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Abstract — We present recent developments in Nitsche-type methods for certain contact and friction
problems. We recall the parameterization of the Nitsche method in the case of a unilateral contact with
Coulomb friction in elastoplasticity. Some 3D industrial examples under SYSTUS/ SYSWELD are also
shown.
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1 Introduction

Frictional, elasto-plastic multi-body contact problems play an important role in mechanical engineering.
The non-linearities caused by geometric contact and frictional constraints, combined with the non-
linearity in the material law, result in challenging numerical problems in the form of variational inequalities.
For which, efficient solving methods are needed. Numerical methods for contact problems have been an
active field of research for many years, yet new methods continue to emerge. Probably the youngest
member of this research family is Nitsche’s method, see [12], [11], [10]. Originally introduced for
the weak imposition of boundary conditions, it has since been applied to various interface-coupled
problems. The first application to contact mechanics was presented in [19], and a mathematical analysis
for linearized kinematics has been published by F. Chouly, P. Hild, and Y. Renard in [4], [6], and
[5]. Unlike other methods such as Lagrangian or penalty methods, Nitsche’s method is simultaneously
variationally consistent (and therefore optimally convergent) and does not introduce any additional degrees
of freedom [9]. No Lagrange multiplier is needed, and no discrete inf-sup condition must be fulfilled,
contrary to mixed methods. This comes at the expense of having to evaluate the boundary traction
from the continuum stresses. Additionally, more advanced variants require an adjoint term, including
the stresses computed from the test function, to obtain, depending on a parameter, either a symmetric
variant or a skew-symmetric variant, which is stable for any positive penalty parameter, see [2], [3]. Very
recently, the first application of Nitsche’s method to finite deformation elasto-plastic contact problems
has been presented in [18].

In this note, we describe the use of Nitsche’s method to prescribe contact (with or without Coulomb
friction condition) between two elasto-plastic bodies. This corresponds to a weak integral contact
condition which has some similarities with the ones using Lagrange multipliers. The goal of this note is
to present how different industrial cases in SYSTUS/SYSWELD have utilized Nitsche’s method to solve
some contact problems within the small deformations framework. The approximation strategy proposed
here was first implemented in the open-source finite element library GetFEM [13] for small and large
elastic or hyperelastic contact, with or without friction.

2 The unilateral contact problem : master-slave formulation

In this section, we present the strong and weak formulations of the studied frictional two-body contact
problem with an elasto-plastic material law and linear isotropic hardening. We consider two deformable
bodies Ωα, α = 1 or 2; these are domains with piecewise C1 boundaries included in Rndim, where
ndim = 2 or 3, representing the reference configurations of two elastic bodies. The boundary Γ1 of
Ω1 (and Γ2 of Ω2 respectively) is divided into three non-overlapping parts: Γ1,C, the slave potential zone
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of contact with meas(Γ1,C) > 0 (and Γ2,C, respectively, with meas(Γ2,C) > 0); Γ1,N , the Neumann part
(and Γ2,N respectively), and Γ1,D, the Dirichlet part with meas(Γ1,D) > 0 (and Γ2,D, respectively, with
meas(Γ2,D)> 0).

The two bodies are subjected to volume forces f⃗ = (⃗f1 ,⃗ f2) on Ω1 ×Ω2, to surface loads ℓ⃗ = (⃗ℓ1, ℓ⃗2)
on Γ1,N × Γ2,N and satisfy non-homogeneous boundary Dirichlet conditions on Γ1,D × Γ2,D, with the
displacement being prescribed to the given value u⃗D = (⃗u1,D, u⃗2,D).

Superscript 1 denotes the slave surface and superscript 2 denotes the master surface. X⃗ is the position
of a point on the slave surface Γ1,C and Y⃗ is its closest point projection on the master surface Γ2,C.

We are interested in the displacements u⃗ = (⃗u1, u⃗2) and assume small (elasto-plastic) deformations
for the two bodies.

