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Résumé — In this contribution, by using the most characteristic seminal Arlequin method idea, namely
the volume/thick-models/scales coupling, relying on a superposition of subdomains pillar (see [1], [2]),
we extend the Non-Intrusive-Global-Local Iterative (NIGLI) method, developed by Allix, Gosselet and
their collaborators (see e.g. [3, 4]) ; an advanced, more robust and practically more interesting version of
the Whitcomb’s Iterative Global-Local method (see [5]), to solve true-complex problems requiring, for
costs sustainability, the coupling of global coarse models and localized non-local-ones i.e. true-multiscale
problems that can not be solved by the NIGLI method.
Mots clés — Collaborative-Algorithm, Non-Intrusive Method, Thick-Coupling, True Multiscale Pro-
blems

1 Introduction

We consider a static mechanical solid problem defined in a given bounded domain Ω, encompassing
a critical localized defect, denoted χ (a hole, a crack, a local damage, a dislocation, a missing atom, ...),
submitted to external loads and constraints. To solve numerically such problems with sufficient accuracy
and affordable costs, one needs relatively very fine refinement in terms of models and/or scales (that
could be atomistic, stochastic, etc.) in a very small local domain Ωl , with respect to Ω\Ωl ; χ ⊊ Ωl ⊊ Ω

(observe here that one can consider several localized criticities χi, i = 1,nb). To achieve these goals,
Global-non-Local modelling, and/or multiscale formulations, with associated appropriate computational
method are mandatory, especially when the geometrically local model is physically a non-local one or
when the problem is a true-multiscale one. As well-known, the Arlequin Method proved appropriate
and efficient framework for the solution of these problems. However, looking to the softwares market,
one could observe that there are well-established commercial softwares (say Abaqus, Nastran, Aster,
Cast3m, Z-set, etc.) having required several decades, in terms of human’s resources developments and
tests, that solve efficiently Global and general industrial mechanical problems with rather complicated
behaviours law, on the one hand, and so many local agile research laboratory softwares, developed for
testing computational methods shaped to solve problems at very fine physical scales, on the other hand.
Taking into account this ground reality, to achieve the highest resolution performance for the solution of
true-multiscale, thus complex problems, it seems natural to establish a fair Dialogue to bridge iteratively
Global Commercial and Local Laboratory Softwares ; taking potentials of each of them to improve the
solution efficiency of complex problems. In the Realm of surface coupling algorithms, one can mention
the Global-Local Iterative algorithm, initiated by [5], (taking cue from the well-known Schwarz stagge-
red algorithm). This algorithm was lately developed in a more robust way by Allix, Gosselet and their
collaborators (see e.g. [3, 4]) and tested successfully for different localized phenomena (such as localized
plasticity). This attests to the fact that the Iterative/Non-Invasive method is an interesting tool, allowing
the communication between Global and Local softwares. However, relying on a specific surface domains
decomposition couplings, it can not be used to couple two domains using, either a local and a non local
model, or different scale, to solve, for instance, a problem using the coupling of a classical continuum
model and a peridynamic one or an atomistic one. For the latters a thick/volume Arlequin Coupling is
mandatory (see e.g. [6, 7, 8, 9]). Based on these observations and on the practical ease of implementation,
provided by the Iterative/Non-Intrusive coupling methods, we propose a Non-Invasive-like Collaborative
volume coupling method, following the path of Arlequin method’s philosophy. This method is presented
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in Section 2 and applied, in Section 3 to the case of the coupling of a particle model with non local
interactions and a continuum one.

