
HAL Id: hal-04610879
https://hal.science/hal-04610879v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A cheap preconditioner for thermoelastic problems in
IGA

Joaquin Eduardo Cornejo Fuentes, David Dureisseix, Arnaud Duval, Thomas
Elguedj

To cite this version:
Joaquin Eduardo Cornejo Fuentes, David Dureisseix, Arnaud Duval, Thomas Elguedj. A cheap precon-
ditioner for thermoelastic problems in IGA. 16ème Colloque National en Calcul de Structures (CSMA
2024), CNRS; CSMA; ENS Paris-Saclay; CentraleSupélec, May 2024, Hyères, France. �hal-04610879�

https://hal.science/hal-04610879v1
https://hal.archives-ouvertes.fr

CSMA 2024
16ème Colloque National en Calcul des Structures

13-17 Mai 2024, Presqu’île de Giens (Var)

A cheap preconditioner for thermoelastic problems in IGA

J. Cornejo Fuentes1, A. Duval1, D. Dureisseix1, T. Elguedj1

1 Univ Lyon, INSA Lyon, CNRS, LaMCoS, UMR5259, {joaquin.cornejo-fuentes,arnaud.duval,david.dureisseix,thomas.elguedj}@insa-lyon.fr

Abstract — This paper employs IsoGeometric Analysis to address both heat conduction and elasticity
problems. The main goal of this study is to introduce a preconditioning approach to improve the con-
vergence rate of iterative solver. This method is based on Fast Diagonalization method which exploits
the tensor structure of basis functions. We demonstrate that our preconditioner offers efficiency, cost–
effectiveness and simplicity in implementation. Furthermore, it exhibits robustness concerning polyno-
mial degree and mesh size parameters. Numerical experiments, which support our theoretical results, are
presented.
Mots clés — IsoGeometric analysis, Fast Diagonalization, easy-to-code.

1 Research context

A few decades ago, IsoGeometric Analysis (IGA) was introduced by Hughes et al.[8] as a numerical
method for solving partial differential equations (PDEs). This approach extends the conventional Finite
Element Method by employing the basis functions from Computer-Aided Design to represent both the
geometry and the solution field. Over the last decade, its efficiency has been demonstrated in structural
dynamics, large deformation plasticity and other fields (see [6, 9]). However, numerical simulations,
especially using IGA, may sometimes require many hours of computation or high–performance tools
to handle more complex models. In recent years, some techniques like Weighted Quadrature, Matrix
Free and Fast Diagonalization have been developed to reduce CPU time and memory while maintaining
quality of the results (see [4]). The purpose of this paper is to introduce our preconditioner, based on Fast
Diagonalization method, to address both heat conduction and elasticity problems when using an iterative
solver. We demonstrate theoretically and numerically its efficiency, cost–effectiveness and simplicity.

2 Preliminaries

2.1 B–splines

Given the integers p ≥ 0 and m > 0, an open knot–vector in the domain [0, 1] is defined as Ξ =
{ξ1, . . . , ξm+p+1}, with 0 = ξ1 = . . .= ξp+1 < ξp+2 ≤ . . .≤ ξm < ξm+1 = . . .= ξm+p+1 = 1, where knots
can be repeated up to multiplicity p [5]. We restrict our study to the case where all knots have multiplicity
1 except the first and last knots. Then, from the knot–vector Ξ, we denote with b̂A, p, A = 1, . . . , m, the
univariate B–splines basis functions of degree p that are computed recursively through Cox–De Boor
formulas [5]. It is important to remark that B–splines have important mathematical properties which
are useful in design and analysis: they are nonnegative, form a partition of unity and have local support
[5]. Moreover, multivariate B–splines are defined as the tensor product of univariate B–splines. In
this case, the parametric domain is defined as Ω̂ = [0, 1]d , where d is the number of space dimensions.
Let Ξl = {ξl,1, . . . , ξl,m+p+1}, for l = 1, . . . , d, be the knot–vectors following the l–dimension, then
the multivariate B–spline functions are defined as N̂A,p(ξ) = b̂A1, p1(ξ1) . . . b̂Ad , pd (ξd), where the multi–
indices ξ= (ξ1, . . . , ξd), A= (A1, . . . , Ad) and p= (p1, . . . , pd) are used. Multivariate B–splines inherit
the same properties as univariate B–splines. In the problems we intend to solve, we consider a physical
domain Ω, a finite region of Rd , with a piecewise smooth boundary ∂Ω. In IGA, the physical domain Ω

