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Résumé — Many important problems in solid mechanics involve non-trivial constitutive models that are
difficult to express in variational form. It is therefore challenging to express these problems in domain-
specific languages that work at the variational form level. We introduce a framework for FEniCSx / DOL-
FINx that allows for the straightforward implementation of a wide range of constitutive models. The
application of the framework is demonstrated by implementing a von Mises elastoplastic material model
with hardening using JAX and Numba software.
Mots clés — constitutive models, external operator, automated finite element solvers.

1 Introduction

The finite element method (FEM) is a robust and widely used numerical approach for solving par-
tial differential equations (PDEs) that describe many problems in solid mechanics. In the past decade,
automated PDE solvers such as FEniCS [1, 8], FreeFEM++ [11] and Firedrake [9] have introduced high-
level domain-specific languages (DSL), e.g. the Unified Form Language (UFL) [2] for writing variatio-
nal forms of PDEs. From the DSL these solvers can automatically generate high-performance parallel
finite element code through a sequence of transformation and compilation steps. However, there are a
large number of problems in solid mechanics that are not naturally expressed or implemented using the
algebraic primitives provided in the UFL, such as complex plasticity models, multiscale and neural-
network-based constitutive [17] models. In addition, specialised programming tools for specifying or
solving non-standard constitutive models such as MFront [12] and CVXPY [6] cannot straightforwardly
be incorporated into finite element solvers with automatic code generation capabilities. Consequently,
the adoption of automated tools for solving PDEs in the solid mechanics community has been held back
by the inherent limitations imposed by the available abstractions.

The objective of this work is to design a general framework that extends DOLFINx [3], the new finite
element solver of the FEniCS Project, in such a way that arbitrary constitutive models (e.g. plasticity,
neural network, multiscale/homogenisation) can be straightforwardly implemented via a wide variety of
flexible programming tools (e.g. pure Python, JAX [7], Numba [15] or other external packages). Our
approach is the synthesis of three recent developments :

1. The recently introduced ExternalOperator extension to UFL as described in [10]. In essence
ExternalOperator allows the user to write a symbolic representation of an arbitrary unspecified
operator between UFL operands (e.g. strain) and coefficients (e.g. stress). When UFL forms
involving ExternalOperator are differentiated using UFL’s symbolic differentiation tools, new
ExternalOperator objects of the appropriate shape and rank are automatically generated. The
authors of [10] provide an implementation of the ExternalOperator in the Firedrake [9] solver,
but do not explore its use in solid mechanics constitutive modelling setting or its use in DOLFINx.

2. The data-centric design of the new DOLFINx library, where data such as finite element func-
tion coefficients are directly available in ndarray-like data structures. This data-centric design
makes it straightforward to write external operators in packages that support ndarray-like data
structures such as Numba, JAX, TensorFlow and PyTorch, or external libraries like MFront or
CVXPY.

3. The addition of automatic code generation features [8] to DOLFINx for evaluating UFL operands
(e.g. strain) at a set of pre-defined points on the reference finite element cell. The data computed
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by these routines is then passed as ndarrays-like objects to the user definition of the external
operator, as discussed in step 2. above.

We demonstrate the effectiveness of this approach by implementing the widely-known von Mises
elastoplastic behaviour using Numba and JAX, with the latter example leveraging JAX’s powerful auto-
matic differentiation capabilities to avoid explicit by-hand derivation of the tangent stiffness. As a point
of comparison, we implement an interpolation-based approach originally proposed in [4] and then im-
proved in FEniCSx [16]. The three implementations provide substantially similar runtime performance
in addition to being transparent and easy to follow.

Our contribution to automated FEM solvers capable of including complex constitutive models in
the variational form is not the first one. One of the earliest examples is the commercial finite element
environment AceFEM [14] equipped with the automatic code generation package AceGEN [13]. The
latter can symbolically evaluate finite element quantities as well as generate automatic code in C and
FORTRAN using the commercial Mathematica language. Besides, other projects tried to extend the
functionality of FEniCS for problems with complex constitutive models, such as a special interface [12]
between MFront [12] and the legacy version of FEniCS, the fenics-solid-mechanics project [18] desi-
gned specifically for plasticity problems within C++ interface and the application of the 3rd-party pa-
ckage CVXPY [6] for solving plasticity problems in the convex optimization setting within the FEniCSx
environment [16]. Our framework is an open-source extension of the modern FEniCSx that combines
previous ideas in a more general way via a compact Python interface.

