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Abstract — We propose different staggered resolution strategies of the variational phase field fracture
formulation using a fully explicit time integration scheme. Parabolic or hyperbolic partial differen-
tial equations (PDE) are two alternatives governing the damage evolution and compatible with explicit
solvers. We have implemented these models and compared with the standard elliptic damage formula-
tion. The results show globally similar qualitative behavior, but highlight the challenge in the interpreta-
tion of additional physical parameters introduced in the damage PDE of the phase field models.
Keywords — Phase field model, fast crack propagation, explicit time integration scheme, hyperbolic
and parabolic PDE.

Introduction

Phase field models are originally used in computational mechanics to simulate continuous phase transfer
reactions e.g. material solidification processes. Toward the end of the twentieth century, advanced numer-
ical models in fracture mechanics have been proposed using variational phase-field modeling. Among
them, the one of Francfort and Marigo [1] have presented an energetic variational approach based on
Griffith’s theory to handle quasi-static brittle failure mechanisms. Bourdin et al. [2] reviewed the re-
lated numerical methods. The model has known an increasing interest in the field computional damage
mechanics. Since then, many improvements have been brought in phase-field numerical strategies es-
pecially for the quasi-static regime. Considering transient loads leads to an extension of the phase-field
models into a dynamic framework. Because of phase-field formulations nonlinear features, implicit time
integration schemes are mainly used in numerical resolution strategies contrary to explicit time integra-
tion schemes which are less considered, although they are among the most common strategies to solve
fast transient dynamic phenomenologies.

1 Phase-field modelling for fracture in dynamics

1.1 Context and approach

Phase-field models involve a minimization of a regularized two-field energy functional. The free discon-
tinuity problem is approximated by the evolution of continuous displacement and damage fields governed
by a unique coupled system of equations. In a dynamic framework, the energy functional, commonly
named the Lagrangian Ldyn (Eq. 1) , is composed of the kinetic, elastic, and fracture energies. The frac-
ture energy is the product of a the critical energy released rate Gc and the integral of a crack surface
density function γ. This density is introduced by an approximation proposed by Bourdin et al. [2] based
on the Mumford-Shad potential and depends of the damage gradient ∇d, a characteristic internal length
lc and a potential function w(d), allowing to control the damage spatial diffusion.

Ldyn(t,u, u̇,d, ḋ) =
∫

Ω

ρu

2
u̇2dx−

(∫
Ω

Ψ

(
ε(u),d

)
dx+

∫
Ω

Gcγ(d,∇d)dx−Pext(u)
)

(1)
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The system of equations of the phase field fracture problem is derived from Euler-Lagrange equations
(Eq. 2). It leads to the classical hyperbolic form of the displacement governing equation and a standard
elliptic one for the damage equation. In the equation (Eq. 2b), the term −g′(d)H(u) represents the driving
force and it is defined as the product of a degradation function g and an history variable H introduced
by Miehe et al. [3] to ensure the irreversibility condition of the damage evolution. This constraint is a
method among many others.

ρuü = div(σ)+b on Ωu, −σ ·ns + t = 0 on ∂Ωu (2a)

g′(d)H(u)+Gc

(
w′(d)
cwlc

−2lc∇
2d
)
= 0 on Ωd ,

∂γ

∂∇d
·nd = 0 on ∂Ωd (2b)

The elliptic form of the damage equation is mainly solved using iterative methods. Although implicit
methods are unconditionally stable, the use of linear system solvers can make the resolution cumber-
some for large problems. To overcome these cost issues, explicit time integration schemes is another
alternative. These approaches allow the use of lumping techniques operated on the mass matrix related
to the second order term. It’s diagonalization shrinks the resolution to a single, vector/vector Hadamard
product, hence a reduction of computational costs.
Since the elliptic form is not adapted for it, it is necessary to update the damage formulation to a direct
time-dependent model i.e. one involving a parabolic [3, 4, 5] or an hyperbolic [6, 7] partial differential
equation. The use of a dissipative process in the Lagrangian allows three different damage formulations
of the phase field model. (a) The elliptic one without direct time dependency of the damage field (Eq. 2b).
(b) The parabolic one, introducing a damage rate ḋ and a viscous regularization η in the governing equa-
tion (Eq. 3) with ρd = 0. A damping term

(
η

2 ḋ2
)

is incorporated in the energy functionnal and turns
the system into a non-consertative one. (c) And finally the hyperbolic one (Eq. 3), including a damage
inertia ρd related to the damage field. This form is derived from a Lagrangian function including a new
kinetic energy associated to a damage inertial effect ρd

2 ḋ2.

