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Abstract

Energy consumption has been of growing concern in the past few years.
Studies have compared the impact of programming languages on energy
consumption and performances, and while they generally tend to agree
that the most efficient language is CUDA, and that the least efficient one
is Python, they have been heavily criticised for their lack of methodology,
with some critics saying that the comparison was about the ability of the
programmer to code rather than the language itself. With how impor-
tant energy management has become, we believe that it is important to
establish a clear comparison between programming languages so that de-
veloppers may be aware of the consequences of their choice when picking
a programming language over another.

In this work, we developped a new benchmarking framework that al-
lows for the fair comparison of the energy consumption of programming
languages. This project did not yield any concrete results per se, but the
first partial results suggest that, if execution time is not factored in, power
consumption is fairly equivalent between every programming languages.

1 Introduction

The goal of this project is to improve the quality and the reproducibility of the
previous studies on the impact of programming languages, all the while studying
their energy consumption, which was mostly disregarded. To that end, a new
benchmarking framework named CuttleBench was developed.

In this work, we assess the state of the art of programming languages com-
parisons in order to provide a proper methodology for how to compare program-
ming languages with fairness. Using the newly defined methodology, we develop
a benchmarking framework that allows for fair comparisons while ensuring that
the framework is portable and that the results can easily be reproduced.

The main contributions of this work are the following:

• A framework to run multiple implementations of multiple benchmarks and
to acquire energy, system and performance runtime data;

• A first set of benchmarks in multiple languages;

• A comparison of the energy and performance impact of programming lan-
guages.
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The remainder of the paper is organised as follows: section 2 presents a brief
descriptions of existing works. Section 3 provides information regarding the
methodology followed in this present work. Section 4 presents the specificity of
the experiments carried out in this work. Finally, section 5 presents the results
obtained along with an analysis before concluding in Section 6.

2 State of the Art

2.1 Methodological approaches

In [2], the authors performed a comparison of the implementations of three al-
gorithms in six different programming languages with a focus on their bioinfor-
matics usage, on two different operating systems. Determining which languages
and which operating systems are the best suited for this field would indeed be
interesting, unfortunately, because the source files are not accessible, it is im-
possible to ascertain that the comparisons were fair, and the results cannot be
reproduced.

In [7], the authors compared seven programming languages after gathering
numerous implementations from computer science master students in a con-
trolled experiment. While the way the implementations were gathered is inter-
esting and ensures that they are effectively idiomatic, the results of this research
are now outdated due to deprecated compiler versions, depriving them of their
meaning.

In [5], the authors extend their work from [4] where they compare numerous
algorithms with numerous programming languages based on implementations
taken from The Computer Language Benchmarks Game. The results of this
study became relatively famous and eventually led to various reactions in social
medias regarding their methodology, often stating that the results are biased
and that the study is comparing the programmers themselves rather than the
languages. For some algorithms, they simply took the fastest implementation
available without ensuring the equity between the different languages, leading
to some comparisons having multi-threads code on one side, and single-thread
code on the other side, for example.

In [6], the authors present results of high performance computing in astro-
physics. They attempt to show how the performance of the computer relates
to the power consumption, which is indeed of great concern when it comes to
highly energy-intensive research fields. Unfortunately, because the source files
are not accessible, it is impossible to reproduce the results and ascertain that
they are correct.

2.2 Monitoring tools

In [3], the authors compare the different power-meters available to determine
which ones are the most suited for which job. Their result seem to suggest that
most software-based power-meters are roughly equivalent, but that having both
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a software-based power-meter and a physical on-site power-meter is ideal for
power consumption analysis.

3 Methodology

After analysing previous studies on energy consumption and programming lan-
guage efficiency, a methodology to follow in order to develop the benchmarking
framework was decided.

3.1 Gathering of algorithms and implementations

Despite the issues surrounding the use of The Computer Language Benchmarks
Game1 for research purposes, it was still decided to use some of its implementa-
tions to serve as a base for CuttleBench. In order to avoid unfair comparisons
between languages, several criteria were agreed upon to select implementations.
If the available implementations did not meet the criteria, modifications were
brought to the source code until the criteria were met.

• Parallelism: while it is true that some languages heavily rely on parallelism
to be efficient, it was deemed necessary to carry out the first experiments
with no implementations making use of parallelism;

• External libraries: because the goal of the project is to compare languages
themselves and not the ability of someone to code something that is effi-
cient; the use of external libraries was prohibited so that every language
would have to rely exclusively on their standard library;

• Idiomatic and simple code: the definition of idiomatic is very subjective,
but to avoid unfair comparisons, implementations were chosen to match
what an average programmer of the language would produce without ex-
cessive optimisations.