2 Materials and methods

The proposed extension of FEniCSx is based on the external operator functionality recently proposed
in [10]. ExternalOperator represents a symbolic object wrapping an external operator that is not ex-
pressible through standard UFL expressions. This object can be used directly in UFL forms. Moreover,
ExternalOperator is equipped with the ability to be automatically differentiated. UFL automatically
propagates derivatives of the external operator in a variational form according to the chain rule.

In our DOLFINx implementation of the external operator concept, we diverge from the Firedrake
implementation in the sense there is no direct interaction between the form assembly and the user’s im-
plementation of the external operator. Instead, we focus on the direct passing of data and their derivatives
represented by external operators as ndarray-like objects. This is achieved by replacing the symbolic
ExternalOperator objects with DOLFINx Function objects prior to assembly of the finite element
form. These user’s external operators are expressed as Python callables. They represent an algorithm
describing how an external operator acts on their operands (e.g. strains). Our framework is able to as-
semble these coefficients using the external operator functions before the coefficients are passed to the
standard DOLFINx finite element assembly routines.

Whereas the external operators can be considered as constitutive models, their operands represent
the main variables of these models or based on them UFL expressions. According to our framework,
all operands must be calculated at interpolation points of a finite element space. The FEniCSx Form
Compiler (FFCx) [8] is equipped with automatic code generation for any expression written in UFL.
FFCx just-in-time compiles a C code of the UFL expression and then DOLFINx can use this compiled
code to compute the values of the expression at a set of points in the reference cell.

Data transfer between the user-defined functions for computing external operators of their operands
is carried out through standard NumPy arrays, allowing a wide range of Python and non-Python-based
tools to be used for implementing external operators. The design does not require the user to implement
or extend Python objects. To reach the highest level of performance modern code generation tools for
Python such as Numba and JAX can be applied, or indeed any other tool which accepts ndarray or
C-array-like objects.

Summing up, the algorithm consists of the following steps :

1. For each external operator define its and its derivatives’s explicit implementations in the form of
Python callables.

2. Create matching ExternalOperator objects.

3. Using UFL write a linear form containing one or more ExternalOperator objects.

2



4. Automatically derive a bilinear form through derivation of the linear form defined in the previous
step.

5. Create two new UFL forms where ExternalOperator is replaced with DOLFINx Function
objects to hold the result of the evaluated external operator and its derivatives.

6. Evaluate the operands of the external operators at appropriate interpolation points.

7. Evaluate the external operators.

8. Assemble the evaluated external operator into the corresponding Function.

3 Results and discussion

In order to show how our framework can be used in multiple ways, we chose a simple example of
an elastoplastic problem of cylinder expansion. The problem is solved in the two-dimensional case in a
symmetric formulation. The full description of the problem can be found here [4]. We limit ourselves to
the weak formulation 1 of the cylinder expansion problem, where we find u ∈V such that

R(u) =
∫
Ω

σ(u) : ε(v) dx−Fext(v) = 0, ∀v ∈V, (1)

where v is a test function in a suitable finite element function space V and ε is the usual infinitesimal
strain tensor. The relation between stress tensor σ and the displacement field u is defined according to
the von Mises elastoplastic constitutive model with isotropic hardening law. Fext represents the external
force acting on the cylinder’s inner surface. The force Fext progressively increases up to the analytical
collapse load for perfectly plastic material.

The most common way of solving elastoplastic problems numerically is to perform the return-
mapping procedure. In this particular example, explicit expressions of stress and strain decrements can
be derived analytically, in addition to the derivative of the stress tensor with respect to the strain tensor,
commonly called the tangent stiffness matrix [5].

The possibility of performing the return-mapping procedure analytically makes this simple example
ideal for demonstrating the core idea of this framework. On the one hand, as a point of comparison, it
allows a UFL-based implementation and calculation of all quantities of interest, on the other hand, it is
possible to solve the problem using more general approaches involving the application of our framework
in a number of different ways.

At first, an approach based on UFL and FEniCSx functionality will be covered (the interpolation ap-
proach) and then we will describe the approaches based on the extended UFL using the external operator
concept and modern Python-based libraries (the Numba approach and the JAX approach). All descrip-
tions are supported with minimal code snippets.

