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Résumé — This abstract focuses on the computation of a typical periodic cell problem that arises in
homogenization. This model problem is intended to be discretized on a Fourier-basis and solved using
a Fast Fourier Transform (FFT)-based iterative scheme. Such a method, which makes use of a uniform
grid and global basis functions, has inherent limitations for correctly capturing any localized features of
the solution, such as singularities or discontinuities. An adaptive method is proposed here to overcome
these shortcomings, by allowing computations on a non-uniform grid.
Mots clés — Numerical homogenization, spectral method, r-adaptivity.

1 Introduction

The macroscopic properties of heterogeneous or microstructured media can efficiently be described
and computed using homogenization methods. When the media are periodic, the numerical homogeni-
zation methods based on Fourier discretizations and the use of the Fast Fourier Transform (FFT) have
shown to be very efficient since the seminal work [6]. Over the years, the latter have been successfully
applied to a vast range of materials, with a variety of microstructure geometries and constitutive laws of
the featured constituents. The performances of the underlying iterative algorithms have also been greatly
improved to achieve faster convergence, see the review article [9]. Recently, an effort has been made to
investigate quantitatively the behavior of solutions relatively to the spatial discretization and to establish
convergence proofs for these numerical methods, see [1, 11, 10], as well as to develop a posteriori errors
estimators [4].

When considering a periodic medium governed by a, possibly non-linear, local constitutive relation
C , then approximating the solution to a static or dynamic governing equation using the two-scale asymp-
totic homogenization method [7] leads to a cascade of cell problems posed on the characteristic periodic
cell ΩP ⊂Rd . These problems all have the same structure and boil down, in acoustics, electromagnetism
or elasticity, to the following generic static problem, see e.g. [3] :

Find u ∈ H1
per(ΩP) such that


s(x) = C

(
x,g0 +gradu

)
,

divs(x)+h(x) = 0,

〈u〉ΩP = 0.

(1)

For any domain Ω with associated spatial variable ζ, the averaging operator 〈·〉Ω is defined as

〈β〉Ω =
1
|Ω|

∫
Ω

β(ζ)dζ. (2)

In computational homogenization we deal with heterogeneous media that are often composites ma-
terials with discontinuous constitutive properties. This results in sharp material interfaces and, possibly,
geometrical corners that in turn induce discontinuities or singularities in the Partial Differential Equation
(PDE) solutions. The latter are notoriously difficult to capture accurately using Fourier spectral methods,
which make use of uniform computational meshes or grids. As a consequence, it may be critical to adapt
the computations for such configurations and solutions as a lack of accuracy in the local fields can in turn
impact the accuracy of the targeted homogenized properties.
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To do so, our approach will be twofold :
(i) Compute a geometrical mapping that redistributes the points of a uniform computational grid accor-
ding to a desired density, typically concentrating grid points in the original physical domain where a
greater accuracy is required. This amounts to a r-adaptation strategy, i.e. a remeshing or relocation me-
thod.
(ii) Transport the PDE considered from the physical domain, by now discretized on a non-uniform grid, to
the computational domain where it can ultimately be solved on a uniform grid, using standard FFT-based
numerical schemes.

2 Geometrical mapping

The solution u to (1) is known to be not well-behaved in the regions where the constitutive relation
C involves discontinuous parameters, exhibiting large gradients that make it difficult to approximate ac-
curately on regular grids. Therefore, achieving high-accuracy with a given number of degrees of freedom
requires an adapted discretization that is non-uniform in space. With this issue in mind, the points x in
(1) are thought of as the points of a non-uniform discretization grid covering the physical domain ΩP.

In this context, we consider a mapping of the periodic cell ΩP to a computational domain ΩC, which
is intended to be discretized using a uniform grid. Doing so, the computations on ΩC can be perfor-
med efficiently using FFT toolboxes. To do so, we introduce an invertible and sufficiently smooth non-
homogeneous transformation ϕ such that

x=ϕ(X). (3)

The gradient of ϕ is the invertible second-order tensor F , which can be represented as the Jacobian
matrix of the transformation, defined locally as :

F (X) =
∂ϕ(X)

∂X
=

∂x

∂X
. (4)

In addition, the Jacobian J of the transformation is defined as

J(X) = detF (X).

The mapping of fields between the two domains is achieved as follows : Let t be a (tensor) field on ΩP

then we associate it with a field T defined on ΩC as

T (X) = t(ϕ(X)) = t(x),

which defines a smooth mapping t= Φ(T ). In the following, lowercase (resp. uppercase) letters will be
employed to denote quantities expressed on ΩP (resp. ΩC) according to the mapping Φ.

