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Abstract — This research work deals with error estimation and mesh adaptation in finite element simu-
lations. The finite element method introduces errors compared to the exact solution when solving partial
differential equations, and it is crucial to identify, control and reduce them to obtain a reliable numeri-
cal approximation. We propose to use optimal transport techniques for mesh adaptation, by relocating
mesh vertices based on local error indicators to their optimal position, thus yielding error-conscious mesh
adjustments. Numerical experiments are provided to illustrate the performance of the proposed approach.
Keywords — numerical simulation, finite elements, mesh adaptation, optimal transport.

1 Introduction

The numerical results provided by approximation methods for partial differential equations such
as the finite element method are tainted with errors compared to the exact solution of the problem.
These errors can come from multiple sources e.g. discretization, numerical linear algebra, linearization,
uncertainties in the input data. After carrying out a numerical simulation, it is then essential to control
the error in order to certify the numerical results. We thus generally perform an estimation procedure
aiming at quantifying this error, and, if necessary, a new adapted approximation space is produced in
order to reduce this error and obtain more reliable results [1, 2, 3, 7]. The main objective of this work is
to improve this estimation-adaptation procedure.

We propose to use techniques from the optimal transport community for optimal mesh refinement.
The idea stems from the observation that during a standard estimation-adaptation procedure, the errors
tend to be equally distributed among the elements. Indeed, starting from a uniform mesh exhibiting non-
uniform errors, the procedure tends to produce a non-uniform mesh exhibiting uniform errors. In optimal
transport, the objective is to estimate the lack of uniform density and to obtain a transformation to pro-
duce a uniform density. The optimal transport theory defines a metric over the space of finite measures
allowing to continuously modify a measure (e.g. a Gaussian measure) into a target measure (e.g. a uni-
form measure) [5, 6]. We thus anticipate that meshes generated using optimal transport techniques could
compete with those obtained using standard adaptation procedures by explicitly targeting the objective
of equidistributing the errors.

To this end, after presenting the model problem and notations in Section 2, we introduce in Section 3
our method for uniformizing the error by relocating mesh vertices using an optimal transport approach.
Then in Section 4 we combine this idea with the more standard h-adaptive algorithm thus yielding an
hr-adaptive method. Numerical examples on selected academic problems are provided in Section 5.

2 Model Problem and Notations

Consider an abstract problem written in weak form as

Find u ∈V such that a(u,v) = f (v), ∀v ∈V, (1)

where (V,∥ · ∥) is a Hilbert space, and bilinear form a and linear form f satisfy the usual regularity
assumptions : a is continuous and coercive and f is continuous over V . This problem will be referred to
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as the primal problem and its well-posedness is ensured by the Lax-Milgram theorem.
We now turn to the finite element formulation of the primal problem (1). Here, and in the remainder

of the abstract, we consider a general conforming finite element space Vh = span{ϕi}N
i=1 ⊂V , where ϕi,

i = 1, . . . ,N, are basis functions of Vh, e.g. the standard linear shape functions associated to a collection
of N vertices Y = {yi}N

i=1. The classical finite element problem associated to the primal problem (1) is
given by

Find uh ∈Vh such that a(uh,vh) = f (vh), ∀vh ∈Vh.

The discretization error eh associated to the finite element solution uh is defined by

eh = ∥u−uh∥. (2)

The standard approach in error estimation and adaptivity proceeds in three main steps : estimate,
mark, refine. First, local estimates of the error are computed for each element K, for instance eh =√

∑K e2
h,K =

√
∑K ∥u−uh∥2

K , where ∥ · ∥K is a local norm on element K. Among the local contribu-
tions eh,K , the largest ones are marked for refinement and the corresponding elements are refined usually
by splitting them in the middle. This defines a new approximation space where a new finite element
solution can be computed.