Definition 2.1 Let Ω0
α = Ωα be the reference configuration of the deformable solids in a space of

dimension ndim = 2 or 3. A deformed configuration Ωt
α of the considered solids can be defined through a

transformation known as motion or deformation ϕ which maps any point X⃗ of the reference configuration
to a point x⃗ of the deformed one. We define the displacement u⃗ relatively to the reference configuration
as:

u⃗(⃗X) := φ⃗(⃗X)− X⃗ = (φ⃗− id)(⃗X), with : x⃗ := φ⃗(⃗X).

The displacement is defined as the difference between the reference and the current configuration. The
velocity of a material point is the derivative of the motion with X⃗ fixed :

v⃗(⃗X, t) =
∂

∂t
(φ⃗(⃗X, t)) .

In the deformed configuration Ωt
α, at time t, different portions of the boundary ∂Ωt

1 of Ωt
1 may come

into contact and interact with Ωt
2. A non-penetration condition on the deformed contact surfaces Γt

1,C

and Γt
2,C can be expressed with the help of a mapping function linking a point X⃗ to its mapping Π(⃗X).

We denote by Γt
α,C ⊂ Γt

α (resp. Γ0
α,C ⊂ Γ0

α) the set of points X⃗ (resp. X⃗) in the deformed (resp. reference)
configuration. Recall that points X⃗ and x⃗ have dimensions of ndim; X⃗ represents Material or Lagrangian
coordinates, while x⃗ represents Spatial or Eulerian coordinates.

Definition 2.2 The term small perturbation hypothesis (or even the small displacement hypothesis) comprises
the assumptions of small displacements, infinitesimal transformations, and infinitesimal deformations,
which enables us to proceed with the physical linearization of the constitutive law for the material.

Then, the linearized strain tensor field is given by ε(⃗u) =
1
2
(∇⃗u+ ∇⃗u⊤)

The displacements u⃗ = (⃗u1, u⃗2) fulfill the following conditions for α = 1,2 :

ε(⃗uα) = Hασ(⃗uα)+εα,plas in Ωα (1)

Relation (1) describes the material law, relating the linearized strain ε(⃗uα) to the stress σ(⃗uα). The
strain is divided into an elastic part Hασ(⃗uα), where Hα is the fourth-order symmetric elasticity tensor
(compliance tensor corresponding to isotropic material that satisfies the usual uniform ellipticity and
boundedness properties), and a plastic part εα,plas.

Then, the stress tensor field σ = (σi j)1≤i, j≤d=2 or 3 is given by

σ(⃗u) = H−1
α (ε(⃗u)−εα,plas).

Consequently, the displacement u⃗ = (⃗u1, u⃗2) on Ω1 ×Ω2 must satisfy the following set of equations,
apart from the contact condition, which will be described later:

Find u⃗ = (⃗u1, u⃗2) satisfying
−divσ(⃗uα) = f⃗α in Ωα,

σ(⃗uα) = H−1
α (ε(uα)−εα,plas) in Ωα,

εα,plas(τ −σ(⃗uα))≥ 0, ∀τ with Fα,iso(τ, |εα,plas|F)≤ 0 in Ωα,
u⃗α = u⃗α,D on Γα,D,

σ(⃗uα)⃗nα = ℓ⃗α on Γα,N .

(2)
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The deviatoric part of a tensor τ is denoted by τdev := τ− 1
d tr(τ)Id×d and | · |F denotes the Frobenius

norm. The yield function Fα,iso is defined as Fα,iso = |τdev|F − (σ0
α + ξα,isoη) , where σ0

α is the yield
stress and ξα,iso is the isotropic hardening parameter. It is important to note that the complementarity
condition ensures that plastic strain may only occur if the yield function equals zero.

Now, concerning the contact conditions, let us introduce some important definitions.

Definition 2.3 Π denotes the orthogonal projection from the slave boundary Γ1,C onto the master boundary
Γ2,C:

Π :
Γ1,C → Γ2,C

X⃗ 7→ Π(⃗X) = Y⃗.
(3)

Remark 2.1 The operator Π is assumed to be a C1 one-to-one correspondence on Π(Γ1,C) (this hypothesis
is satisfied, for instance, when Γα,C is convex and C1 for α ∈ {1,2}).