2 A Collaborative/Non-Invasive volume-coupling algorithm

To present the Collaborative/Non-Invasive volume coupling method, we first recall the classical Ar-
lequin formulation of the static mechanical solid problem, previously mentioned.
We consider a solid B , occupying the closure Ω ⊂Rd (d = 1−3) of the bounded and sufficiently regular
open domain Ω ⊂ Rd whose boundary ∂Ω = ΓD ∪ΓN ; ΓD, verifying classical hypotheses. The domain
Ω is assumed to be partitioned into two subdomains : a global one Ωg and a local one Ωl , with an overlap
Ωc = Ωg ∩Ωl , with d −measure > 0 and non-zero thickness field e > 0. Moreover, we assume that a
criticity χ is strictly included in Ωl\Ωc (cf. Figure 1b).
With theses notations and definitions, the VWP-based version of the Arlequin method, relying on i) a
domain partition, ii) a partition of unity of Virtual Works and iii) a volume Coupling between two ac-
commodated different models, reads as following : (see e.g. [10])

Find (ug,ul,λ) ∈ W0(Ωg)×W (Ωl)×M such that :

ag(ug,vg)+ c(λ,vg) = lg(vg) ∀ vg ∈ W0(Ωg), (1a)

al(ul,vl)− c(λ,Πg
l vl) = ll(vl) ∀ vl ∈ W (Ωl), (1b)

c(µ,ug −Π
g
l ul) = 0 ∀µ ∈ M. (1c)

where ug, ul and λ stand for the global and local displacement fields and the volume-Lagrange multiplier
and where the bilinear and linear forms ag, al , lg and ll have classical partitioned forms. The bilinear form
c(.; .) defines the third classical Arlequin Framework ingredient which is the essential and characteristic
volume-Arlequin coupling. It is given by :

c(µ,v) =
∫

Ωc

(κ1µ ·v+κ2ϵ(µ) : ϵ(v)) dΩ, ∀(µ,v) ∈ M2 (2)

with, in this context, κ1 = E/e2 and κ2 = E, E being the solid Young modulus, and the mediator space
M taken equal to W0(Ωc).
The fields ug and ul being different in nature, to impose their weak equality, it is necessary to make them
comparable in a certain sense. This is done by introducing an accommodation operator, denoted Π

g
l .

We propose an extension of the NIGLI to the case of a volume coupling, in the philosophy of the AF.
The setting up of the volume NIGLI strategy we propose is similar to those with a surface coupling. To
implement it, we propose the following steps : (see [11])

1. The domain Ω is partitioned into two overlapping subdomains ; a global subdomain Ωg and a
local one Ωl ; the thickness e of the overlap domain, denoted Ωc = Ωg∩Ωl , with e > 0 (cf. Figure
1b). We assume that the criticality is strictly contained in Ωl\Ωc and we define a local problem,
denoted (Pl).

2. We carrying out simplifications on the local domain Ωl which can be of a geometrical nature but
also physical. Here for example we remove the crack, forming a new domain, denoted Ωa and
called auxiliary domain, see Figure 1c. On this domain we will define an auxiliary problem,
denoted (Pa).

3. We construct a modified global domain, denoted Ωm such that : Ωm = Ωg ∪Ωa, see Figure 1c.
On this domain we will define a modified problem, denoted (Pm).

Now the idea, as done in the surface version of the NIGLI strategy, is to introduce in the simplified model
a volume density of forces, defined over the overlapping zone Ωc, denoted ϕ, allowing to reproduce the
effect of the local criticality in the simplified modelling. The three problems formulations are given by :

— The modified problem (Pm), given by :

Given ϕ ∈ M, find um ∈ W0(Ωm), such that :

am(um,vm) = lm(vm)− c(ϕ,vm) ∀ vm ∈ W0(Ωm). (3)
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(a) (b)

(c)

FIGURE 1 – A generic mechanical problem with a crack χ in (a), a generic example of two domains
decomposition for a global/local resolution of the mechanical problem with a volume coupling in (b) and
the NIGLI algorithm principle in (c)

— The local problem (Pl), given by :

Given um ∈ W0(Ωm), find
(
ul,λ

ml
)
∈ W (Ωl)×M, such that :

al(ul,vl)+ c(λml,Πg
l vl) = ll(vl) ∀ vl ∈ W (Ωl), (4a)

c(µ,Πg
l ul) = c(µ,um) ∀ µ ∈ M. (4b)