The languages and algorithms were selected based on more personal capa-
bilities to understand the code while providing varied enough algorithms and
languages to bench. A total of two algorithms were selected, one that focuses
on memory usage, and one that focuses on raw computation, while a total of
four languages were selected (see section 4).

1https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
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3.2 The framework
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Figure 1: CuttleBench inner workings

Figure 1 presents a general idea of how CuttleBench functions internally. The
main script, bencher.py, imports and installs all the necessary dependencies
(excluding the installation of languages), reads all the configuration files and
compiles and executes all the specified sources through the Makefiles. See the
official documentation for more details about command-line usage2.

Implementations are divided within CuttleBench by a folder for each algo-
rithm, then further subdivided by a folder for each language. Each algorithm
folder contains an input file and an output file (for result ascertainment), and
each language folder contains the source file for the implementation along with
a dedicated Makefile.

Additionally, several scripts were made to ease the setup work:

1. gen-parameters.sh is a script that generates all the possible options for
the files in the cl-args/ folder based on the implementations currently
available in the underlying folders;

2. launch.py is a script dedicated to launching CuttleBench from within
the Grid50003 infrastructure by submitting a dedicated job to run
bencher.py. Using this script requires manually setting up the

2https://gitlab.irit.fr/sepia/stages/23-programming-languages
3Grid’5000 is a large-scale and flexible testbed for experiment-driven research in all areas

of computer science. https://www.grid5000.fr/
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g5k-input.txt file to specify which site and cluster to submit the job to;

3. exp-data.py is a result generator script that can read some monitoring
tools’ output files to generate various energy consumption summary files
as CSV (see section 4.4)

3.3 Obtaining metrics on a particular benchmark

Before the monitoring of every benchmark, the bencher goes through a preheat-
ing phase (a CPU intensive phase, see section 4) along with a sleeping phase
in an attempt to reproduce the same hardware state for every execution. It is
of course impossible to guarantee that the hardware state will be exactly the
same, but this step helps reduce inconsistencies observed in early results.

Execution time can vary greatly between different languages. Because it is
important to keep the same inputs for every program, some of them end up
being too fast to be monitored properly. In order to address this issue, the
bencher automatically executes benchmarks that did not last long enough until
the total execution time exceeds a specific threshold, all the while storing how
many times the program was executed. Results thus show an additional column
stating how many executions were monitored. That allows monitoring tools to
have a sufficient amount of data for the results to be relevant.

A potential limit of this approach concerns the difference between running
some benchmarks once (the slow ones) against running some benchmarks several
time (the fast ones), as the subsequent executions of the faster benchmarks will
effectively not start in the same initial hardware state as the slower benchmarks.

3.4 Monitoring tools

Most of the available software-based power-meters available being relatively
equivalent[3], only the most relevant and easy to access RAPL power-meters
were used. Physical power-meters were also used. Both measures are interest-
ing as their scope is different: RAPL measures processor and memory power
consumption which is usually assumed to be the most important dynamic el-
ement for the power consumption of servers, while whole-server power-meter
evaluate the global power impact of the different executions, taking into ac-
count all elements inside the servers (PSU, motherboard, NIC, ...).

3.5 Outputs

The framework delegates the production of monitoring data to the monitors.
The experiments datas are stored within CSV files for RAPL monitoring and
JSON files for Grid5000’s physical power-meters.

Taking these monitoring data files as inputs, the framework can produce
many types of time-series results in the form of CSV files or graphs with different
degrees of simplification as well as summaries.
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4 Experiments

The CuttleBench Benchmarking tool was mainly implemented under Python
3.9.2 using the Expetator monitoring framework4 (v0.3.20).

To ensure that programs are benched in the same conditions, they are all
executed in the exact same way with the same inputs through a dedicated
Makefile. While a universal Makefile was not achieved, the dedicated Makefiles
were made as similar as possible.

A leverage–a function used before every execution benched with Expetator–
also heats up the CPU and forces it to sleep before executing every program to
ensure that the hardware conditions within which they are run are as similar as
possible between the different experiments.

4.1 Experimental environment

Grid’5000 is a large-scale and flexible testbed for experiment-driven research in
all areas of computer science, with a focus on parallel and distributed computing
including Cloud, HPC and Big Data and AI. All experiments were carried out
on the Yeti Cluster from the Grenoble site5.