Of course in practice the exact solution u is usually unknown, and we rely on a refined approxima-
tion ũh defined as the solution of

Find ũh ∈ Ṽh such that a(ũh, ṽh) = f (ṽh), ∀ṽh ∈ Ṽh,

where Ṽh is an intermediate space between Vh and V : we have Vh ⊂ Ṽh ⊂ V . In our numerical expe-
riments, we will take as Vh the space spanned by linear shape functions, while Ṽh can be spanned by
quadratic shape functions. The local contributions eh,K can then be replaced by the computable contri-
butions ẽh,K = ∥ũh − uh∥K . We note that there are more advanced techniques for estimating the local
errors, e.g. equilibrated flux reconstruction [3]. However, the focus of the present study is primarily
on mesh adaptation, and thus for simplicity we use the exact error eh =

√
∑K e2

h,K or the error estima-

tor ẽh =
√

∑K ẽ2
h,K .

3 An r-Adaptive Method Based on Optimal Transport

In this section, we introduce the proposed relocation method. For simplicity, we present the ideas in
a 1D setting, but the method naturally extends to higher dimensions.

Starting with a given mesh Y with N vertices, ideally we would like to find the optimal position of
the N −2 interior points that minimizes the error (2). As stated in the introduction, standard approaches
in the estimation-adaptation community tend to produce meshes where the local contributions eh,K are
more or less equal ; indeed the meshes obtained have large elements where the solution is smooth, while
smaller elements are needed where the solution is more rough. We note that minimizing is not the same
as equidistributing, nevertheless the two concepts often yield close results.

Consequently, our idea is to use techniques from the optimal transport community in order to equi-
distribute the errors.

3.1 The Vector Quantization Problem

In signal processing, the vector quantization problem (aka the optimal sampling problem) consists
in finding the collection of points Y = {yi}N

i=1 that best sample a given domain Ω relative to a specific
measure µ. In fact, this approach corresponds to the semi-discrete optimal transport problem [4], which
involves solving the following optimization problem

Find Y ∗such that Y ∗ = argmin
Y

Q(Y ), (3)
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where Q(Y ), called the quantization noise power, measures how good the points yi are at sampling do-
main Ω under measure µ and is defined by

Q(Y ) =
∫

Ω

min
i
∥x− yi∥2dµ =

N

∑
i=1

∫
Vor(yi)

∥x− yi∥2dµ,

where Vor(yi) is the Voronoi cell of yi. The measure µ should locally reflect the error so we consider in
this work dµ|K = e2

h,Khq
Kdx|K with hK the size of element K and q an integer to define later.

To solve minimization problem (3), we have to compute the gradient with respect to each optimiza-
tion variable yi, i = 2, . . . ,N −1 :

∇yiQ(Y ) = 2mi(yi −gi), (4)

where mi = µ(Vor(yi)) =
∫

Vor(yi)
dµ represents the mass of the Voronoi cell Vor(yi) and gi =

1
mi

∫
Vor(yi)

xdµ
represents the centroid of the Voronoi cell Vor(yi).

Again, we emphasize that the optimization problem (3), the quantization noise power Q as well as
its gradient computed in (4), the choice of measure µ, the Voronoi cells Vor(yi), their masses mi and
centroids gi, all naturally extend to higher dimensions.

3.2 Relocation Adaptivity with Fixed N

Starting from a given mesh with a fixed number of vertices N, we are first interested in solving
optimization problem (3), for which we considered three approaches to iteratively update the positions
of the interior mesh points. The relocation process aims at equidistributing the local errors by moving
the mesh vertices to a target location depending on measure µ, itself depending on the errors. In essence
the nodes are pursuing a moving target.

1. Direct Method : ∇Q = 0 i.e. set yi = gi, ∀i = 2, . . . ,N −1, a direct substitution following (4).

2. Gradient Scheme :

ynew,i = yold,i −
λ

2mi
∇yiQ(Yold), ∀i = 2, . . . ,N −1,

where mi is used to re-scale the step size and λ ∈ ]0,1] controls the step size, being a user-defined
parameter. Note that if we take λ = 1, we end up with the direct case ∇Q = 0.

