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Abstract — The objective of this contribution is to investigate the influence of morphological and crys-
tallographic textures on the formability limits of polycrystalline aggregates using the Crystal Plasticity
Finite Element Method (CPFEM). The overall behavior of these polycrystalline aggregates is derived
from that of the constituent single crystals by the periodic homogenization technique. The single crystal
behavior is modeled by a rate-independent finite strain formulation, with the plastic flow rule governed
by the classical Schmid law. Ultimately, the prediction of the formability limits is achieved by applying
the Rice bifurcation criterion.
Keywords — Crystal plasticity, periodic homogenization, formability.

1 Introduction

Understanding the influence of relevant microstructural parameters on the ductility limits is essen-
tial for metallurgists and designers aiming to enhance the quality of their final products. Ductility is
often limited by the incipience of various physical phenomena, such as plastic strain localization or void
coalescence, which can occur simultaneously or separately. In the present investigation, attention is fo-
cused on the prediction of the onset of plastic strain localization, assumed to be the primary limiting
factor affecting ductility. To predict such a phenomenon, several numerical tools have been developed
in the past. In this field, various phenomenological and multiscale frameworks are commonly coupled
with some localization criteria to predict the formability limits, following the concept of forming limit
diagrams (FLDs). Despite their computational efficiency and ease of numerical implementation, phe-
nomenological models are often unable to adequately capture the influence on the FLDs of some relevant
microstructural phenomena, such as grain morphology, crystallographic texture, and grain boundary. To
overcome these limitations, several multiscale schemes have been adopted for predicting the formability
of thin metal sheets. Within these multiscale frameworks, the mechanical behavior is explicitly modeled
at the single crystal scale, and some relevant scale-transition rules are used to obtain the macroscopic be-
havior from that of the microscopic constituents. The full-constraint Taylor scheme has been frequently
used in FLD predictions, incorporating both rate-dependent [1] and rate-independent [2]-[4] frameworks
to model the single crystal behavior. However, the Taylor model has inherent conceptual drawbacks,
such as the failure to satisfy equilibrium conditions at the grain level and an inaccurate representation of
grain morphology. To address these issues, the self-consistent multiscale scheme has found application
in predicting the formability of thin metal sheets [2], [5], [6]. Despite their extensive use, both the Taylor
and self-consistent multiscale schemes are often unable to accurately model the mechanical behavior of
polycrystalline aggregates. To address some of the limitations of mean-field multiscale schemes (e.g.
Taylor and self-consistent models), the full-field Crystal Plasticity Finite Element Method (CPFEM)
has been proposed as a valuable tool for predicting forming limits. This method allows the consider-
ation of strain heterogeneity within grains, originating from the collective motions of dislocations. It
also incorporates realistic boundary conditions that accurately describe both geometric anisotropy and
deformation-induced anisotropy, such as periodic boundary conditions. In the field of CPFEM applica-
tions, Amelirad and Assempour [7] have conducted a study exploring the impact of grain size on the
forming limits of stainless steel 316 L sheets. More recently, Zhu et al. [3]-[4] have developed a new
multiscale framework, based on the CPFEM, to predict the macroscopic behavior of polycrystalline ag-
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gregates. In these latter studies, the CPFEM was coupled with the Rice bifurcation criterion [8] to predict
the onset of plastic strain localization in polycrystalline aggregates. The computational tool developed
in [3] and [4] is used in the present contribution to investigate the impact of morphological and crystal-
lographic textures on the formability limits of thin metal sheets. Our findings align with several prior
contributions in the literature, providing further insights into this critical area of materials science.

2 Constitutive Model

2.1 Single crystal constitutive equations

We consider an elastoplastic Face-Centered Cubic (FCC) single crystal subjected to an eulerian ve-
locity gradient g. In accordance with Mandel’s theory, we assume the existence of an elastically relaxed
configuration. The arbitrary rotation r of the relaxed configuration with respect to the current one is
chosen so that the Schmid tensor M̄α corresponding to slip system α remains constant over time. For
FCC crystallographic structures, α ranges between 1 and 12. For clarity, any tensor presented in an
orthonormal basis fixed with respect to these material orientations will be denoted by a superposed bar.
Therefore, ḡ = rT ·g · r represents the expression of g in this material basis, and d̄ and w̄ denote its sym-
metric and skew-symmetric parts, respectively. Under the small elastic strain assumption, tensors d̄ and
w̄ can be additively decomposed into their elastic and plastic parts as follows:

d̄ = d̄e+ d̄p; w̄ = w̄e+ w̄p. (1)