is given by a spline parameterization. We restrict our work to the case when Ω is given by a single–patch
spline parameterization, i.e., we assume that there exist a conforming parameterization F that maps each
point ξ ∈ Ω̂ to a point x ∈ Ω. We also consider that F is a smooth mapping such that the Jacobian matrix

1

of F , defined as JF =
[

∂xi
/

∂ξ j
]
, and its inverse are unambiguous in Ω. Then,

x= F(ξ) = ∑
A∈η

CAN̂A(ξ), CA ∈ Rd , (1)

where CA are the control points and N̂A are the multivariate B–spline basis functions. Hereafter, the
multi–index A = (A1, . . . , Ad) is identified by the scalar index A = A1 +∑

d
k=2

[
(Ak −1)∏

k−1
l=1 nl

]
where

nl is the number of control points in the l–dimension. Furthermore, η = 1, . . . , ncp denotes the set of
control points numbers and ncp is the total number of control points, i.e., ncp = ∏

d
l=1 nl .

2.2 Heat conduction problem

In the considered heat conduction problem, it is assumed that the material has an anisotropic homo-
geneous thermal conductivity k and the internal heat generated by the body is described by the given
function f : Ω → R. Moreover, we consider that on ∂Ω a homogeneous Dirichlet boundary condition is
imposed. Finally, the strong form of the problem, as written in [7], is:

(S) =


Find T : Ω → R, such that:
∇ · (k∇T)+ f = 0 in Ω;
T = 0 on ∂Ω.

(2)

In this study case, we define the function space V = {w |w ∈ H1(Ω), w = 0 on ∂Ω}. Then, the
corresponding weak form of Eq. (2) is given by:

(W) =


Find T ∈ V , such that for every w ∈ V :

d

∑
i=1

d

∑
j=1

∫
Ω

∂T (x)
∂xi

ki j
∂w(x)

∂x j
dΩ =

∫
Ω

f (x)w(x)dΩ.
(3)

Moreover, we may construct the finite–dimensional approximation ofV , denoted V h, as V h ={
wh|wh = ∑

A∈η

NA(x)wA, with wA = 0 for all A ∈ ηg.

}
. Here NA(x) = N̂A ◦F−1(x) and ηg denotes the

subset of η that contains those control points on ∂Ω. The number of control points in η−ηg is ndo f =

∏
d
l=1 ndo f , l . Then, we may approximate the temperature field by T h = ∑

A∈η−ηg

NA(x)dA where the non-

trivial scalar values dA are computed from the matrix formulation:

Kd= F, with d ∈ Rndo f .

Here the conductivity matrix K and the internal heat flux vector F are defined as follows:

[K]AB =
d

∑
l=1

d

∑
m=1

∫
Ω̂

∂

∂ξl
N̂A(ξ)Dlm (ξ)

∂

∂ξm
N̂B(ξ)dΩ̂,

with D(ξ) = J−1
F (ξ) [kdetJF(ξ)]J−⊤

F (ξ); (4a)

[F]A =
∫

Ω̂

N̂A(ξ) f̂ (ξ)detJF(ξ)dΩ̂. (4b)

2.3 Elasticity problem

Let σ ∈ S denote the Cauchy stress tensor, let u∈Rd denote the displacement and let ε∈ S denote the
small strain tensor. Here S =Rd×d

sym is the space of all symmetric second order tensors. Let us assume that
the mentioned variables depend only on the spatial variable x ∈ Ω. Moreover, the prescribed body force
per unit volume is described by the given function f and a homogeneous Dirichlet boundary condition
is imposed over ∂Ω. Then, the strong form of the problem is [7]:

(S) =


Find u : Ω → R, such that:
∇ ·σ+f = 0 in Ω;
u= 0 on ∂Ω;

where σ = λ tr(ε)1+2µε and ε= ∇su= 1
2

(
∇u+(∇u)⊤

)
.