3. Quasi-Newton’s Method :

Ynew = Yold −λ H(Yold)
−1

∇Q(Yold),

with H the approximated Hessian matrix of Q and λ ∈ ]0,1] controls the step size, a user-defined
parameter.

Unfortunately, the Direct Method often resulted in instabilities and oscillations due to the nodes
moving too quickly. Thus we resorted to using the Gradient Scheme and Quasi-Newton’s Method with
step lengths to stabilize the behavior of the method.

Performing a one-time relocation of the nodes of a mesh with a fixed value of N using one of these
methods is referred to as a single "r-step" process. In Section 5.1, we will numerically illustrate the
performance of the relocation method.

4 An hr-Adaptive Algorithm

In the previous section, we designed a relocation procedure for a fixed number of mesh points N that
can produce a mesh with equidistributed errors in the domain and overall a relatively small global error
compared to the starting mesh. However this resulting error could still be large compared to a prescribed
tolerance. Thus, we describe in this section an algorithm embedding the aforementioned r-step within a
larger h-refinement loop, hence the name hr-adaptive algorithm.
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Algorithm 1: hr-Adaptivity
Data: starting mesh Y , global error eh, local errors eh,K , tolerance ε, parameters 0 < β,γ < 1
Result: new mesh Y , new global error eh

1 while eh > ε do
2 while minK eh,K < βmaxK eh,K do
3 Relocate the nodes using one of the relocation methods
4 Compute the new finite element solution and the local errors eh,K

5 end
6 Mark the elements K where eh,K > γmaxK eh,K
7 Refine the mesh by splitting the marked elements K in half
8 Compute the new finite element solution and the errors eh,K and eh

9 end

In Algorithm 1 the parameters β and γ control respectively the equidistribution of the local errors and
the proportion of elements to be h-refined.

5 Numerical Results in 1D

These methods were implemented and tested on various academic problems including a singularity
problem (5) and a boundary layer problem (7).

The singularity problem : Find u such that{
−u′′ =−α(α−1)xα−2 on (0,1),
u(0) = 0; u′(1) = α,

(5)

where 1
2 < α < 3

2 ,α ̸= 1. The exact solution of (5) is given by (6) and represented in Figure 1a

uex(x) = xα. (6)

The boundary layer problem : Find u such that{
−εu′′+u′ = 1 on (0,1),
u(0) = 0; u(1) = 0,

(7)

where the parameter ε controls the size of the boundary layer on the right-hand side of the domain. The
exact solution of (7) is given by (8) and represented in Figure 1b

uex(x) = x− e−1/ε − e(x−1)/ε

e−1/ε −1
. (8)

(a) Exact solution of the singularity problem with
α = 0.52.

(b) Exact solution of the boundary layer problem
with ε = 0.01.

FIGURE 1 – Exact solutions of problems (5) and (7).
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All the numerical results presented in Section 5 were obtained using the exact errors eh,K . Note that
we also conducted experiments using estimates ẽh,K rather than exact errors (not shown) and obtained
very similar results. We also implemented and tested the relocation algorithm using entire patches instead
of Voronoi cells (not shown) and obtained very similar results.

5.1 r-Adaptive Numerical Results

To investigate the performances of the relocation methods described in Section 3.2, we applied them
to the problems (5) and (7) and obtained the best results in terms of number of iterations and stability
using Quasi-Newton’s Method. See Figures 2 and 3.

(a) Trajectories of small number of nodes N = 5. (b) Trajectories of larger number of nodes N = 11.

FIGURE 2 – Node trajectories (positions with respect to r-iteration numbers) for the singularity pro-
blem (5) using Quasi-Newton’s Method with q =−2 and step length λ = 1.

(a) Trajectories of small number of nodes N = 5. (b) Trajectories of larger number of nodes N = 11.

FIGURE 3 – Node trajectories (positions with respect to r-iteration numbers) for the boundary layer
problem (7) using Quasi-Newton’s Method with q =−2 and step length λ = 0.5.