— The auxiliary problem (Pa), given by :

Given um ∈ W0(Ωm), find (ua,λ
ma) ∈ W(Ωa)×M, such that :

aa(ua,va)+ c(λma,va) = la(va) ∀ va ∈ W(Ωa), (5a)

c(µ,ua) = c(µ,um) ∀ µ ∈ M. (5b)

where um, ul and ua stand for the modified, local and auxiliary displacement fields, λml and λma the local
and auxiliary volume Lagrange multipliers.
The volume density of correction effort being a priori unknown and not being able/willing to solve
directly the real problem, we propose to use the same iterative algorithm of resolution proposed in the
surface coupling framework, called Non-Intrusive Fixed Point Solver in [12]. It consists in, solving the
problem (Pm) to obtain uk

m, use it to solve, in parallel, the problems (Pl) and (Pa) to obtain
(
uk

l ,λ
ml,k

)
and

(
uk

a,λ
ma,k

)
. The Lagrange multipliers are used to update the force density ϕk+1 =λml,k−λma,k. This

procedure is repeated till the relative variation of the force density correction, given by :

η
k+1
rel =

∥∥ϕk+1 −ϕk
∥∥

∥ϕk+1∥
(6)

is lower than a given tolerance εtol.
With this algorithm, the NIGLI strategy allows each of the three problems to be treated by a different
codes as long as the one treating the simplified problem can receive an external volume density of forces
and the ones treating the local and auxiliary problems can receive an external displacement field. The
classical configuration being to use for the simplified problem an industrial code and a more specialized
one, of research type, for both local and auxiliary problems.
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3 Application to an atomistic/continuum volume coupling

In this section we propose to apply the previously detailed method to the case of a coupling particle
and continuum models. We base our presentation on the developments already realized in the AF, see e.g.
[13, 14], and more particularly on two 1D problems. For each problem, we are willing to approximate
the atomistic model in most of the domain and only keep it in a local zone.

3.1 The model problems

We start by giving the two problems common parameters. The particle model rely on a set of Np

particles, denoted N , distributed on a regular lattice in R of mesh size l, occupying the closure of Ωl .
The position of the particle i in the reference configuration is given by the coordinate pi, such that :
pi = (i−1)× l. We consider here that each particle may interact with the others by means of harmonic
pair potentials. The potential Vi j modelling the interaction between particles i and j is given by :

Vi j(zi,z j) =
1
2

ki j
(∣∣p j + z j − pi − zi

∣∣− ∣∣p j − pi
∣∣)2

, (7)

where zi is the displacement of particle i and ki j is the stiffness coefficient of potential Vi j. For the sake
of simplicity, we introduce the global vector z =

[
z1, . . . ,zNp

]
of all individual displacements zi. In the

following, we will assume that every particle i interacts only with the subset Ni ⊂ N of neighboring
particles so that long-ranged interactions are neglected. This assumption is applied by simply setting the
coefficients ki j to zero whenever a particle j is not in Ni.
The particle lattice is approximated by a linear elastic beam of modulus E, occupying the closure of the
global domain Ωm ×Sc with Sc its cross-section of area A. For simplicity, we will implicitly take A equal
to unity. The material is supposed to obey Hooke’s law σ = Eε, with σ and ε the beam’s stress and strain.
The strain is related to beam displacement ug by : ε = u′g, where ′ stands for derivation d

dx1
.

Now, we detail each problems features :
(P1) − The problem geometry is depicted on Figure 2a. The beam is embedded at its left border

(x1 = 0) and the particle Pc at the right border (x1 = L) is submitted to a traction effort F . We
denote zc the displacement of Pc. We consider a periodic distribution of springs with two springs
stiffness constants k1 = 100 and k2 = 1. We have for Np odd :

k2 j−1 = k1 j = 1, . . . ,
Np −1

2

k2 j = k2 j = 1, . . . ,
Np −1

2

(8)

We define the following geometries and discretizations : Ωm = (0,3), Ωl = (1,3), Ωa = (1,3),
Ωc = (1,2), Np = 9 and Ne = 4. The equilibrium length of the springs is equal to l = 0.25 and
the mesh size hg = 2l = 0.5. The Young’s modulus, using a representative cell (or Representative
Volume Element, RVE) made of two consecutive springs, is given by :

E =
k1k2

k1 + k2
2l =

100
101

0.5 = 0.49505 (9)

The force F is chosen such that the displacement of the fully atomistic problem is equal to unity,
i.e. F = E ×A/L.