(5)

2

Here, in the constitutive equation, we assume that σ follows the Hooke’s law for an isotropic material.
The Lamé parameters λ and µ are computed from the Young’s modulus E and Poisson’s ratio ν.

In this study case, we define the function space V = {w |w ∈ H1(Ω), w = 0 on ∂Ω}. Then, the
corresponding weak form of Eq. (5) is given by:

(W) =

Find u ∈ V , such that for every w ∈ V :∫
Ω

σ(u) ·ε(w)dΩ =
∫

Ω

f (x) ·w(x)dΩ.
(6)

As in the previous paragraph, we may approximate the displacement field by uh = ∑
A∈η−ηg

NA(x)dA

where the nontrivial vector values dA are computed from the matrix formulation:

Sd= F, with d ∈ Rndo f d .

Here the stiffness S matrix and the external force vector F are defined as follows:

[S]AB =
∫

Ω

(λ∇NA(x)⊗∇NB(x)+µ∇NB(x)⊗∇NA(x)+µ(∇NA(x) ·∇NB(x))1)dΩ, (7a)

[F]A =
∫

Ω̂

N̂A(ξ)f̂(ξ)detJF(ξ)dΩ̂. (7b)

Adopting a tensor notation, as in [11], the stiffness matrix may be rewritten and partitioned as:

S=

S
(1,1) . . . S(1,d)

...
. . .

...
S(d,1) . . . S(d,d)

 with
[
S(i, j)

]
AB

=
d

∑
l=1

d

∑
m=1

∫
Ω̂

∂

∂ξl
N̂A(ξ)D

(i, j)
lm (ξ)

∂

∂ξm
N̂B(ξ)dΩ̂, (8)

where D(i, j)(ξ) = J−1
F (ξ)

[
k(i, j) detJF(ξ)

]
J−⊤

F (ξ). In this way, the stiffness matrix is composed by
conductivity–like matrices where the terms of the tensor k(i, j) are computed using the Kronecker delta δ

function and the following relation:[
k(i, j)

]
lm

= λδilδ jm +µ
(
δimδ jl +δi jδlm

)
.

3 Fast Diagonalization method

In order to increase the convergence rate of the iterative algorithm, it is necessary to find an efficient
preconditioner for the linear system Ax= b, where A could be the conductivity or stiffness matrix. The
Fast Diagonalization method (FD), which was first used as a technique for solving elliptic PDEs in the
finite difference method, takes advantage of the tensor structure of the matrices and allows to efficiently
find an approximation of their inverse [12]. To illustrate the idea behind this method, we will first explain
how to construct the preconditioner in a heat conduction case where the mapping and material properties
are considered to be equal to the identity.

3.1 FD for the heat conduction problem

3.1.1 The classic approach

A simple preconditioner matrix P for the matrix K is given by:

[P]AB =
d

∑
l=1

∫
Ω̂

∂

∂ξl
N̂A(ξ)

∂

∂ξl
N̂B(ξ)dΩ̂, for A, B ∈ η−ηg; (9)

that is obtained by considering a mapping F equal to the identity map and the conductivity tensor k equal
to the identity tensor. Exploring the tensor–product structure of the basis functions, for the case d = 3,
Eq. (9) may be written as:

P= M3 ⊗M2 ⊗K1 +M3 ⊗K2 ⊗M1 +K3 ⊗M2 ⊗M1.

3

Here, Kl are the univariate stiffness matrices while Ml are the univariate mass matrices. Both matrices
are the same size of ndo f , l ×ndo f , l . These univariate matrices are defined as

[Kl]AlBl
=

∫ 1

0
b̂′Al

(ξl)b̂′Bl
(ξl)dξl, [Ml]AlBl

=
∫ 1

0
b̂Al (ξl)b̂Bl (ξl)dξl.