As can be observed qualitatively in Figures 2 and 3, the nodes tend to move to the regions where the
solution is not smooth. In quantitative terms, the relative exact errors decrease from 34.54% to 31.19% in
Fig. 2a, from 33.91% to 24.64% in Fig. 2b, from 27.38% to 3.03% in Fig. 3a and from 16.8% to 1.14%
in Fig. 3b.

5.2 hr-Adaptive Numerical Results

We now apply Algorithm 1 to the two problems described above and display in Figure 4 the exact
errors with respect to the number of mesh points N using Quasi-Newton’s Method with q = −2, and
λ = 1 for the singular problem and λ = 0.5 for the boundary layer problem. Also, we set γ = 0.5 and
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β = 0.8 the parameters that controls respectively h- and r-refinements. For comparison we additionally
include the standard uniform refinement as well as the adaptive refinement strategy also with γ = 0.5.

(a) hr-adaptivity and refinement methods on the
singularity problem.

(b) hr-adaptivity and refinement methods on the
boundary layer problem.

FIGURE 4 – Exact error with respect to the number of mesh points N when applying uniform refinement,
adaptive refinement and hr-adaptivity using Quasi-Newton’s method, q = −2 and step size λ = 1 for
singular problem (left) or λ = 0.5 for boundary layer problem (right).

We observe in Figure 4 that the approach based on hr-adaptivity yields the best results, even out-
performing the standard adaptive refinement procedure in terms of number of degrees of freedom. For
both problems, the newly developed hr-adaptive method is able to recover quickly the optimal order of
convergence eh ≈CN−1, especially on the boundary layer problem where it enters the asymptotic regime
much sooner than the standard techniques.

6 Numerical Results in 2D

We have started implementing the newly developed r-adaptive approach in the 2D case and present
here preliminary results obtained on two examples. Note that these are partial results in the sense that so
far we have not yet used the discretization error to guide the movement of the nodes. Instead we used
an error defined with respect to a prescribed element size. In the first example, mimicking an interface
problem with a vertical interface placed in the middle of domain Ω = [0,10]× [0,10], the prescribed
element size is a function of x only, first linearly decreasing for x ∈ [0,5] and then linearly increasing
for x ∈ [5,10] symmetrically. In the second example the prescribed element size is a linearly increasing
radial function centered in the middle of domain Ω = [0,10]× [0,10]. We emphasize that after each
r-step, a Delaunay triangulation is performed based on the newly obtained positions of nodes in order
to control element quality. Finally, these examples were obtained using the direct method described in
Section 3.2 on entire patches rather than Voronoi cells, as we saw in the 1D cases that this did not affect
the numerical results too much. The results of the r-adaptive method are presented in Figure 5 for the
first example and in Figure 6 for the second example. We also provide in Figure 7 a close-up view of the
center of domain Ω for both problems.
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(a) (b) (c)

FIGURE 5 – Initial mesh (a), intermediate mesh (b) and final mesh (c) obtained for the first 2D problem.

(a) (b) (c)

FIGURE 6 – Initial mesh (a), intermediate mesh (b) and final mesh (c) obtained for the second 2D pro-
blem.

(a) (b)

FIGURE 7 – Zoom on the center of domain Ω for first problem (a) and second problem (b).

In all cases, we observe that the nodes are moved to the desired region of domain Ω as expected.

7 Conclusion and Future Work

We have developed a new method for relocating mesh vertices and have applied it to several problems
in 1D, namely a singularity problem as well as a boundary layer problem. We obtained very satisfying
results qualitatively, namely the nodes concentrated where the solution exhibited rough behavior. Then
we designed an hr-algorithm combining this concept with mesh refinement and applied it to the afore-
mentioned problems. Again the results were satisfying in terms of error reduction and number of degrees
of freedom when compared to standard techniques. Finally we considered 2D examples and obtained
encouraging results.
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Future work will be dedicated to a comprehensive analysis of the methods developed and the nu-
merical results obtained. We plan to test the proposed approach on more complex problems, such as
non-linear problems, the extension to higher dimensions, to higher order elements, or the application to
the estimation of quantities of interest of the solution.
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