Definition 2.4 The outward unit normal vector on Γ1,C is denoted by n⃗1 or n⃗X .
The outward unit normal vector on Γ2,C is denoted by n⃗2.
The outward unit normal vector for the contact condition, denoted by n⃗Y , is chosen to be that of Γ2,C:

Y :
Γ1,C → Rd

X⃗ 7→ n2(Π(⃗X)).

The orthonormal basis, denoted by (⃗t1 ,⃗ t2), is the contravariant tangential basis vector defined at the
point Y⃗ = Π(⃗X) on the master surface.

Definition 2.5 The initial gap g0 between Γ1,C and Γ2,C is defined as the distance function:

g0 :
Γ1,C → R
X⃗ 7→ (⃗X1 −Π(⃗X1)) · n⃗Y .

(4)

Remark 2.2 The gap function, corresponding to ray-tracing with respect to a point x, is defined by:

g :
Γ1,C → R
X⃗ 7→ (⃗X1 −Π(⃗X1)) · n⃗1.

(5)

Definition 2.6 For a displacement field u⃗ = (⃗u1, u⃗2) defined on Ω1 ×Ω2, the normal jump on the slave
boundary Γ1 for the normal displacement is defined as follows: [[·⃗n]] = (⃗u2 ◦Π− u⃗1) · n⃗.

Concerning the normal stress, we define

σ(⃗u1)⃗n1 =−σn(⃗u1)⃗n1 +σt (⃗u1) with σn(⃗u1) = σ(⃗u1)⃗n1 · n⃗

where n⃗1 is the unit normal vector defined at point X⃗ (in the discretized configuration, its orientation
dependes on the orientation of the node numbering for each element), and σt (⃗u1) is the frictional traction
applied to the master surface by the point X⃗ on the slave surface.

Furthermore,

σ(⃗u2 ◦Π)n2 ◦Π = σn(⃗u2 ◦Π)⃗n+σt (⃗u2 ◦Π) with σn(⃗u2 ◦Π) = σ(⃗u2 ◦Π)n2 ◦Π · n⃗.

Definition 2.7 This allows us to define the normal stress jump as [[σ(⃗u)⃗n]] = σ(⃗u1)n1 +σ(⃗u2 ◦Π)n2 ◦
Π |det(JΠ)|,withJΠ denoting the Jacobian matrix of Π.

With these jumps defined, the unilateral frictional contact conditions can be expressed on the slave
boundary Γ1,C as follows:
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

[[⃗u · n⃗]]≤ g (i),
σn(⃗u1)≤ 0 (ii),

σn(⃗u1)([[⃗u · n⃗]]−g) = 0 (iii),
[[σ(⃗u)⃗n]] = 0 (iv),

∥σt (⃗u)∥ ≤ −Fσn(⃗u) if dt = 0, (v).

σ⃗t(⃗u) = Fσn(⃗u)
dt

∥dt∥
if dt ̸= 0 (vi).

(6)

Equations (6)(v) and (vi) represent the Coulomb friction conditions. To formulate these friction
conditions, a coefficient of friction, denoted by F ≥ 0, is necessary, along with a rigorous notion of
sliding velocity. However, in a quasi-static evolution context, instead of a sliding velocity, we use a
tangential displacement increment, denoted by dt . Duvaut and Lions (1972) describe the expression
dt(u1,u2) = (I−n⊗n)[[u]], which, despite being somewhat artificial, exhibits the same characteristics as
those obtained for an expression of dt derived from a time discretization, expressed as:

dt(u1,u2) = (I −n⊗n)([[u]]− [[u0]])

where [[u0]] is the displacement jump at the previous time step.
Now, let us introduce the Hilbert space V and the convex cone K of admissible displacements:

V := H1(Ω1)
d ×H1(Ω2)

d ,

K := {δ⃗u = (δ⃗u1, δ⃗u2) ∈V | δ⃗u1 = u⃗1,D on Γ1,D and δ⃗u2 = u⃗2,D on Γ2,D | [[δ⃗u · n⃗]]−g ≤ 0 on Γ1,C}.