(P2) − The problem geometry is depicted on Figure 2b. The beam is embedded at both ends (x1 = 0
and x1 = L). We consider a distribution of springs with a uniform stiffness constant k = 100. We
have :

k j = k j = 1, . . . ,Np −1 (10)

The chain is submitted to a unit force F = 1, applied to the particle Pc at the center of Ωl . We
suppose that the particle lattice is subjected to a defect consisting to a locally stiffness coefficient
weakening of few bonds centered in a particle Pd . We denote by pd the position of Pd in the
reference configuration. The distribution of the bond stiffness coefficient ki j between neighboring
particles i and j is given in terms of k as :
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ki j = g(pi j), with g(x) =
1

1+10exp−2x2 , and pi j = pd −
pi − p j

2
. (11)

We consider the following geometries and discretizations : Ωm = (0,8.8), Ωl = (2.4,7.4),
Ωa = (2.4,7.4), Ωc = (2.4,3)∪ (7,7.4), Np = 8, Ne = 4 and zd = 5.4. The equilibrium length of
the springs is equal to l = 0.1 and the mesh size hg = 4l = 0.4. The Young’s modulus is given by
E = kl = 10.

As developed in [13], the weak equality between z and u is imposed by converting the discrete displace-
ment z into a displacement field Π

g
l z, where Π

g
l is e.g. the linear interpolation operator and defining an

energy coupling operator c, given by :

c(λ,ug) =
∫

Ωc

β1λug +β2λ
′u′gdx1 (12)

with, in this context, β1 = E and β2 = E/e. We uniformly mesh the domain Ωg, with a mesh size h,
imposing the mesh compatibility between the continuum model and the particle lattice.
We are finally able to write the modified, local and auxiliary problems, which we won’t detail here. To
solve the problem we use exactly the same algorithm as before.

3.2 Results

We consider the fully atomistic problem solution as a reference one, where the domain Ω is occupied
by Nref

p particles.

3.2.1 First problem

The displacement fields we obtain are represented in Figure 3a with in black the reference solution,
in blue the simplified problem solution and in red the local one. These solutions are obtained for a
convergence criteria taken as εtol = 10−10. If we consider as quantity of interest the displacement value
of the particle at the right border, we obtain a relative error value of 8.7% which is the expected value for
this Arlequin atomistic-continuum configuration see [13].

3.2.2 Second problem

The displacement fields we obtain are represented in Figure 3b with in black the reference solution,
in blue the simplified problem solution and in red the local one. These solutions are obtained for a
convergence criteria taken as εtol = 10−10. If we consider as quantity of interest the displacement value
of the particle Pc, we obtain a relative error value of 0.56%.

4 Conclusion

In this communication, we elaborated a collaborative algorithm with a thick coupling, taking cue
from Iterative and Non-intrusive methods. We firstly applied it to the case of a classical mechanical
problem i.e. the coupling of two macroscopic continuum models. Secondly, we demonstrate its feasibility
and effectiveness to solve « true » multiscale problem by applying it to the coupling of atomistic and
continuum models. More substantial examples will be shown during the presentation.
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(a)

(b)

FIGURE 2 – Scheme of the continuum simplified and auxiliary domains and of the atomistic local one
for the problem (P1) in (a) and for the problem (P2) in (b).
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FIGURE 3 – Displacement fields obtained when convergence is reached in (a) for the problem P1, (b) for
the problem P2 with a zoom on the particle Pd in (c).
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