This cluster was specifically selected because the associated machines all
possess an accurate external physical power-meter required for this project.
The machines have the following specifications:

• System model: Dell PowerEdge R940

• CPU: Intel Xeon Gold 6130 (Skylake, 2.10GHz, 4 CPUs/node, 16
cores/CPU)

• Memory: 768 GiB.

• External power-meter: Omegawatt6 devices with a measurement
frequency up to 50Hz and a precision below 1W.

Using the Grid5000 infrastructure also ensure that the experiments are ac-
tually reproducible by anyone who has access to the infrastructure.

4.2 Algorithms

A total of four algorithms/functions were selected to carry out the first experi-
ments.

• Binary-Trees7: a memory usage focused algorithm;

• Fannkuch-Redux8: a raw computation focused algorithm on a relatively

4https://expetator.readthedocs.io/en/latest/index.html
5https://www.grid5000.fr/w/Grenoble:Hardware
6https://mv.omegawatt.fr/
7Binary-Trees on The CLBG
8Fannkuch-Redux on The CLBG
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small objects;

• Sleep: a basic function calling Python 3.9.2’s time.sleep() method;

• Stress: a basic function calling Linux’s stress command (v1.0.4) on a
single CPU core.

4.3 Languages and implementations

In order to achieve equity between the different languages, multi-threading and
multi-processing has been prohibited. As such, none of the implementations
make use of parallel programming. If a comparison of energy consumption is to
be done for parallel implementations, then every single implementation should
be parallel to make sure equity is maintained, or, the implementation itself
should be marked as parallel so as to make sure it is known to be parallel when
compared to other implementations.

While a wider range of languages could have been selected, the project was
limited by the author’s personal programming languages experience. As such,
only four languages were selected, with the following specificity:

• C: a general-purpose compiled language. C implementations were re-
stricted to using only the standard library. All experiments were done
under gcc (Debian 10.2.1-6) 10.2.1 20210110 and using the -O3 flag only;

• Java: a high-level, class-based, object-oriented programming language.
Java implementations were made within a single class containing the main
method as well as other nested classes and methods as necessary. All
experiments were done with javac 17.0.7 and command line compilation
using no additional flag;

• Python: a general-purpose, high-level interpreted programming language.
Python implementations are written as purely iterative with no object
definition. All experiments were done with Python 3.9.2;

• OCaml: a general-purpose, high-level multi-paradigm programming lan-
guage. OCaml implementations were written as purely functional using no
external modules. All experiments were done under The OCaml toplevel,
version 4.10.2 using the ocamlopt compiler.

It should be noted that OCaml implementations were not benched properly
due to lack of time and OCaml not being available by default on the Grid5000
machines. They are thus not included in the results of this article.
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4.4 Monitors

While a wider range of monitors could have been selected, this project limited
itself to two RAPL9 power-meters and one physical power-meter.

• MojitO/S10[1]: is An Open Source System, Energy and Network Monitor-
ing Tool at the O/S level developed at IRIT by G. Da Costa. MojitO/S
outputs time-series in the form of a CSV file.

• Lperf11: is a modified version of the Linux Perf Tool12 for use with the
Expetator tool developed at IRIT by G. Da Costa. Lperf outputs time-
series in the form of a CSV file.

• Kwollect13: a framework available on the Grid5000 infrastructure to col-
lect data from physical wattmeters. Kwollect outputs time-series in the
form of a Json file.

Due to the size of the data files produced by the Lperf tool, it was eventu-
ally decided to stop its usage despite the monitor working properly, MojitOS
becoming the only monitor used for RAPL data. As mentionned previously,
most RAPL power-meters are almost equivalent in terms of results, and so this
decision was not deemed impactful.

Regardless, it is still possible to select Lperf as a monitor when launching
experiments with CuttleBench.

5 Results

The first results obtained with CuttleBench are displayed in this section. They
concern the power consumption and the total energy consumed for every lan-
guage and algorithm combination, for both RAPL and Kwollect.

The first two figures of the sections 5.1 (figure 2 and figure 3) and 5.2 (figure 6
and figure 7) present both algorithms together along with the Sleep and Stress
values for RAPL first, and then for Kwollect. Sleep and Stress supposedly
having a constant power consumption, they are represented in the form of a
straight line, while the values for each language and algorithm combination are
the average values obtained from the experiments. Logarithmic scaling on the
axis is used to make the results more readable.

The two next figures of each section (figure 4 and figure 5) (figure 8 and
figure 9) present the power consumption evolution over time for both algorithms
separately.