We assume that f⃗ = (⃗f1 ,⃗ f2) belongs to L2(Ω1)
d ×L2(Ω2)

d , ℓ⃗= (⃗ℓ1, ℓ⃗2) belongs to L2(Γ1,N)
d ×L2(Γ2,N)

d ,
and u⃗D belongs to H

3
2 (Γ1,D)

d ×H
3
2 (Γ2,D)

d .

Definition 2.8 We introduce a primal-mixed formulation of the elasto-plastic two-body contact problem
and project the stresses onto the admissible set by the plastic projector :

P (τ) :=


τ if |τdev|F ≤ σ0

α(
ξα,iso

2Gα +ξα,iso

)
+
(

1− ξα,iso

2Gα +ξα,iso

)
σ0

α

|τdev|F
τ

dev +
1
d

tr(τ)Id×d if |τdev|F ≥ σ0
α

(7)

with the shear modulus Gα of the α-th body material.

We consider a test function1 δ⃗u in the space of all (smooth) admissible variations of u⃗ satisfying
possibly homogeneous Dirichlet/Newmann conditions on the appropriate part of ∂Ω.

Definition 2.9 We define the semi-linear form W int
(., .), called the internal virtual work (associated to

the internal energy E int), the linear form W ext
(.), called the external virtual work, and we denote by

W cb
(., .) the contact (including Dirichlet boundary conditions) virtual work :

Wint (⃗u, δ⃗u) := ∑α=1,2
∫

Ωα
σ(⃗uα) : ε(δ⃗uα) dΩ = ∑α=1,2

∫
Ωα

P (H−1
α ε(⃗uα)) : ε(δ⃗uα) dΩ = δE int (⃗u) =

∂⃗uE int(δ⃗u)
Wext(δ⃗u) := ∑α=1,2

∫
Ωα

f⃗iδ⃗uα dΩ+∑α=1,2
∫

Γα,N
ℓ⃗αδ⃗uα dΓ

W cb := W c
+W b with W c

(⃗u, δ⃗u) =
∫

Γ1,C
σn(⃗u1)[[δ⃗u · n⃗]] dΓ.

Following [3] and [8], one can derive for the general elasto-plastic case by replacing the contact and
frictional constraints, leading to a mixed formulation of the form:

1or a virtual displacement u⃗∗ = u⃗+ δ⃗u, with operator δ verifying the following properties:

δδ⃗u = 0, δ(∇⃗u) = ∇δ⃗u, δ

∫
Ω

u⃗dΩ =
∫

Ω

δ⃗udΩ, δ⃗u = 0 on ΓD.
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
Find (⃗u, λ⃗n, λ⃗t) ∈V ×Λn ×Λt such that

W int
(⃗u, δ⃗u)+Bn(⃗λn, δ⃗u)+Bt (⃗λt , δ⃗u)≥ W ext

(δ⃗u− u⃗) ∀δ⃗u ∈V
Bn(µ⃗nλ⃗n, u⃗)+Bt(µ⃗nλ⃗n, u⃗)≥ ⟨µ⃗nλ⃗n,g⟩Λn ∀(µ⃗n, µ⃗t) ∈ Λn ×Λt .

(8)

Here, the dual normal cone and the frinctional tangential cone are defined as follows::

Λn := {µ ∈ H1/2(Γ1C) / µ ≤ 0a.e.}′ and Λt = {µ ∈ H1/2(Γ1C) / ∥µ∥H1/2 ≤ F a.e.}

where ⟨., .⟩Λn denotes the dual pairing on Λn. The bilinear forms that incorporate the contact and frictional
conditions are defined by Bn : Λn ×V −→ R, Bn(µ⃗, w⃗) := ⟨µ⃗, [[⃗w]]n⟩Λn ,

Bt : Λt ×V −→ R, Bt(µ⃗, w⃗) := ⟨µ⃗,F [[⃗w]]t⟩L2(Γ1C).