The simplicity of the cylinder expansion problem makes it possible to solve the nonlinear elasto-
plastic problem without recourse to packages outside the FEniCSx environment. According to the in-
terpolation approach we exploit the knowledge about mathematical expressions and interpolate some
variables of the return-mapping procedure written through UFL’s Expression objects over quadratures
finite space. In the listing 1 you may find the main expressions of the problem written via UFL, which
will be interpolated on each iteration of the Newton solver.
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1 def proj_sig(deps, sigma_old, p_old):
2 """Performs the predictor-corrector return-mapping algorithm."""
3 sig_n = as_3D_tensor(sigma_old)
4 sig_elas = sig_n + sigma(deps)
5 s = ufl.dev(sig_elas)
6 sig_eq = ufl.sqrt(3/2.*ufl.inner(s, s))
7 f_elas = sig_eq - sig0 - H*p_old
8 dp = ppos(f_elas)/(3*mu_+H)
9 n_elas = s/sig_eq*ppos(f_elas)/f_elas

10 beta = 3*mu_*dp/sig_eq
11 new_sig = sig_elas-beta*s
12 return ufl.as_vector([new_sig[0, 0], new_sig[1, 1], new_sig[2, 2], new_sig[0, 1]]), \
13 ufl.as_vector([n_elas[0, 0], n_elas[1, 1], n_elas[2, 2], n_elas[0, 1]]), \
14 beta, dp
15

16 sig_, n_elas_, beta_, dp_ = proj_sig(deps, sigma_old, p)

Listing 1: Definition of some analytical expressions of the return-mapping procedure via UFL.

Now we demonstrate how to solve the cylinder expansion problem using our framework and imple-
menting the external operators using Numba, but firstly let us define the weak problem 1 using UFL and
ExternalOperator in the following snippet :

1 def sigma_ext(derivatives):
2 if derivatives == (0,):
3 return func_numba_sigma
4 elif derivatives == (1,):
5 return func_numba_C_tang
6 else:
7 return NotImplementedError
8 sigma_ex_operator = ufl.ExternalOperator(epsilon, function_space=W,
9 local_operands=(epsilon,), f=sigma_ext)

10 R = ufl.inner(eps(v_), as_3D_tensor(sigma_ex_operator))*dx - F_ext(v_)
11 J = ufl.derivative(R, u, u_)

Listing 2: Definition of the weak problem in terms of UFL and ExternalOperator, where epsilon is
an operand according to which the derivative of the operator is taken. sigma_ext is a callable Python
function that contains definitions of how the external operator and its derivative are computed.

In the following listing 3 all mathematical expressions are written through Numba just-in-time com-
piled functions whose arguments are ndarray arrays. Numba typically produces highly optimised ma-
chine code with runtime performance on the level of traditional compiled languages.
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1 @numba.njit
2 def func_numba_sigma(deps, sigma, sigma_old, p_old, dp):
3 return sigma
4

5 @numba.njit
6 def func_numba_C_tang(deps, sigma, sigma_old, p_old, dp):
7 out = np.zeros((num_cells, num_gauss_points, 4, 4), dtype=PETSc.ScalarType)
8 sigma_global = sigma.reshape((num_cells, num_gauss_points, 4))
9 deps_global = deps.reshape((num_cells, num_gauss_points, 4))

10 sigma_old_global = sigma_old.reshape((num_cells, num_gauss_points, 4))
11 p_old_global = p_old.reshape((num_cells, num_gauss_points))
12 dp_global = dp.reshape((num_cells, num_gauss_points))
13

14 for i in range(0, num_cells):
15 deps_local = deps_global[i]
16 sigma_local = sigma_global[i]
17 sigma_old_local = sigma_old_global[i]
18 p_old_local = p_old_global[i]
19 dp_local = dp_global[i]
20 for q in range(num_gauss_points):
21 sig_elas = sigma_old_local[q] + C_elas @ deps_local[q]
22 s = DEV_Voigt @ sig_elas
23 sig_eq = np.sqrt(3./2. * np.dot(s, s))
24

25 f_elas = sig_eq - sig0 - H*p_old_local[q]
26 f_elas_plus = ppos(f_elas)
27

28 dp_local[q] = f_elas_plus/(3*mu_+H)
29

30 n_elas = s/sig_eq*f_elas_plus/f_elas
31 beta = 3*mu_ * dp_local[q] / sig_eq
32

33 new_sigma = sig_elas - beta*s
34 sigma_local[q][:] = new_sigma
35

36 C_tang = get_C_tang(beta, n_elas)
37

38 out[i][q][:,:] = C_tang
39

40 return out.reshape(-1)

Listing 3: Definition of the external operator and its derivative via Numba. The function
func_numba_sigma just returns values of the stress tensor, whereas func_numba_C_tang updates its
values and computes the tangent stiffness tensor C_tang according to the analytical expressions of return-
mapping procedure on each cell.