9https://www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html

10https://gitlab.irit.fr/sepia-pub/mojitos
11https://gitlab.irit.fr/sepia-pub/expetator/-/blob/master/expetator/monitors/lperf.py
12https://perf.wiki.kernel.org/index.php/Main Page
13https://www.grid5000.fr/w/Monitoring Using Kwollect
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5.1 RAPL Results

Figure 2: Energy Consumed summary (RAPL)

Figure 3: Averaged Power Consumption summary (RAPL)
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Figure 4: Power consumption for the Binary-Trees (RAPL)

Figure 5: Power consumption for the Fannkuch-Redux (RAPL)
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5.2 Kwollect Results

Figure 6: Energy Consumed summary (Kwollect)

Figure 7: Averaged Power Consumption summary (Kwollect)
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Figure 8: Power Consumption for the Binary-Trees (Kwollect)

Figure 9: Power Consumption for the Fannkuch-Redux (Kwollect)

5.3 Result analysis

Figure 10 is the combination of figures 2 and 6, While figure 11 is a combination
of figures 3 and 7.
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Figure 10: Energy Consumed summary (Kwollect/RAPL)

Figure 11: Averaged Power Consumption summary (Kwollect/RAPL)

The difference in values seen between RAPL and Kwollect measures (about
200% more for Kwollect) is due to the fact the Kwollect is a whole-server power-
meter while RAPL is not. The Sleep benchmark help us see what the base values
are when the machine is in idle, it also allows use to measure how much more
did the other benchmarks consume, which is to say, how much they effectively
consumed.

These results clearly suggest that, when running on a single processor, the
language itself has no impact on the power consumption. Not only do every
benchmark have the same amount of power consumption, they also have the
same of power consumption as that of the Stress benchmark, which supposedly
reaches 100% load on one core14, implying that they can hardly consume any
more.

14Command line: stress -c 1 -t 120s -v
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Duration RAPL (W) Kwollect (W) RAPL (J) Kwollect (J)
Binary-Trees C 13.99 131.02 385.25 1832.96 5389.65

Binary-Trees Java 5.38 130.9 395.9 704.24 2129.94
Binary-Trees Python 107.23 133.83 388.01 14350.59 41606.31
Fannkuch-Redux C 37.52 133.58 383.92 5011.92 14404.68

Fannkuch-Redux Java 41.08 126.87 385.93 5211.81 15854.00
Fannkuch-Redux Python 783.14 127.91 390.91 100171.43 306137.26

Stress 120.01 130.14 386.73 15618.10 46411.47
Sleep 120 85.43 287.47 10251.6 34496.40

Figure 12: Averaged values of RAPL and Kwollect for Binary-Trees and
Fannkuch-Redux Algorithms.

Languages do, however, influence the time it takes for a given benchmark to
complete, which results in a different total energy consumption. For example,
despite Python having roughly the same Kwollect power consumption as C for
Binary-Trees (see figure 12), Python took 107.23s while C only took 13.99s,
and so Python consumed 41606.31J while C only consumed 5389.65J, which is
almost 8 times more.

Moreover, this conclusion is reached for both RAPL and Kwollect measures,
which further validates this analysis.

6 Conclusion

Comparing the energy efficiency of programming languages is a challenging topic
as it involves the writing of multiple benchmarks in different languages, all the
while having a reproducible and clear workflow measuring performance and
energy of each benchmarks written in each languages. These measures must
also be as fair as possible to remain valid, further increasing the challenging
aspect of this topic.

The findings presented in this document imply that the main impact on the
energy does not come from the instantaneous power consumption. From the
comparisons, regardless of the algorithm and the language, the power consump-
tion is quite similar to that of a classical processor stress program. Still, due to
execution time being dependent on the language, and due to energy being the
duration multiplied by the power, the total energy consumed is impacted by the
language.

For future work, several ideas could improve the current study:

• make OCaml benchmarking possible, or, more generally, find new lan-
guages along with their implementations to bench, such as C++ and Rust,
among others;

• find new algorithms to bench, preferably algorithms that involve AI or
matrices;
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• implement parallel versions of the existing implementations and compare
them with Linux’s stress command used on multiple cores;

• organise ”Hackathons” to gather more idiomatic implementations of each
language and algorithm;

• launch the experiments on different computer architectures to effectively
compare the impact of architecture on power consumption. This could also
be extended to comparing the power consumption of different Operating
Systems.

Naturally, some of these ideas may require upgrading the proposed method-
ology to ensure that comparisons remain fair.
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