In order to find the inverse of P, the first step is to compute the generalized eigendecomposition of
the matrix pencils (Kl, Ml), i.e., we may write

KlUl = MlUlΛl,

where Ul is a matrix containing the generalized eigenvectors and Λl is a diagonal matrix containing the
corresponding eigenvalues. Since Ml is a symmetric and positive definite matrix, the eigenvectors are
Ml–orthogonal, i.e., U⊤

l MlUl = 1l , where 1l is the identity matrix. As a consequence, we have the
following factorization

Ml =U−⊤
l U−1

l , Kl =U−⊤
l ΛlU−1

l .

Finally, we may express the inverse of P as

P−1 = (U3 ⊗U2 ⊗U1)Q
−1(U3 ⊗U2 ⊗U1)

⊤, where

Q= 13 ⊗12 ⊗Λ1 +13 ⊗Λ2 ⊗11 +Λ3 ⊗12 ⊗11 is a diagonal matrix. (10)

In the iterative solver chosen, we need to solve s(it) =P−1r(it), where r(it) is the residual at the (it)–th
iteration, i.e., r(it) = b−Ax(it). That equation may be easily solved using Eq. (10). After an initial step
of performing the generalized eigendecomposition, appliying P just involves an inversion of a diagonal
matrix and two matrix–vector products, where sum–factorization technique [1] can be applied. The
overall computational cost is O

(
n4/3

do f

)
, which does not depend on the B–spline degree p. We summarize

this procedure in the following algorithm:

Algorithm 1: 3D Fast Diagonalization for the heat conduction problem

Data: The generalized eigendecomposition of pencils (Kl, Ml) for l = 1, 2, 3, and r(it)

Result: s(it)
1 Compute r̃ = (U⊤

3 ⊗U⊤
2 ⊗U⊤

1) ·r(it).
2 Compute s̃= Q−1 · r̃.
3 Compute s(it) = (U3 ⊗U2 ⊗U1) · s̃.

3.1.2 Inclusion of the geometry and thermal properties

The preconditioner described before does not include any information on the geometry parametriza-
tion F nor thermal properties of the material. To improve FD method without increasing the computa-
tional cost, we decided to adopt the following strategy: add some coefficients cl such that

P= c1M3 ⊗M2 ⊗K1 + c2M3 ⊗K2 ⊗M1 + c3K3 ⊗M2 ⊗M1.

In this way, if we proceed as before, we may find that the inverse of P is very similar to Eq. (10) except
for the diagonal matrix Q that is

Q= c113 ⊗12 ⊗Λ1 + c213 ⊗Λ2 ⊗11 + c3Λ3 ⊗12 ⊗11,

Thus, we can apply the same algorithm as in the previous paragraph. Actually, the general form of the
modified preconditioner matrix P may be written as

[P]AB =
d

∑
l=1

∫
Ω̂

∂

∂ξl
N̂A(ξ)C̄ll

∂

∂ξl
N̂B(ξ)dΩ̂, where C̄ = diag({c1, . . . , cd}). (11)

4

Here, applying reverse engineering, the tensor C̄ may be interpreted as an approximation of D(ξ), defined
in Eq. (4a). Then, to compute cl , we could use the following formulas introduced by [3]:

cl =
∫

Ω̂

Dll (ξ)dΩ̂ =
d

∑
p=1

d

∑
q=1

∫
Ω̂

[
J−1

F

]
l p [k]pq detJF

[
J−1

F

]
lq dΩ̂.

To keep it simple and knowing that we need only an approximation and not exact value of the integrals,
we can compute them using the trapezoidal rule technique. For this purpose, we choose conveniently the
quadrature points that are in positions 0, 0.5 and 1 in each dimension, so that we obtain a hypercubic grid
of 3d points within the parametric domain Ω̂. In a 3D case, we can apply the following quadrature rule:

cl ≈
1
8

33

∑
q=1

ωqDll

(
ξ̃q

)
, (12)

with ωq being 8 for the interior points, 4 for the interior points of the boundary surfaces, 2 for the
boundary edge points and 1 for the corner points [10].