In the present work, we assume linear and isotropic elastic behavior, which can be modeled by
Hooke’s law as follows:

˙̄σ = c̄e : d̄e, (2)

where c̄e is the fourth-order elastic stiffness tensor.
Plastic deformation is assumed to solely arise from crystallographic slip on the slip systems. There-

fore, the plastic component of the velocity gradient ḡ can be defined as follows:

ḡp = d̄+ w̄ =
12∑
α=1

γ̇αM̄α. (3)

Here, γ̇α denotes the slip rate.
The plastic flow rule is defined by the classical Schmid law, which assumes that slip may occur only

when the resolved shear stress τα on a specific slip system α attains a critical threshold ταc :

∀α = 1, · · · ,12 : |τα| ≤ ταc ;
(
|τα| −ταc

)
γ̇α = 0. (4)

The resolved shear stress τα is defined in terms of the Cauchy stress tensor σ̄ and the symmetric part of
the Schmid tensor M̄α as follows:

∀α = 1, · · · ,12 : τα = σ̄ : M̄αsym. (5)

The evolution of the critical shear stress ταc is governed by the following hardening law:

∀α = 1, · · · ,12 : τ̇αc =
12∑
β=1

Hαβ|γ̇β|. (6)

In the current contribution, it is assumed that hardening is isotropic, and each component of the hardening
interaction matrix H is determined by the following power law:

∀α = 1, · · · ,12 : Hαβ = h0

(
1+

h0Γ

τ0n

)n−1

, (7)

where h0 and n represent hardening parameters, τ0 denotes the initial critical shear stress, and Γ repre-
sents the accumulated slip, which is equal to

∑12
β=1 |γ̇

β|.
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2.2 Periodic homogenization equations

The periodic homogenization technique is used to determine the macroscopic behavior of the poly-
crystalline aggregates from the properties of their individual constituent single crystals. The rate form
of the macroscopic nominal stress tensor Ṅ and the macroscopic velocity gradient G are employed as
appropriate work-conjugate variables. As in the majority of previous investigations, the macroscopic
plane stress assumption is adopted for the prediction of forming limit diagrams. The in-plane part of a
vector or tensor • is denoted IN•. For brevity, only the main equations and steps of this technique are
outlined in what follows, and more details can be found in [9].
■ The macroscopic velocity gradient G and the rate of the macroscopic nominal stress tensor Ṅ are

related to their microscopic counterparts g and ṅ through the following averaging relations:

G =
1
|V|

∫
V

gdV and Ṅ =
1
|V|

∫
V

ṅdV, (8)

whereV is the current volume of the polycrystalline aggregate.
■ The microscopic static equilibrium equation is expressed in terms of the rate of the microscopic

nominal stress tensor ṅ as follows:
divx(ṅT ) = 0, (9)

where x is the current position of the material point.
■ The current in-plane velocity of a material point INv is assumed to be linked the current in-plane

position INx and the in-plane part of the macroscopic velocity gradient ING as:
INv = ING · INx+ INvper, (10)

where INvper is an in-plane periodic velocity fluctuation field.
■ The application of the periodic homogenization technique will be carried out by imposing the

periodic conditions on the boundaries of the polycrystalline aggregates, as explained in [9].

3 Numerical Analysis

The constitutive equations at the single crystal scale are implemented within ABAQUS/Standard FE
code through a user-defined material subroutine UMAT. To accurately represent the microstructure of the
studied sheets, the polycrystalline aggregates used in the present contribution are composed of 125 grains.
The effect of grain morphology on the ductility limits is investigated using three different grain shapes:
cube, random and elongated, as shown in Figure 1a-1c. The different grain morphologies are generated
by the NEPER software [10] on the basis of the Voronoi tessellation technique. The macroscopic loading
is shown in Figure 1d. To be consistent with the classical FLD predictions, a macroscopic plane stress
state is assumed in the Z direction (Ṅ33 = 0). The polycrystalline aggregates are subjected to biaxial
stretching in the X and Y directions, which is defined by strain ratio ρ as:

ρ =
G22

G11
= const. (11)

where ρ ranges between −0.5 and 1 to span the complete FLDs. Then, in-plane tensors ING and INṄ can
be defined by the following generic forms:

ING =
(

G11 0
0 ρG11

)
; INṄ =

(
Ṅ11 Ṅ12
Ṅ21 Ṅ22

)
. (12)

Tensors ING and INṄ are related by the in-plane macroscopic tangent modulus INL:

INṄ = INL : ING, (13)

with the macroscopic tangent modulus INL determined using the condensation technique, as presented
in [11].

