, and capacities to allow custom extensions.

• Dependencies algorithm

Inspired by the licos fuel performance code (9), each actor of a computation expresses its
dependencies that must be met for the computation to be well posed. For instance, inside a
mechanical model, a mechanical behaviour may require the temperature and the Young’s modulus.
The temperature can be provided by a thermal model, a loading or an external solver. The key
point is that the mechanical behaviour would not know how the temperature is computed and
that the link between the behaviour and the temperature is automatically resolved by MANTA.
Dependencies resolution is an iterative algorithm: a property may provide the Young’s modulus
but can require the temperature and the porosity to do so.

This “dependencies management algorithm” makes MANTA’s very versatile and minimises user’s
scripts or input files.

• Plugins

The end-user layer can be extended using C++ plugins to describe additional phenomena or
boundary conditions. This system gives direct access to the MANTA core-layer described below.

2.2 Core architecture

2.2.1 Objectives

• Industrial applications

MANTA targets industrial applications and so is able to simulate numerical models having all the
complexity of industrial physical systems. To do so it provides a very high level of flexibility.
Within a single calculation it can handle multiple zones, multiple physical models or PDEs,
multiple material and dimensions, Eulerian/Lagrangian/ALE descriptions, . . .

The main restrictions of MANTA is that it only deals with mesh-based numerical methods. It is not
designed to handle Lattice Boltzmann Methods, or some particles based-methods for example.

This high level of flexibility required to address complex industrial numerical models distinguish
MANTA from other frameworks for solving PDEs more oriented toward research works, such as
FEniCS or MFEM.

• HPC

One of MANTA’s first objectives is to be able to run in a HPC context. At this time, it focus
mainly on distributed memory parallelism. The parallel scalability for both computation times
and memory consumption are of great concern in the development of the code. In particular,
regarding memory consumption, every data structures is “local” and grows as the size of the
sub-domain. There are ongoing works on the portability of performances, mainly toward GPUs.

A large part of the responsibility for parallel scalability is delegated to third parties, in particular
the distributed linear solver package which is PETSc at this time.

• Easy maintainability and evolvability

8

https://www.salome-platform.org/
https://fenicsproject.org/
https://mfem.org/

MANTA is designed for long-term operation. It is developed with a high care about factorization
and modularity of the code.

Besides the modularity of its own source code, MANTA makes modular usage of its external third
parties, in order to preserve its sovereignty on the long term. Here modularity refers to the code’s
ability to replace one external component with another equivalent for a given functionality. This
agility ensures the code’s longevity, through the easy renewal of external components, and the
facility to to evolve towards more recent tools, without being inextricably bound to one of them.

This has two consequences for software design:

• External components and libraries must only be called up via well-defined interfaces. These
should not be diffuse, but restricted to a few dedicated source files.

• The functionalities of external components should be used in an “atomic” way (as elementary
as possible). In the event of replacing an external component, this makes it much easier to
find another component with equivalent functionality. For example, PETSc offers a complete
development framework for a simulation software, but MANTA has chosen not to use this
global framework. Only functions required for distributed linear system solving are directly
called.

Factoring consists in imposing that any succession of commands making up part of an algorithm
to appear only once in the code. Ultimately, this means aiming for a high ratio between the
number of functionalities and the number of lines. This implies :

• Factorization of numerical methods. A generic framework allowing to deal with a priori any
mesh-based method through the programming of some entry points has been devised. It is
referred to as the pipeline, and described below. Every new functionality should be developed
as much as possible within the context of this pipeline, through a specific implementation of
some of the entry points. Furthermore, when developing new functionalities, a generalization
effort is needed to extract elementary methods that can be generalized to be compatible
with other functionalities, in other contexts.

• Source code factorization. This point is linked to good development practice. It aims to
the best compromise between performance, factorization and code readability.