3.1.3 Spectral properties

The convergence rate of most iterative algorithms depends on spectral properties of the matrix P−1K
[2]. It turns out that the convergence rate increases if the spectral condition number, κ

(
P−1K

)
, tends to

1. For most cases, computing the exact value of κ is too expensive, but we could provide an upper bound
using the following proposition.

Proposition 1. It holds

κ
(
P−1K

)
≤ sup

Ω̂

λmax(D̄)

/
inf
Ω̂

λmin(D̄) , (13)

where D̄= C̄−1/2D(ξ)C̄−1/2, while λmax(D̄) and λmin(D̄) denote respectively the maximum and minimum
eigenvalue of D̄.

Proof. Let d ∈ Rndof , and define V h ∋ uh = ∑A N̂AdA. Then it holds

d⊤Kd=
∫

Ω̂

∇̂uh ·
[(

C̄1/2D̄C̄1/2
)

∇̂uh
]

dΩ̂ ≤
∫

Ω̂

λmax(D̄)∇̂uh ·
[(

C̄1/2C̄1/2
)

∇̂uh
]

dΩ̂

≤ sup
Ω̂

λmax(D̄)
∫

Ω̂

∇̂uh ·
[

C̄ ∇̂uh
]

dΩ̂ = sup
Ω̂

λmax(D̄)d⊤Pd. (14)

By the min–max theorem, we infer λmax
(
P−1K

)
≤ sup

Ω̂

λmax(D̄). With analogous calculations, it is

possible to prove that λmin
(
P−1K

)
≥ inf

Ω̂

λmin(D̄), and hence κ
(
P−1K

)
is upper bounded by Eq. (13).

Proposition 1 formalizes an almost intuitive fact: as long as the geometry is not too complex and the
thermal properties of the material do not vary much along Ω, the condition number κ

(
P−1K

)
will be

close to 1 and the preconditioner will perform quite well. In addition, it is worth noting that the upper
bound in Eq. (13) does not depend on the B–spline degree p nor the mesh discretization h.

3.2 FD for the elasticity problem

3.2.1 Extension of the modified FD method

We build the preconditioner only considering the main–diagonal blocks
{
S(1,1), . . . , S(d,d)

}
from

Eq. (8). In that way, the inverse of the resulting block diagonal matrix P is composed of the inverse of
its main–diagonal blocks; and, since each block is a conductivity–like matrix, the method described in
Section 3.1 could be easily applied.

5

Then, the preconditioner P and its inverse are defined as:

P=

P
(1)

. . .
P(d)

 andP−1 =


(
P(1)

)−1

. . . (
P(d)

)−1

 .
Here, for the case d = 3, the main–diagonal block matrix P(m), for m = 1, . . . , d, may be written as:

P(m) = c(m)
1 M3 ⊗M2 ⊗K1 + c(m)

2 M3 ⊗K2 ⊗M1 + c(m)
3 K3 ⊗M2 ⊗M1.

Its inverse, using Fast Diagonalization method, may be written as(
P(m)

)−1
= (U3 ⊗U3 ⊗U1)

(
Q(m)

)−1
(Ud ⊗U2 ⊗U1)

⊤ ,where

Q(m) = c(m)
1 13 ⊗12 ⊗Λ1 + c(m)

2 13 ⊗Λ2 ⊗11 + c(m)
3 Λ3 ⊗12 ⊗11. (15)

To compute the different coefficients c(m)
l , we may use the following formula:

c(m)
l =

∫
Ω̂

D(m,m)
ll dΩ̂ =

d

∑
p=1

d

∑
q=1

∫
Ω̂

[
J−1

F

]
l p

[
k(m,m)

]
pq

detJF
[
J−1

F

]
lq dΩ̂.