ρd d̈ +ηḋ +g′(d)H(u)+Gc

(
w′(d)
cwlc

−2lc∇
2d
)
= 0 on Ωd , (3)

For an explicit time integration scheme a critical time step exists above which the stability cannot be
ensured. In the general case, the time step of hyperbolic PDEs evolves linearly with the smallest mesh
size h compared to a quadratic evolution h2 for parabolic formulations. The time step resulting from the
damage equation of the phase field models shows a dependence on material and energetic parameters
such as the positive elastic energy density, Ψ+

(
ε(u),d

)
. This point can be a drawback in the resolution

because it drastically reduces the critical time step at the crack initiation and during crack propagation.
Some studies of the literature based on a fully explicit resolution proposed approximated expressions of
the critical time step. The time steps used in their resolution are small enough to satisfy the stability,
although they don’t follow a rigorous analysis on the critical time step.

The physical evolution induced by parabolic and hyperbolic formulation is another aspect often un-
clear in damage fracture modelling. Although the parabolic and hyperbolic PDE enable to control time
evolution of crack propagation, they are generally used to model different phenomena. Indeed, the
parabolic one describes a diffusive behavior with a damage velocity weighted by viscous parameters.
Whereas the hyperbolic one describes wave propagation mechanisms featured by a viscosity and an in-
ertia related to damage field. An interesting comparison has been initiated by Kamensky [7] between the
elliptic and the hyperbolic formulations. He proposed some guidelines in the choice of the parameters in
the hyperbolic form of the equation. The difficulty remaining today is to bring physical interpretation of
these choices.

To deal with these issues, one of the objectives of the present work is to provide first indicators in
the use of parabolic and hyperbolic governing equations solved with explicit time integration schemes.
Meanwhile, the first results will help to determine to what extent the approximated critical time steps are
sufficient to ensure the stability condition of the explicit resolution schemes.
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1.2 Implementation

To solve the variational phase-field problems, three staggered strategies have been implemented, depend-
ing on the damage governing equation used. Staggered methods allow to propose different resolution
schemes for each equation of the coupled problem. For the all the resolution, an explicit, central dif-
ference time intergration scheme is used to solve the hyperbolic mechanics PDE. Regarding the damage
evolution, three alternatives are studied:

• An elliptic damage evolution. To provide generic programming, a standard Newton-Raphson
method is chosen, although the current form is linear.

• A parabolic evolution. The forward Euler time integration methods is used. A lumped "damping"
matrix is used in the resolution.

• A hyperbolic evolution. A verlet time integration scheme is applied with a lumped damage inertia
matrix.

Since the study considers different PDE involving different time integration methods, a versatile nu-
merical toolbox has been implemented. Figure 1 illustrates some strategies of resolution for a coupled
system of equations. The simulation are carried out on FEniCSx [8], a set of open-source C++ libraries
interfaced with python which provides an efficient framework to solve variational problems.
The integration of the constitutive laws is handled by a code generator named MFront [9]. This library
enables to achieve to a more portable code.

(a) A python workflow module for solving coupled
problem.

(b) Python module application of cou-
pled problem resolution.

Figure 1: Toolbox implementation interfaced with FEniCSx for solving different phase field fracture cou-
pled equations. (1a) Initialization of the displacement and damage fields, formulation of the gouverning
equations and resolution of these formulations with two possible time integrator. (1b) Two instances of
resolution strategies. The first one proposes an explicit central difference scheme to solve the mechanical
equation and a Newton-Raphson method for the standard elliptic equation of the damage field. The sec-
ond one illustrates the resolution of two hyperbolic coupled formulations with explicit time integration
scheme for each equation.