2.2.2 The “pipeline”

MANTA core functioning is structured around a generic algorithm to assemble distributed linear
systems from spatial integration (and solve them) which exhibits some entry points. These entry
points have to be implemented specifically to deal with the numerical method and PDEs at
stakes. This single generic execution channel called the pipeline in MANTA’s jargon. The core-layer
also provides a wide range of generic tools and services (shape functions, mesh operations,
computational geometry, . . .) to ease the implementation of the entry points.

• The linear system

The pipeline aims at assembling block linear systems of the form:

A CT

1 CT
2 · · ·

C1 0 0 · · ·
C2 0 0 · · ·
...

...
... . . .

X
λ1
λ2
...

 =

B
D1
D2
...

where each block of the LHS and the RHS is assembled through a unified generic procedure
which offers some entry point to specify the numerical method and physical model considered.

• LHS and RHS assembling

The generic “mathematical framework” related to the pipeline consists in the assembling and
resolution of sparse linear systems constructed by integration of dense matrix integrands on

9

https://petsc.org/release/

entities of a mesh. Broadly, the numerical method consider should involve sparse matrices that
can be constructed the following way:

M =
∑

i

Ai

∫
Ei

m(x)x.

where Ei are the mesh entities on which the matrix valued function m is integrated. Ai is an
assembling operator which maps indices of rows/columns local to the entitiy i to global indices
of rows/columns in M.

In practice, the integral is approximated using quadrature rules a mapping to reference cells.

M =
∑

i

Ai

∑
j

wjm(ξ
j
)|det(φ

i
(ξ

j
))| , where (x ∈ Ei) = φ

i
(ξ)

where ξ
j
and wj are the location and weight related to the considered reference entity, and

φ
i

: ξ→ x ∈ Ei is the mapping from the reference entity and the mesh entity Ei.

Broadly, the pipeline computes this “formula” in a generic way (there is a single implementation
of this formula in the source code which is used by all the numerical methods), and each numerical
method just defines its own operator A and function m.

One major interest of this is that the two sums, which turn into loops in the implementation,
are located in the generic part of the source code. Then all the numerical methods which are
implemented within this framework take advantages from the parallelization of these loops.

• Linear system solving

Once assembled, a distributed linear system as above has to be solved. If there actually are some
matrices and vectors {Ci,Di}, then the system is a saddle-point type, which may be tricky to
solve efficiently.

MANTA provides several methods to eliminate, when it is possible, some Lagrange multipliers
unknowns: A and B are modified to remove a given set {Ci,Di,λi} such that the solution X is
preserved or approximated. All the sets {Ci,Di} which are not eliminated are gathered into a
unique set {C,D} to have a system of the form:

[
A CT

C 0

][
X
λ

]
=

[
B
D

]

The remaining system, being of saddle point type or not, is then transferred to the distributed
linear system external solver (PETSc).

• Automatic parallelism

An important point in the design of MANTA is what we call “automatic parallelism.” This means
that one can code a new feature in the pipeline framework (almost) as if it would in a sequential
code, and it just works in parallel.

The only thing related to parallelism that a developer have to handle occurs when dealing with a
numerical method for which the computation of m requires some data related to another mesh
entity than the current one. This is the case for example for a numerical method involving a
stencil (such as the finite volume method), or a method involving interaction between entities
related to geometrical criteria, such as contact mechanics or fluid-structure interactions with
immersed boundaries approaches. In such cases, the developer has to inform the pipeline how
many layers of ghost cells (we talk about “topological ghost entities”) is required in case of
stencils, or how to compute which entities are interacting with the local ones in case of geometrical
interactions (we talk about “geometrical ghost entities”).

10

Once declared, the ghost entities will be copied from their native subdomain to the subdomains
requesting them. The important point is that there are transferred with all data related to
them, and recursively for the entities of lower dimension composing them (the field attached to
them, the “named zone” to which they belong, . . .). This allow the developer to be sure that
every entity in the subdomain, ghost or not, carries the same data as in a sequential run. The
drawback of this approach is that it prevent from specific optimization for a given numerical
method on the amount of data transferred between the subdomains.