As before, we could compute an approximation using a trapezoidal rule as in Eq. (12).

3.2.2 Spectral properties

The upper bound of κ
(
P−1S

)
is quite similar to the one given in Proposition 1, i.e., κ

(
P−1S

)
≤

sup
Ω̂

λmax(D̄)

/
inf
Ω̂

λmin(D̄) , with D̄ = C̄−1/2D(ξ)C̄−1/2. However, the block matrices are defined by:

D(ξ)=

D(1,1)(ξ) . . . D(1,d)(ξ)
...

. . .
...

D(d,1)(ξ) . . . D(d,d)(ξ)

 and C̄ =

C̄(1)

. . .
C̄(d)

 with C̄(m) = diag
({

c(m)
1 , . . . , c(m)

d

})
.

4 Results

The results presented here were computed on a laptop equipped with Intel i7-11850H processors
running at 2.5 GHz and with 16 GB of RAM. The tests were programmed in Python, version 3.8.10.;
but, the core algorithms were developed in Fortran90, compiled into a static library, and called in Python
using f2py module. In our benchmark, we do not incorporate parallelization and all computations were
restricted to a single computational thread. We applied our preconditioner to both a heat conduction
problem and an elasticity problem. In both cases, the physical domain is a quarter of an annulus delimited
by Ω = {x = (x1, x2) ∈ R2|0 ≤ x1, 0 ≤ x2, 1 ≤ x2

1 + x2
2 ≤ 16}. For the heat conduction problem, we

consider zero–temperature on the entire boundary ∂Ω, and we fix the internal heat source f =−∇ ·(k∇T)
such that the exact temperature is given by T (x) = sin(πx1)sin(πx2)(x2

1+x2
2−1)(x2

1+x2
2−16). Besides,

for the elasticity problem, we solve a well–known problem in literature: an infinite plate with circular
hole loaded with far–field uniaxial tension Tx = 1. For the sake of simplicity, this problem is modelled as
a quarter of the initial geometry with the outer edge circular shaped. Concerning the boundary conditions,
we set σ ·n= 0 in the inner edge, where n is the unit outward normal vector and, on the outer edge, we
imposed the exact traction g that, in polar coordinates (r, θ), is given by:

g =


g1 =

Tx

2

(
2cosθ− R2

in

r2 (2cosθ+3cos3θ)+
3R4

in

r4 cos3θ

)
;

g2 =
3Tx

2
sin3θ

(
R4

in

r4 − R2
in

r2

)
; where Rin is the inner radius.

6

For the elasticity problem, we consider an isotropic material with Young’s modulus E = 103 and Pois-
son’s ratio ν = 0.3; while for the heat conduction problem, we consider an anisotropic homogeneous
material with thermal conductivity given by

k =

[
1 0.5

0.5 2

]
.

The iterative solver chosen is the biconjugate gradient stabilized method (BiCGSTAB). The initial guess
is the null vector and the stopping criteria is defined by ||r(it)||2 ≤ 10−12||b||2.

0 20 40 60 80 100

Number of iterations of BiCGSTAB solver

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
re

si
d

u
e
||r
|| 2
||b
|| 2

w.o. preconditioner

Classic FD method

This work

(a) In the heat conduction problem

0 20 40 60 80 100

Number of iterations of BiCGSTAB solver

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
re

si
d

u
e
||r
|| 2
||b
|| 2

(b) In the elasticity problem

Figure 1: Evolution of the relative residue when p = 6 and h−1 = 64 using different preconditioner
methods: without preconditioner, classic Fast Diagonalization problem and our preconditioner.

Table 1: Performance of our preconditioner with a
BiCGSTAB solver in the heat conduction problem.

Iterations / CPU time (s)
h−1 p = 4 p = 5 p = 6

64 18 / 0.125 17 / 0.125 18 / 0.172
128 19 / 0.484 18 / 0.516 18 / 0.484
256 18 / 1.516 18 / 1.531 18 / 1.593
512 19 / 8.625 18 / 8.594 18 / 8.984

Table 2: Performance of our preconditioner with a
BiCGSTAB solver in the elasticity problem.