Both of the previous approaches are based on the knowledge of the explicit expression of the tangent
stiffness matrix. It is possible to avoid such a derivation by using automatic differentiation tools of the
JAX library. In the following listing 4, we define the functions computing the values of stress tensor
according to the return-mapping procedure using JAX.
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1 @jax.jit
2 def deps_p(deps_local, sigma_old_local, p_old_local, dp_local):
3 sig_elas = sigma_old_local + C_elas @ deps_local
4 s = DEV_Voigt @ sig_elas
5 sig_eq = jnp.sqrt(3./2. * jnp.vdot(s, s))
6

7 f_elas = sig_eq - sig0 - H*p_old_local
8 f_elas_plus = jax_ppos(f_elas)
9

10 dp_local = f_elas_plus/(3*mu_+H)
11 out = 3./2. * dp_local * s/sig_eq
12 return out, dp_local
13

14 @jax.jit
15 def sig_jax(deps_local, sigma_old_local, p_old_local, dp_local):
16 deps_p_local, dp_local_new = deps_p(deps_local, sigma_old_local, p_old_local, dp_local)
17 sigma_local = sigma_old_local + C_elas @ (deps_local - deps_p_local)
18 return sigma_local, dp_local_new

Listing 4: Definition of the plastic strain decrement and corrected stress tensor according to the analytical
expressions of the return-mapping procedure via JAX.

Similar to the Numba approach, the @jax.jit decorator just-in-time compiles to native machine
code. The functions in the code below 5 take the derivative of the stress tensor and compute its values in
each quadrature point.

1 dsigma_d_deps = jax.jit(jax.jacrev(sig_jax, argnums=(0), has_aux=True))
2 sigma_vectorized = jax.jit(jax.vmap(sig_jax, in_axes=(0, 0, 0, 0)))
3 dsigma_d_deps_vectorized = jax.jit(jax.vmap(dsigma_d_deps, in_axes=(0, 0, 0, 0)))
4

5 def func_jax_sigma(deps, sigma_old, p_old, dp):
6 deps_global = deps.reshape((num_cells*num_gauss_points, 4))
7 sigma_old_global = sigma_old.reshape((num_cells*num_gauss_points, 4))
8 out, dp_new = sigma_vectorized(deps_global, sigma_old_global, p_old, dp)
9 np.copyto(dp, dp_new)

10 return out.reshape(-1)
11

12 @jax.jit
13 def func_jax_C_tang(deps, sigma_old, p_old, dp):
14 deps_global = deps.reshape((num_cells*num_gauss_points, 4))
15 sigma_old_global = sigma_old.reshape((num_cells*num_gauss_points, 4))
16 out, _ = dsigma_d_deps_vectorized(deps_global, sigma_old_global, p_old, dp)
17 return out.reshape(-1)

Listing 5: Definition of the external operator and its derivative via JAX. The function func_jax_sigma
computes and returns values of the stress tensor, where func_jax_C_tang computes the tangent stiffness
tensor C_tang. The latter is computed with the help of the JAX automatic differentiation tools.

The three approaches successfully solve the cylinder expansion problem 1. Now we compare the
three approaches by measuring the time that each spends on compilation of JIT-ed functions, so-called
the time of compilation overhead, and total running time excluding compilation overhead. The results
are shown in the Fig. 1.
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FIGURE 1 – Elapsed wall time (s) of different approaches for solving the elastoplastic problem of cylinder
expansion against the dimension of finite element space. The same data is plotted on log-log (left) and
standard (right) axes. The time spent on JIT compilation is denoted by “compilation overhead” and “run
time” is the total time required for an approach to solve the problem excluding the compilation overhead.

Analysing Fig. 1 we conclude that the compilation overhead of the Numba and JAX approaches is
constant on mesh refinement, which is the expected behaviour. Additionally, for this problem, we remark
that JAX’s JIT compilation is faster than the Numba’s one.

In terms of overall timing for realistically sized problems (> 104 degrees of freedom) the three me-
thods provide substantially similar run-time performance. We emphasise that the two ExternalOperator-
based approaches match the performance of the previous state-of-the-art implementation proposed in [16].
Consequently, our approach provides a solid basis for future experimentation with more advanced consti-
tutive models.

4 Conclusion

We have implemented a software framework in FEniCSx/DOLFINx that eases the implementation
of finite element solvers for problems in solid mechanics involving constitutive models that cannot be
straightforwardly expressed in variational form.

We showed a simple elastoplastic example implemented using three approaches, one an interpolation
method originally proposed in [4] and then improved in [16] using modern FEniCSx features, and two
new approaches using the ExternalOperator concept with operators implemented via JAX and Numba.
The performance of all three implementations is substantially similar, suggesting that our approach is
competitive with existing approaches, but with substantially greater flexibility in terms of the types of
models that can be implemented.

In upcoming work, we plan to demonstrate the full potential of the framework for more complex
problems including neural network constitutive models [17] and interfacing with external libraries such
as CVXPY [6]. The framework will be released under an open-source license in due course.
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