Aside the development of the toolbox, an analytical analysis was performed on the parabolic and
hyperbolic PDE to assess the damage critical time step. The resulting time steps show a dependence
on material and energetic parameters. Although most of the work in the literature succeed in using
approximate time stepping, the knowledge of rigorous time step is important in case of stability issue
encountered during the simulation.
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2 Simulations and results

2.1 Tensile testing of a bar

Simulations of a tensile test on a bar have been carried out to better understand the influence of the model
parameters in the damage formulations. We consider a fixed damage inertia ρd in the hyperbolic model
according to an expression proposed in the literature [7]. As shown in Figure 2, hyperbolic and parabolic
models introduce a delay effect in the crack onset compared to the ellitpic solution. In terms of energy, an
increase of the viscious η parameter induces more stored energy and slows down the fracture dissipative
process. With a hyperbolic model in figure (2b), a higher value of this η parameter is required to reduce
the oscillating behaviour induced by the wave-propagation inevitably induced by the formulation itself.
Indeed, we need to satisfy a overdamped condition to prevent from causing a nonphysical reversibility
of the damage evolution.

In the parabolic case, figure (2a), a decreasing viscosity induces a behavior that tends to the reference
solution. However, the critical time step is expressed as a linear function of this parameter. Therefore, the
viscosity η must not be set too small to avoid a small time step and thus a slow computational resolution
(2d).
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(a) Damage viscosity effect on the phase field model
with a parabolic damage formulation
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(b) Damping effect of the η parameter on the phase
field model with a hyperbolic damage model
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(c) Comparison of elliptic, parabolic, and hyperbolic
model at fixed η and ρd model parameters

(d) Time step evolution for an elliptic, a parabolic
and hyperbolic damage PDE

Figure 2: Energy balance comparison of the tensile testing of a bar for different phase field models and
influence of the damage η parameter on the physical behavior of the model and on the time computational
cost.
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2.2 Kalthoff and Winkler test

Figure 3: Kalthoff et al. test with hyperbolic damage
formulation

The three implemented models have been also
tested on the Kalthoff and Winkler test [10]. One
half of the plate is modeled due to the assumption
of symmetrical behavior and is descretized with
≈ 1M elements. We take into account in the ma-
terial law an asymmetric fracture behavior in trac-
tion and compression. This results in strain energy
density split based on an orthogonal decomposi-
tion [11]. This decomposition not only preserves
the variational formalism of the phase field frac-
ture model but also allows to extend the analysis
to anisotropic materials. The viscous parameter η

is set to 10 Pa.s in both hyperbolic and parabolic
cases. The simulation results of the three dam-
age governing equations show qualitatively simi-
lar crack orientations and are in good agreement
with the experiments.

3 Conclusion and discussion

These studies aim to propose a robust and an efficient resolution of a varitional phase field fracture
formulation with an explicit time integration scheme. So far, several fully explicit strategies have been
implemented and we show that each of them comes with many issues : (a) the parameter setting and (b)
the time step to use.

This paper shows first results in the use of these different models, solved with explicit methods. In
terms of the physical model, all PDE’s seem to show globally similar qualitative results. Nonetheless, for
hyperbolic PDE, the wave propagation behavior needs to be closely monitored. Indeed, the crack initia-
tion and his propagation seems to be delayed by the features of this formulation but it is compensated by
the used of a higher time step. In comparison with the parabolic model, the damage can evolve faster by
the decrease of the viscious parameter but it is to the detriment of a slower computational time to satisfy
the stability of the resolution scheme.

A comprehensive post-processing based on a crack velocity analysis is currently under development
in order to bring more rigorous conclusions between the two parabolic and hyperbolic damage formu-
lations both solved with an explicit time integration scheme. Indeed, the crack velocity seems to be a
key element to help in the development of a criteria on the damage viscosity η and damage inertia ρd
parameters.
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