With the purpose of transporting a given system of PDEs formulated on the physical problem ΩP to
the computational domain ΩC we now address the transformation rules for differential operators. Upon
introducing the gradient and divergence operators Grad and Div relatively to the variable X , then the
chain rules can be used so as to obtain the following result :

gradt(x) = GradT (X) ·F−1 and divt(x) =
1
J

Div
(
T (X) · JF−T ) .

3 Optimal transport-based coordinate mapping

3.1 Problem formulation.

In a general geometrical setting, we adopt a strategy based on optimal transport, which provides
a rational framework well-suited to the grid adaptation problem. It amounts to defining some strictly
positive source and target densities s and t, respectively in ΩC and ΩP, and finding the optimal transport
mapϕ between them that minimizes a given cost. In the case where the cost is defined as the discrepancy
to the identity map in the L2-norm then this problem can be interpreted as the Monge–Kantorovich mass
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transfer problem, see e.g. [8]. When the densities are smooth, it is well-known [2] that the sought optimal
transport map ϕ can be written as the gradient of a convex potential ψ and is the unique solution to

t
(
x(X)

)
J(X) = s(X) with x=ϕ(X)

def
= Gradψ(X). (5)

The problem (5) can be simply interpreted as this of finding the (optimal) mapping ϕ that redistributes
the source density s in the computational domain ΩC to the target density t in the physical domain ΩP.

Using that J(X) = det(∂ϕ(X)/∂X), the problem (5) can be directly formulated in terms of the
convex potential ψ, which leads to the Monge-Ampère equation :

t
(

Gradψ(X)
)

det
(
Hψ(X)

)
= s(X), (6)

where H is the Hessian operator, i.e. Hψ(X) = GradGradψ(X).

3.2 Proposed algorithm.

In the case considered of periodic boundary conditions and positive, smooth and periodic source and
target densities s and t, the problem (6) is rewritten as follows [5] : define the functional f of periodic
(scalar) potentials φ as

f (φ) :X 7→ t
(
X+Gradφ(X)

)
det
(
I+Hφ(X)

)
− s(X), (7)

and find φ such that

f (φ) = 0 with ψ :X 7→ |X|
2

2
+φ(X) convex. (8)

To perform a Newton iteration on the equation (8) we linearize f as f (φ+ hφ̃) = f (φ)+ hD f (φ) · φ̃+
o(h). Given φn, we then intent to perform quasi-Newton iterations by computing the solution φ̃ to an
approximate linearized equation D f (φn) · φ̃ =− f (φn).

3.3 Example of an a posteriori adaptation

Consider first the solution u to the problem (1) with C linear, using h = 0 and a loading arbitrarily
defined as g0 = (1,0) for the sake of the example. This solution can be computed on a preliminary
regular coarse grid in ΩP (which can be different from the computational grid ultimately used in ΩC).
This solution is relatively smooth, unlike its gradient, which can be computed in Fourier space. Then,
a target density function can be computed from there by smoothing the local Euclidean norm of the
gradient G‖gradu‖2(x), and applying a suitable scaling and normalization. An adapted grid obtained
for a random circular inclusions problem is shown in Figure 1.
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FIGURE 1 – Grid adaptation for a random circular inclusions problem based on the computation of a
preliminary solution u : (a) Euclidean norm ‖gradu‖2(x), (b) target density function t(x), (c) adapted
grid (red/blue), (d) close-up.
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4 Transported cell problem

Owing to the results in Section 2, the generic cell problem (1) when transported from ΩP to ΩC

reads :

Find U ∈ H1
per(ΩC) such that


S(X) = C

(
ϕ(X),G0 +GradU ·F−1),

Div
(
S(X) · J(X)F−T (X)

)
+ J(X)H(X) = 0,

U = 0.

(9)

In the problem above, the transformed mean value U is defined as

U =

(∫
ΩC

J(X)dX
)−1 ∫

ΩC

U(X)J(X)dX =
〈UJ〉ΩC

〈J〉ΩC

. (10)

To solve the problem (9) formulated on the uniformly discretized computational domain ΩC then standard
FFT-based approaches can be adopted, namely fixed-point or gradient-based algorithms, see e.g. [6]. To
do so, one introduces the periodic gradient Green’s operator Γ̃0 : L2

per(ΩC)→ L2
per,0(ΩC), relatively to a

linear comparison medium C0. Here, L2
per(ΩC) is the space of ΩC-periodic, not necessarily symmetric,

tensor-valued fields that are square-integrable, and L2
per,0(ΩC) its subspace of zero-mean fields. Then we

make use of the following fixed-point scheme for all pointX of a uniform grid discretizing ΩC :GradU (0)(X) = 0,

GradU (n+1)(X) = GradU (n)(X)−
[
Γ̃0C̃

(
G̃0 +GradU (n)

)]
(X),

(11)

where we have introduce a virtual constitutive tensor C̃ (here in the linear case) and a virtual source term
G̃0 on ΩC . Note that the reference medium C0 has to be chosen so as to ensure convergence of (11).