3 Nitsche’s Method Formulations

Augmented Lagrangians and Lagrangians are constrained optimization tools that were naturally applied
by Rockafellar (1974-1976) to contact problems involving deformable solids. The augmented Lagrangian
method has since become widely established for the approximation and resolution of contact problems
in both small and large strains, mainly following the research of Curnier and Alart (1988-1991) and
Simo and Laursen (1992). The method proposed by Nitsche (1971) was initially designed to allow for
a Dirichlet-type boundary condition to be weakly enforced, specifically avoiding the use of Lagrange
multipliers. It has only recently been extended to contact conditions, with or without friction, by Chouly
and Hild (2013). The close connection between Nitsche’s method and Lagrangian methods is quite clear,
and the objective of [9] is to shed some light on this relationship. In this section, assuming that both the
solution u⃗ and the test functions δ⃗u are sufficiently regular, we derive from the equilibrium equations and
Green’s formula:

Wint (⃗u, δ⃗u)−∑α=1,2
∫

Γα,D
σn(⃗uα)⃗nα · δ⃗uα dΓ−

∫
Γ1,C

σn(⃗u1)[[δ⃗u · n⃗]] dΓ = W ext
(δ⃗u).

3.1 Nitsche’s Formulation of General Elasto-Plastic Constitutive Law with Friction

Let θ ∈ R be a fixed parameter used to recover different variants of the Nitsche method, as in the linear
elastic setting (see article [5]). With the splitting [[⃗u · n⃗]] = ([[⃗u · n⃗]]−θγDσn(⃗u)(δu))+θγDσn(⃗u)(δu)),

As presented in [6] for Tresca friction, we could reformulate the Coulomb friction condition using
the projection IPB(0,τ). In fact, for a given positive function γ, the friction condition is equivalent to the
non-smooth equation:

σ⃗t(⃗u) = PB(−Fσn (⃗u))(σ⃗t(⃗u)− γ ˙⃗u). (9)

To simplify notations, let use denote by IPn,F the map corresponding to a pair of projections:

IPn,F (⃗x) =−(⃗x · n⃗)−⃗n+ IPB(0,F (⃗X·⃗n)−)(⃗x− (⃗X · n⃗)⃗n). (10)

This application projects the normal part of x onto R− and the tangential part onto the ball B of center 0
and radius F (⃗X · n⃗)−, where F is the friction coefficient.

As a result, contact and friction conditions, in the case of projection, are formulated as:

σn(⃗u) = IPn,F(σn(u)−
Qu
γ

+
g
γ

n+
qwT

γ
). (11)

and Q is the ndim×ndim matrix

Q := αIndim +(1−α)⃗n⃗n⊤

We shall consider that the sliding velocity is approximated by q(uT −wT ), where the expression of
q and wT depend on the time integration scheme used. Using this operator, we obtain the equilibrium
equation :
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
W int

(⃗u, δ⃗u)− ∑
α=1,2

∫
Γα,D

σn(⃗uα)⃗nα · δ⃗uα dΓ−
∫

ΓC1

θγσn(u1) ·Dσn(u1)[v]dΓ

+
∫

ΓC1

γIPn,F(σn(u1)−
Qu
γ

+
g
γ

n+
qwT

γ
) · (θDσn(u1)[v]−

v
γ
)dΓ = W ext

(δ⃗u).
(12)

Remark 3.1 Note that, for the numerical solving, when θ ̸= 0, the tangent system involves the second-

order derivative: D2σ(⃗u)[δ⃗u,
∗
u⃗], which can be very complex for non-classical constitutive laws. This

emphasizes the interest in the non-symmetric variant θ = 0, for which the method is simpler. As in
the small strain case [4], the interest of the symmetric variant θ = 1 lies mostly in its derivation from a
potential (see [2], [5]) and the symmetry of the tangent problem, while the interest in the skew-symmetric
variant θ =−1 lies in its robustness with respect to the Nitsche parameter γ (see [3]).

Using this, Nitsche’s contact term, corresponding to the virtual contact work for contact with friction,
reads as :

W c
=−

∫
ΓC1

θγσn(u1) ·Dσn(u1)[v]dΓ+
∫

ΓC1

γIPn,F(σn(u1)−
Qu
γ

+
g
γ

n+
qwT

γ
) · (θDσn(u1)[v]−

v
γ
)dΓ.