Iterations / CPU time (s)
h−1 p = 4 p = 5 p = 6

64 33 / 0.390 33 / 0.453 35 / 0.578
128 35 / 1.609 35 / 1.734 35 / 2.001
256 36 / 8.656 37 / 9.594 37 / 10.48
512 38 / 43.41 38 / 47.17 38 / 47.22

Fig. 1a and Fig. 1b show the evolution of the relative residue using different preconditioning methods
for the heat conduction problem and elasticity problem, respectively. We can observe the larger advantage
of our preconditioner over the classic FD method and even more if no preconditioner is used. The
explanation for this difference is clearly because our preconditioner takes into account material properties
and geometry. This implies that by computing certain scalar parameters, whose computational cost is
negligible, the number of iterations required for the same level of precision can be reduced to one half.

Table 1 and Table 2 show the performance of the iterative solver using our method as preconditioner
for both cases. Both examples are experimental evidence that support the theoretical results: the condi-
tion number κ(P−1A) only depends on the complexity of geometry and material properties. It is robust
with respect to the degree p and mesh discretization h.

5 Conclusion

In this work we have introduced the different bricks needed to implement a good preconditioner
for both heat conduction and elasticity problems. The novelty of our preconditioner, based on Fast
Diagonalization method, is its coding simplicity and remarkable efficiency in achieving very good results
with a reduced number of iterations. Moreover, we have proved theoretically and experimentally that our
preconditioner is robust with respect to the polynomial degree and mesh discretization. As observed
in the experimental results, this implies that its performance only depends on the complexity of the
geometry and material properties.

7

References

[1] P. Antolin, A. Buffa, F. Calabrò, M. Martinelli, and G. Sangalli. Efficient matrix computation for
tensor–product isogeometric analysis: The use of sum factorization. Computer Methods in Applied
Mechanics and Engineering, 285:817–828, 2015.

[2] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the solution of linear systems: building blocks
for iterative methods. SIAM, 1994.

[3] P.D. Brubeck and P.E. Farrell. A scalable and robust vertex–star relaxation for high–order FEM.
SIAM Journal on Scientific Computing, 44(5):A2991–A3017, 2022.

[4] J. Cornejo Fuentes, T. Elguedj, D. Dureisseix, and A. Duval. A cheap preconditioner based on fast
diagonalization method for matrix-free weighted-quadrature isogeometric analysis applied to non-
linear transient heat transfer problems. Computer Methods in Applied Mechanics and Engineering,
414:116157, 2023.

[5] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward integration of CAD
and FEA. Wiley, 2009.

[6] T. Elguedj, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes. B− and F− projection methods for nearly
incompressible linear and non–linear elasticity and plasticity using higher–order NURBS elements.
Computer Methods in Applied Mechanics and Engineering, 197(33):2732–2762, 2008.

[7] T.J.R. Hughes. The Finite Element Method: Linear static and dynamic Finite Element analysis.
Dover Civil and Mechanical Engineering. Dover Publications, 2000.

[8] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and
Engineering, 194(39):4135–4195, 2005.

[9] T.J.R. Hughes, A. Reali, and G. Sangalli. Duality and unified analysis of discrete approximations
in structural dynamics and wave propagation: Comparison of p–method finite elements with k–
method NURBS. Computer Methods in Applied Mechanics and Engineering, 197(49):4104–4124,
2008.

[10] J.N. Lyness. Symmetric integration rules for hypercubes I. Error coefficients. Mathematics of
Computation, 19(90):260–276, 1965.

[11] J. Planas, I. Romero, and J.M. Sancho. B free. Computer Methods in Applied Mechanics and
Engineering, 217-220:226–235, 2012.

[12] G. Sangalli and M. Tani. Isogeometric preconditioners based on fast solvers for the Sylvester
equation. SIAM Journal on Scientific Computing, 38(6):A3644–A3671, 2016.

8