2.2.3 The “services”

Alongside the pipeline, MANTA provides a large set of built-in tools to help programming the entry
points of the pipeline when developing a new feature.

Here are some of them:

• mesh handling
• dense matrix algebra
• handling of “configurations” to handle Lagrangian, Eulerian and ALE descriptions
• “field” data structures
• computational geometry toolbox
• discrete differential operators for finite elements
• monomial basis for non-conforming discretization methods
• gradient reconstruction and limitation tools for finite volumes
• MFront behaviors support
• . . .

Conclusions and future works
MANTA is still young. A lot of generic and more applicative functionalities have to be developed.

Numerous developments are underway to be rapidly integrated. Here are some of them :

• save/restart
• adaptive hierarchical refinement (AMR) and refinement criteria,
• friction contact modeling,
• crack propagation modeling (element erosion, debonding, remeshing, etc.)
• “micromorph” approaches to structural damage,
• fluid models more representative of explosion physics,
• anti-hourglass to enable the use of under-integrated elements,

On the performance side, the efficient handling of “complex” problems involving several tens of
billions of degrees of freedom on hundreds of thousands of computing cores of future exascale
machines represents an ambitious challenge that we hope to meet with the MANTA code by 2030.
The following 3 axes will be addressed:

• Handling complex boundary conditions when solving distributed linear systems. Specific
methods will have to be developed and implemented to efficiently handle large sparse
systems with iterative solvers. Work will also be carried out on the definition of efficient
preconditioners for this type of problem.

• Dynamic load balancing for distributed memory parallelism. This involves regularly revising
the domain decomposition during computation, to ensure that the load is distributed evenly
between the computational units. One of the main difficulties for the targeted computations
lies in the fact that the optimal sub-domain decomposition may be different for each
computational stage when solving a time step. Strategies to deal with this difficulty will be
developed. AMR (Adaptive Mesh Refinement) also makes dynamic balancing particularly
difficult on very large computational platforms.

11

• Performance portability, especially on GPUs. In order to address this issue of GPUs
within the more general framework of performance portability, we plan to use tools such
as Kokkos (https://kokkos.org/about/). A great deal of work will be required to adapt
and optimize the software architecture and data structures of MANTA core layer in order
to achieve maximum performance on GPU architectures. The question of processing of
constitutive laws on GPUs will be a central focus of this axis, as this is a major cost center
in terms of execution time - the MFront (8) library is used to process for processing these
laws.

In order to illustrate MANTA’s capabilities and meet the needs of its future users, the developments
described above will be accompanied by the implementation of target calculations in various fields
of application (e.g. thermomechanical calculations of various nuclear components, interaction
vibrations, etc.). applications (e.g. thermomechanical calculations of various nuclear components,
vibrations with fluids, deformation of fuel assemblies, wear, explosion, earthquake response with
Soil-Structure Interaction, multi-scale modeling of composites, etc.).

Acknowledgements This research was conducted in the framework of the MECAN project, which
was supported financially by the CEA (Commissariat à l’Énergie Atomique et aux Énergies
Alternatives).

References
1. Jamond, Olivier, Lelong, Nicolas, Fourmont, Axel, Bluthé, Joffrey, Breuze,

Matthieu, Bouda, Pascal, Brooking, Guillaume, Drui, Florence, Epalle, Alexan-
dre, Fandeur, Olivier, Folzan, Gauthier, Helfer, Thomas, Kloss, Francis, Latu,
Guillaume, Motte, Antoine, Nahed, Christopher, Picard, Alexis, Prat, Raphael,
Ramière, Isabelle, Steins, Morgane and Prabel, Benoit. ‘MANTA‘ : Un code HPC
généraliste pour la simulation de problèmes complexes en mécanique. In : CSMA 2022
15ème colloque national en calcul des structures. Giens, France, May 2022. Available from:
https://hal.archives-ouvertes.fr/hal-03688160

2. Miehe, Christian, Hofacker, Martina and Welschinger, Fabian. A phase field model
for rate-independent crack propagation: Robust algorithmic implementation based on
operator splits. Computer Methods in Applied Mechanics and Engineering. 2010. Vol. 199,
no. 45–48, p. 2765–2778.