Remark 3.2 In [8], the Nitsche-based finite element method for contact with Coulomb friction, considering
both static and dynamic elastic situations, is studed. In the dynamic case, existence and uniqueness of
the space semi-discrete problem are guaranteed for every value of the friction coefficient and the Nitsche
parameter. In the static case, if the Nitsche parameter is is sufficiently large, existence is ensured for
any friction coefficient, and uniqueness can be obtained provided that the friction coefficient is below a
bound dependent on the mesh size.

Remark 3.3 From [9], we understand that Penalty methods, which replace the set of inequalities associated
with contact with a non-linear inequality approximating them, remain primal and are easy to implement.
However, consistency is compromised as a small amount of penetration, controlled by the penalty parameter,
is allowed. Additionally, the selection of the penalty parameter requires careful consideration. Indeed,
as the penalty parameter is decreased to enhance the approximation of contact conditions, the discrete
problem becomes stiffer and ill-conditioned, potentially causing iterative solvers such as semi-smooth
Newton methods to fail to converge. It is observed that the non-penetration condition is more effectively
respected with the Nitsche method. Furthermore, it is noted that the stress approximation is affected
by spurious oscillations in frictional problems, which are more pronounced in the case of the penalty
method.

Remark 3.4 The parameter γ, appearing as a penalization parameter in the penalized formulation, as
an augmentation parameter in the augmented Lagrangian formulation, and as a Nitsche parameter in the
formulation in (12), plays a rather similar role across all three approaches. While the numerical solution
is relatively unaffected by the value of γ in both the augmented Lagrangian and Nitsche formulations,
a minimum value must be maintained in the Nitsche method to preserve problem coercivity. For the
penalty method, a balance must be struck between a large value of γ that ensures a good approximation
of the contact and friction conditions, and a moderate value that does not hinder the convergence of the
Newton method. Although the concerns differ across the three approaches, the optimal values of γ are
similar. A priori error analyses, within the framework of small strains for both the Nitsche method [5]
and the first-order convergence of the penalty method [7], indicate a dependency on γ = γ0/h, where h
is the mesh size. Furthermore, the study by [17] and the dimensional analysis conducted in [15] in the
context of the augmented Lagrangian conclude that γ0 has the dimension of an elastic modulus. It is thus
quite natural to choose γ = K/h where K = λ+ 2

3 µ represents the bulk modulus (with λ and µ denoting
the Lamé coefficients). Notably, for the Nitsche method applied to large strains, this value may not be
sufficient to ensure coercivity. Indeed, when deformations are significant, the value of γ0 should rather
be linked to the maximum value of the tangent moduli of elasticity.
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4 Numerical Results

We conclude this note with numerical results aimed at testing different models, utilizing classical finite
element discretization of the previously discussed Nitsche method, implemented in SYSTUS/SYSWELD.

Figure 1: Clip details : elastoplastic contact

Figure 2: spring : elastoplastic multi-auto-contacts

In this work, we employ segment-to-segment integration on each slave element and enforce contact
constraints at each slave element. Following the approach in [15], all integrals related to contact are
evaluated using Legendre-Gauss quadrature on the faces of the mesh elements that comprise the slave
surface. The choice of Gauss points is advantageous as they outnumber the nodes per element, and
calculations are inherently performed at these points. To facilitate contact analysis, a pair is formed by
a point on a slave (or master, in cases of self-contact) surface and a corresponding projected point on
the nearest master surface (or rigid obstacle). Contact detection then proceeds independently at each
quadrature point, allowing for the possibility that different quadrature points on the same slave surface
element face may correspond to points on various faces of the master surface. For efficient identification
of candidate master element faces opposite a given quadrature point, we utilize a simple heuristic method
involving R-tree organized influence boxes, achieving logarithmic computational complexity. The user
documentation of GetFEM, as referenced in [14], provides additional details on the heuristic criteria
applied for contact detection.
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