To detect the occurrence of localized necking, the Rice bifurcation criterion [8] is used. This crite-
rion states that strain localization occurs when the acoustic tensor N⃗ · INL · N⃗ becomes singular and the
corresponding determinant vanishes, which is given by:

det
(
N⃗ · INL · N⃗

)
= 0. (14)
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(a) (b)

(c) (d)

Figure 1 – Description of the polycrystalline aggregates: (a) cube morphology; (b) random morphology;
(c) elongated morphology; (d) finite element mesh and the applied macroscopic loading.

where N⃗ is the unit vector normal to the localization band, equal to (cosθ, sinθ), with angle θ ranging
between 0 and π/2.

To investigate the influence of the crystallographic texture on the FLD predictions, three crystallo-
graphic textures are employed: random, cube ({001} < 100 >), and copper ({211} < 111 >). The (111)
pole figures of the crystallographic textures with 125 orientations are plotted by the ATEX software [12]
in Figure 2.

(a) (b) (c)

Figure 2 – (111) pole figures of the initial crystallographic textures with 125 orientations generated and
plotted by the ATEX software: (a) random texture; (b) cube texture; (c) copper texture.

The elastic and isotropic hardening parameters used in the FLD predictions are listed in Table 1.
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Table 1 – Elasticity and hardening parameters used in the FLD predictions.

E (GPa) ν τ0 (MPa) h0 (MPa) n
65 0.3 40 390 0.1

4 Results

The influence of crystallographic texture on formability is firstly examined. Figure 3 displays the
forming limit diagrams covering the whole range of strain paths corresponding to the different grain
morphologies. The results reveal that the crystallographic texture has a marginal effect on the predicted
FLDs for the negative strain paths. This observation is consistent with classical trends found in the
literature. This phenomenon can be attributed to the fact that, within this range of negative strain paths,
forming limits are mainly dependent on the hardening parameters [9]. Moreover, in the case of the
plane-strain tensile state (ρ = 0), various textures result in nearly identical limit strains, regardless of
grain morphology. However, the right-hand side of the forming limit diagrams is highly influenced by
the anisotropic behavior, which is mainly related to the initial texture and its evolution during plastic
deformation. As a result, there is significant deviation on the right-hand side of FLDs obtained with
different textures in Figure 3. Notably, the cube texture consistently offers the highest formability for
ρ > 0, followed by random and then copper textures. Consequently, the cube texture can substantially
enhance formability. These findings have also been corroborated in an earlier published paper [1], where
the Taylor multiscale model and the M–K approach [13] have been employed to predict the formability
limits of aluminum alloy sheets.

(a) (b)

(c)

Figure 3 – Effect of crystallographic texture on the FLDs for: (a) cube morphology; (b) random mor-
phology; (c) elongated morphology.
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The effect of grain morphology on the predicted forming limits is then investigated, and the associ-
ated simulation results reported in Figure 4. It is clearly observed that nearly identical levels of forming
limits are achieved for negative strain paths, while significant differences can be seen in the range of
positive strain paths, owing to the use of various morphologies. This outcome can be attributed to the
fluctuations in the micromechanical fields resulting from grain interactions and grain morphology. These
fluctuations have a significant effect on plastic anisotropy and texture evolution, which in turn play an
important role in the prediction of localized necking. Some conclusions are highlighted as follows:

• For random texture, the results suggest that elongated morphology leads to an improvement of
formability, in comparison to cube and random morphologies.
• For cube texture, the predicted limit strains are nearly identical for cube and random morpholo-

gies, while elongated morphology yields higher limit strains in the range of positive strain paths.
• For copper texture, on the whole, the effect of grain morphology on the limit strains is almost

indistinguishable.
Additionally, by comparison with Figure 3, it is evident that the effect of crystallographic texture on

the limit strains is more important than that of grain morphology.

(a) (b)

(c)

Figure 4 – Effect of morphological textures on the FLDs for: (a) random texture; (b) cube texture; (c)
copper texture.

5 Conclusions

In this paper, the CPFEM has been coupled with the Rice bifurcation approach to analyze the effect
of morphological and crystallographic textures on the ductility limits of thin metal sheets. The following
conclusions are drawn from this study:
■ The crystallographic textures (e.g., random, cube, and copper) can significantly influence the

limit strains, especially in the range of positive strain-path ratios.
■ The grain morphologies (e.g., cube, random, and elongated) can influence the predicted forming

limits. According to the results of this study, this behavior is mainly linked to the type of initial
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crystallographic texture.
■ The effect of crystallographic textures on the forming limit predictions is more important than

that of grain morphologies.
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