5 Numerical results

5.1 Full-field comparison

The geometry of the random circular inclusions in Figure 1 is considered. The adapted grid is com-
puted using the solution-based approach in Fig. 1. Doing so, grid points are concentrated in the regions
where a preliminary solution computed on a regular grid exhibits strong gradients. Full anisotropy and
an increase in the (virtual) material contrast are obtained, but here the inclusions are also distorted in the
computational domain ΩC due to the heterogeneity of the mapping.

The solution to (1) is then computed, both on a regular grid in Fig. 2(a-b), and on the adapted grid in
Fig. 2(c-d). While these two simulations are comparable for this configuration, the adapted computation
is qualitatively more satisfying, with a solution being smoother than the one computed on the regular
grid at the same discretization, and with discontinuities being better captured. Quantitative comparisons
and convergence analysis are investigated in the next section.

5.2 Convergence results

In this section we investigate the convergence properties of the adaptive computations relatively to
the discretization parameter N, the 2D computational grid being of N×N pixels. The material contrast
is set to z = 10 and the conjugate gradient method is used for these computations. We use the effective
parameters as quantitative metrics to assess the performance of the proposed method.To do so, consider
the effective energy Weff defined as

Weff(g0) = min
e∗=gradw

〈
w(x,g0 +e∗)

〉
ΩP

(12)

in terms of the local energy density w associated with the problem (1) considered. For the adaptive com-
putation, the averaged energy in the equation above is directly computed in the computational domain
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FIGURE 2 – Random circular inclusions : comparison of the first component of the solution gradu(x) to
(1) in ΩP computed using (a) a regular grid and (c) the adapted grid of Fig. 1, with close-ups in (b) and
(d), respectively.

ΩC using the transformation rules :〈
w(x,g0 +gradw)

〉
ΩP

=
1
|ΩP|

∫
ΩP

w(x,g0 +gradw)dx

=
1
|ΩP|

∫
ΩC

w(ϕ(X),G0 +GradW ·F−1)J(X)dX.

(13)

From (12) and (13) one can then extract some effective parameters depending on the choice of the
applied macroscopic gradient g0. It is worth noting that, as is standard practice in FFT-based methods,
the averaging operator 〈·〉ΩC is computed using the trapezoidal rule on the regular FFT grid.
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FIGURE 3 – Random circular inclusions : comparison of the relative errors on the effective parameter
computed using a regular grid (a) and adapted ones (b,c,d), as functions of the discretization parameter
N (horizontal axis is in log base 2 scale). For the grids on the left and N = 27 +1 see fields comparison
in Fig. 2.

A convergence analysis relatively to the discretization parameter is performed in the random circular
inclusions case. Here, errors are computed relatively to a simulation on a regular grid with N = 212 +1
pixels. The obtained results are synthesized in Figure 3 where, for the geometry considered, the adaptive
method is deployed using the solution-based approach that leads to Figure 1 (dark blue curve and panel
b) and which has been investigated previously. The panels (c) and (d) correspond to grid adaptations
using the distance to the closest inclusion or the detection of interfaces, respectively. For the mapping in
(b), a systematic gain in accuracy is highlighted in Fig. 3 using the adapted grid compared to the regular
one. The improvement corresponds here to a reduction between 13.5% to 48.6% for the discretizations
considered, making the proposed approach interesting to improve the overall quality of the simulation.
For completeness, the convergence behavior has also been quantified for other coordinate mappings, see
grids (c,d) and light blue curves. In such cases, precision gains are nearly systematic and sometimes quite
significant.

5



6 Conclusion

To conclude, the proposed adaptive Fourier spectral method can be used to improve the accuracy of
a numerical approximation computed on a regular grid, provided that the monitor function is adequately
defined. It easily amenable to common FFT-based platforms as it is minimally intrusive : its implemen-
tation only necessitates (i) the computation of the Monge–Ampère equation, a problem set in divergence
form, (ii) the introduction of the virtual constitutive relation and source terms, and (iii) a minor modifi-
cation of the Green’s tensor.
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