3. Alessi, Roberto, Vidoli, Stefano and Lorenzis, Laura De. A phenomenologi-
cal approach to fatigue with a variational phase-field model: The one-dimensional
case. Engineering Fracture Mechanics. March 2018. Vol. 190, p. 53–73.
DOI 10.1016/j.engfracmech.2017.11.036.

4. Carrara, P., Ambati, M., Alessi, R. and Lorenzis, L. De. A framework to model the
fatigue behaviour of brittle materials on a variational phase-field approach. Computer
Methods in Applied Mechanics and Engineering. 2019.

5. Kamensky, David, Moutsanidis, Georgios and Bazilevs, Yuri. Hyperbolic phase field
modeling of brittle fracture: Part i—theory and simulations. Journal of the Mechanics and
Physics of Solids. December 2018. Vol. 121, p. 81–98. DOI 10.1016/j.jmps.2018.07.010.
Available from: http://dx.doi.org/10.1016/j.jmps.2018.07.010

6. Saurel, Richard, Petitpas, Fabien and Berry, Ray A. Simple and efficient relaxation
methods for interfaces separating compressible fluids, cavitating flows and shocks in
multiphase mixtures. Journal of Computational Physics. 2009. Vol. 228, no. 5, p. 1678–
1712. DOI https://doi.org/10.1016/j.jcp.2008.11.002.

12

https://hal.archives-ouvertes.fr/hal-03688160
https://doi.org/10.1016/j.engfracmech.2017.11.036
https://doi.org/10.1016/j.jmps.2018.07.010
http://dx.doi.org/10.1016/j.jmps.2018.07.010
https://doi.org/10.1016/j.jcp.2008.11.002

7. Allaire, Grégoire, Clerc, Sébastien and Kokh, Samuel. A five-equation model for the
simulation of interfaces between compressible fluids. Journal of Computational Physics.
2002. Vol. 181, no. 2, p. 577–616. DOI https://doi.org/10.1006/jcph.2002.7143.

8. Helfer, Thomas, Michel, Bruno, Proix, Jean-Michel, Salvo, Maxime, Sercombe,
Jérôme and Casella, Michel. Introducing the open-source mfront code generator:
Application to mechanical behaviours and material knowledge management within the
PLEIADES fuel element modelling platform. Computers & Mathematics with Applications.
September 2015. Vol. 70, no. 5, p. 994–1023. DOI 10.1016/j.camwa.2015.06.027. Available
from: http://www.sciencedirect.com/science/article/pii/S0898122115003132

9. Helfer, Thomas, Bejaoui, Syriac and Michel, Bruno. Licos, a fuel performance code
for innovative fuel elements or experimental devices design. Nuclear Engineering and
Design. 1 December 2015. Vol. 294, p. 117–136. DOI 10.1016/j.nucengdes.2015.07.070.
Available from: http://www.sciencedirect.com/science/article/pii/S0029549315003842

13

https://doi.org/10.1006/jcph.2002.7143
https://doi.org/10.1016/j.camwa.2015.06.027
http://www.sciencedirect.com/science/article/pii/S0898122115003132
https://doi.org/10.1016/j.nucengdes.2015.07.070
http://www.sciencedirect.com/science/article/pii/S0029549315003842

	Introduction
	Overview of MANTA abilities
	Solid mechanics
	Representative Volume Element of Combustible Mixed Oxides for Nuclear Applications
	Brittle fracture with phasefield approaches

	Fluid mechanics
	Overview
	Steady-state computation with an implicit time scheme
	Transient simulation with an explicit time scheme

	Overview of MANTA architecture
	Application Programming Interface (API)
	Core architecture
	Objectives
	The ``pipeline''
	The ``services''

	Conclusions and future works
	References

